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oN LATTICES ^L DETERMINED BY sub(I)

UP TO ISOMORPHISM

NGUYEN DUC DAT

Abetract. Denote by sub(r) thelartice determindbg all sublottices of alattice
L, The aim ol this ppr is to glive some types ol laftices L which arc determined
Dy Sub(I) up ta isomorplism.

1. INTRODUCTION

Ler L be a lattice. we say that the condition (G) hords for .L if
Sub(I) determines .L up to isomorphism, that is , if Sub(I) = Sub(,L,)
for some lattices ,L' then L = L'. "Find conditions under which ^L
satisfies (G)" is a problem proposed by G. Grd,tzer in 1928 [b].

In [t] H. M. chuong dealt with this problem in the larger sense: he
has given one type of lattices tr which are determined by sub(r) up to
isomorphism or dual isomorphism. Following H.M. Chuong, in [2], by
the contractible sublattice method we have proved the following:

(D If -L has no contractible sublattices then Sub(,L) determines .L
up to isomorphism or dual isomorphism. with the help of this result,
in [3] we have considered the lattices .L which are determined by sub(r)
up to isomorphism and showed:

(II) If .L is totally symmetric and has no contractible sublattices
then .L satisfies condition (G).

So far, it has still been difficult to indicate the lattices that satisfy
(G). In this paper we will present some interesting lattices which sat-
isfy this condition. one of the main results of this paper, proposition
3.2, asserts that if a lattice .L has direct decompositions the .L has no
contractible sublattices.

This proposition is very useful for our problem, first because it gives
a criterion for identifying some lattices satisfying (I).

on the other hand, it allows to construct the lattices satisfying (II).
They are:
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a) II (.L;, i e I) where ,L; with ltr; l > r,
symmetric lattices;

b) ,L x L* for an arbitrarY lattice tr'

The other result of the paper concerns with the lattices with con-

tractible sublattices. By Theorem 3.5 we will show some lattices, which

satisfying condition (G) besides the lattices having no contractible sub-

lattices mentioned in (II).

2. PRELIMINARIES

In this section we recall some concepts and prove three lemmas

which will be needed in the sequel.

Fromnow on, for a, be L we denote by a ^9 b and al l  b when o is

comparable and uncomparable with b, respectively'

Definit ion 2.L. A proper sublatt ice A of a latt ice .L with lAl > f is

called a contractible sublattice if the following two conditions hold:

(u) A is convex.

(b) If  (a,b; cd) is a square in -L then c € A + d € A'

Lernrna 2.2. Let A be a contractible sublattice of L and a € A, k €

.L \ A. rhen:

( P 1 ) :  f  k < a t h e n l e  l t , V t € A .

(P2) :  I f  k  > a then k )  t ,Yt  €  A.

Proo!. Let Ic ( a. Consider an arbitrary element t € A'

a) If r { k then according to (a) of Definition 2.1 we have le € A,

but it is impossible.

b )  I f  c l l k  t h e n  a  I  t v  k  <  r Y  a ; b y  ( o )  w e h a v e  r V  k €  A  a n d

UV (U)  rn i  €  A.  From rAk < le < o i t fo l lows /c  € A,  which is  a lso

impossible.

Thus, k < r and (P1) is Proved.

By duality we have (Pz) and the lemma is proved'

we say that a lattice -L has a linear decomposition if there exist a

chain / with l / l  > 1 and the sublatt ices L;, i  € I of L such that.L:

u (L ; ,  i  e  I )and fo r  i ,  i  e  I ,  i  11 ,  t hen  a  < -b fo r  a l l  a  €  L ; ,  b  e  L1 '

Futher, u(L;, i e I) is a completely linear decomposition of L if every

linear member L;, i € 1, is not linearly decomposable'
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i  € I, l / l  > 1, are totallY
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Lemma 2.8. If o lottice L is not linearly d,ecomposoble and p : L ---+ L'
is o square preseraing bijection then Lt is not linearly d,ecomposable.

Proof. First, we recall that for a square preserving bijection g i L --. Lt,
there hold two a"ssertions:

a) X is a sublattice in L ifr p(X) is a sublattice in .L'.
b)  cS y i t r  p( r )  S e(v)  (Yr ,  y  €  L) .
Now, we ansume that Lt has a linear decomposition X, U Y, such

t h a t  c ' 1 y ' r V r ' €  X ' r y ' € Y ' .  D e n o t e  X :  p - L ( X , ) , y  :  g - r ( y , )
then X, Y are the sublatt ices in.L such that X f iY :0 and nSa,
Yt € X, y e Y. Moreover, if A and B are the sublattices in X and y,
respectively, then AU B is a sublattice in .t, because all elements of A
are comparable with ones of B.

Consider Ao € Y. Without loss of generality we can assume that
1a€  X  such  tha t  r l yo .  Pu t t i ng  X6-  { "1 "€  X ,  r  <  Uo} ,  weshow
that it is a sublattice in .L.

Indeed, take c1, fr2 € X6, srl lrz, then c1 A 12 1 r,1V n2 ( yo.
Since n1V n2 € X and XaY : 0, therefore c1V rz I Uo. Thus, n1An2,
f r ,1Y r ,2  e Xo.

For c6 we have the alternative:
l )  I f  Xo -  X,  we take Yo:  {V ly  e Y,  U }  n ,  Vr  € X} .  For

A t ,Az  €Yo ,Vr l l yz ,  we  have  y tVv2 )  y t  Ayz )  r ,  Vz  €  X ,  where  the
equality does not occur as XnY : 0. This means that y1 Ayz, ArV yz €
Ys, i.e. Ys is a sublattice.

la) If Yo : Y then X U Y is a linear decomposition of ,L.
lb) If Yo # Y, we denote Yr : Y \Yo. tt is observed that: y € }i iff

y < r, for some x € X. This permits us to prove that Y1 is.a sublattice
in Y, therefore XUYL is a sublatt ice in.L. Thus, Y6 and XuYr form
a linear decomposition of ,L.

2 )  I f .  Xo  f  X ,  cons ide r  X r :  X \Xo :  { " l r  €  X ,  c  >  y6 }  and
Yz: {yly eY, A } r,  Vc € Xo}. I t  is easy to deduce that these sets
are the sublattices in .L.

2a) If Yz : Y then XL U Y is a sublattice and thus X6, Xr U Y
give a linear deposition of .L.

2b )  i f  Yz*Y  we take  Ys :Y  \Y2 .  C lea r l y ,  y  €  Ys  i f f  y  . - - x , , f o r
some r € Xs, therefore Y3 also forms a sublattice. Thus, we have the
sublattices Xs U Ys, X U Y2 which form a linear decomposition of .L.

In short, we have showed that L is linearly decomposed, which is
the contradiction and the lemma is proved.
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L e m m a  2 . 4 .  L e t L : u ( A ; ,  i e  I )  a n d L t :  U ( B i ,  i  e  I )  b e t w o

completely linearly decomposed lattices with a finite chain I. If g z L ---+

L' is an isomorphism then g(A;) : Bi, Yi e I.

Proof. As the chain .I is finite (and l/l > 1) we can assume that -I :

{1, ..., z} (with the natural order). From this we have -L : Arn' ' 'u An

and  L '  -  B1U " 'U  Bn .

1) We prove that g(41) - Bt. Consider an arbitrary element a €

A1. If g(") f .B1 then g(") > b, Vb € Bt. Because of the isomorphism

of g we have 9-r(6) < a, Vb € Br. Denote X : g-L(.B1) and Y :

.at \ X. Obviously, X is a sublattice in 41. On the other hand, as

Y : {ylV e Ar, g(V) > b, Vb € Br}, we conclude that Y is also a

sublattice in 41. Note that r 1 y, Yx € X, A € Y. Therefore ,4'1 is

decomposed into X, Y. But this contradicts the assumption that A1

is not linearly decomposable.

Thus, we have g(a) € .B1 and hence, g(Ar) 9 Br.

Conversely, considering the isomorphism 9-l : L' -t ,L we have

s - l ( , a1 )  C  A t .

Consequently, we obtain g(At) - 81-

2 )  Deno te  L t  :  AzU " 'U  An  and .  L t ,  -  B2U " '  U  B '2 .  The

restriction of g on -L1 is an isomorphism between L1 and L\- By the

similar arguments as in part 1) we have g(A2): Bz.

Thus, by this way we obtain g(A;) : Bi, i e I - The lemma is

proved.

Finally, we recall a result of N. D. Filippov [+], that is:

(F): Let L, L'be the latt ices, then Sub(L) = Sub(I ') i f f  there
'exists a square preserving bijection P : L -t L'.

Let Lbe a lattice satisfying (G) and p : L -- L',asquarepreserving
bijection. Due to (F), we have Sub(L) = Sub(I') and bv (G) there

exists an isomorphism I z L -- -L'. Thus, we have

Remark.If a lattice -L satisfies (G) then every square preserving bijec-

tion gr : L --+ Lt f.or some lattice .L', induces an isomorphism f : L --+ L'.

3. RESULTS

Let L;, i e I, be the lattices, whose direct product is denoted by

il(Lt, i e I). The element / € TI(L;, i e I) is understood as a map

f : I -+ U(L;, i e I) (disjoint union) such that I0 e L;, Vi e I.
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We say that a lattice .L has a direct decomposition if there exist the
la t t i ces  L ; ,  i e  . I ,w i th  l 1 l  >  1 ,  l r ; l  >  L , i e  l , such tha t .L  = f t (L ; ,  i €
r).
Lemma 3.1. If a lattice L has a direct decornposition then L has no
linear d,ecornposition.

Proof. Let L: II(tr;, i e I). Suppose that L has a linear decomposi-
tion. Without loss of generality we can assume that L: AU B such
that z ( u for all z € A, u € B.

Take / € A, I € B, then f < g,i .e. /( i)  S g(i),  Vi € .[ .  suppose
that for some fixed index j e I there i. /(r) : g(j).As llr.l > I there
are two following possibilities:

( 1 )  l o  e  L i : a >  g ( j )  o r
( 2 ) 3 b € L i : b < g ( j ) .

For the first case, we take gt e B as follows: gr(j) : a, gt (i) :
g(i),  Vi I  j .  Thus, we have f e A, gt € B such that / < 91'with
f (j) < g'U).

For the second case, we define h € A putting ft(j): b, fL(i):
f( i), Vi f j . We obtain /1 € A, s € B such that /1 < s;ith
hU) < s(j).

Consequently, we can always assume that 3/ € A, g € B such that
/( i) < g(i),  Vi e I.

Now, as l/l ) 1, from f , g, for some index i € I, we construct
p, 8 € .L as fol lows: p(f) :  I( i) ,  p(j) :  s(j),  Vi * i ,  q(;) :  s(i),
q ( i ) :  f ( j ) , V j  I  f .  T h u s , w e h a v e p l l q  a n d  p A q :  f  , p v  q :  s .

Since L : A U B, the element p must belong to one of two linear
members,  hence,  wecan supposethatp€.4.  Now, i f  g  € B then p 1Q,
but it is impossible. Thus, it is necessary g € .4, which implies that
g: pv q e A. This contradicts the fact that g € B.

Thus, .L is not linearly decomposable and the proof is complete.

Proposition 3.2. Il a lattice L has a d,irect d,ecomposition then L has
no contractible sublattices.

Proof. Let L : fI(L;, i e t). Arguing by contradiction we suppose
that there exists a contractible sublattice ,4, in .L.

Take / € A, as l,4l > 1 we can assume that 3a; € ,L; such that a; )
/(i) for some index f (otherwise, instead of /, we take /1 e A, h < /).
We define -a; 

€ L as follows: A;(i) : o;, a;(j) : f (j), Vj + i. Thus
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a; > f .From this moment we have to examine two following cases:

Ca"se 7. If besides o; there exists ai for some i + i' then from the

square (a;,ai, La;Y a1) i t  implies that a;, d' i  € A (Definit ion 2'1) '

T h u s , i n g e n e r a l , w h e n e v e r t h e r e e x i s t r z € . I a n d o , ' € . L , , s u c h
that ar. > f (rr) then it always follows that o,n € A' This permits us to

prove the following assertion:

(A) :  I f  h> f  then h e A '

P r o o f o l ( A ) . W e t a k e h > f . A s s u m e t h a t h ( . A , a c c o r d i n g t o ( P 2 )
h)'s, 'Vi e e. Consider an arbitrary index i:  I '  

Jf 
fbt > h(i) then

\ €-Asince h(r) > /( i) .  T\i t  
deduces that h ) bi '  i 'e '  h(i) 2bi '

ult it is impossible. ttrus h(r) must be a unit-element in L1 which is

denoted by li.

As h > /, there exists an index ra such that /(n) 1 Ln' We take g

as follows: i@) 
-- f ("), g(i): ri, Yi t' n' Cleailv s # A (otherwise'

h: Uv 1" a a, Uut i i  is impossible)'  By virtue of (P2) we have I ) Ln'

h"n.L f 6) >1,r. The obtained contradiction proves the assertion (A).

Now, we continue to study the case 1: Let g € B: .L\A then'

due to (i), g can not be greater than /' tf gll/ then g v f e A (*

,a i, .ontrr.tiur"l. This contradicts the inclusion g € , \ A. Thus, we

h a v e g  <  /  a n d L " r r . "  I  l k , V k e  A , b y  ( P 1 ) '  F u r t h e r '  i f  9 1 ' 9 2 e  B

t h e n g l A g z , g t V g z e B . I n s h o r t , B i s a s u b l a t t i c e a n d f o r a l l g e B '
n e ith"r, g < ,r,i;. B and .A form a linear decomposition of .L. This

contradicts Lemma 3.1.

Case 2. If there exists a; for a unique index i then it is necessary that

tt) : Li € Li, vj + i.Let ci.€ -Li such that cr' : /U) for some index

;."w" hiv"e iby defininezi!) :  ci,Ei(n) : f  (") '  Y" * i '

1 ) I f bes idesZ i the reex i s t sEn ,n f l , t henby thesameargumen ts
u, in .a"" 1, we have .L with a linear decomposition, but it is impossible'

2) If there e*ists ci for a unique index 1 then lll : Z' Denote

i  :  I ,  j  :Z ,we have L :  L t  x  Lz.Thus,  / (1)  is  a  nul l -e lement  of  -L1,

which is denoted by 0, and f (Z) 
"unit-element 

of L2, denoted by 1.

For the sake of convenience, we shall denote element of L1 x L2 as

(or, or), a1 € L11 a2 € L2 (thus / is equal to (0, 1) € A)'

As lAl ) I we consider three following cases:

(i) If there exists (0, oz) € !: 
o, f 1, then Vo1 € L1' a1 f O'

*" l l r r "  inL:  (a1,  or ) l i (d , t )  u"d (or ,or )n(9, r ) . :  (0 '  oz. ) '  (or ' . " ' )Y

(0, i) : (at, ri. i:to*'(i l, tr) € A it implies that (o1, 1)' (or ' a2) € A'



On lattices L determined by Sub(L) up to isomorphism 363

With th is  we can deduce that  ( r ,V)  € A,V(r ,U)  € L, i .e .  A:  j . ,  but
it contradicts the assumption that A + L.

(ii) By the same arguments, if there exists (or, 1) € A, a1 f., O,
then we also have A: L, i.e. we come to the same contradiction.

( i i i )  I f  there exists (or, or) € A, a1 # o, az f l ,  then (0, a2) =
(at, az) A (0,1) € .4 and (or, 1) : (ot, az) y (0, 1) € .4. Thus, i t  lead
us to the case (i) or case (ii).

In conclusion, the lattice .L has no contractible sublattices and the
proof of (3.2) is complete.

Now we apply Proposition 3.2 for constructing the rattices which
satisfy (II) (Section 1).

Proposi t ion B.B.  Let  L ;  w; th lL ; l>  L,  i  €  I ,  l / l  >  1,  be the to ta l ly
syrnmetric lattices then L : rr(L;, i e t) is determined by sub(L) up
to isomorphisrn.

Proof. Due to (II) we have that L is totally symmetric and has no
contractible sublattices. As .t; = Li, i € / (totally symmetric) we
have II(,L;, i e I)- = II(r;, i e I) = II(L;, i e I). Thus .L is toially
symmetric and the proposition now follows directly from proposition
3.2.

Proposition 3.4. Let L be an arbitrary lattice then L x L* is d,eter-
mined, by Sub(L x L.) up to isomorphisrn.

The proof is trivial due to Proposition 3.2 and the fact that (.L x
L * ) *  =  L *  x  L * *  v  L *  x  L =  L x  L * .

In the sequel, we deal with some lattices with contractible sublat-
tices, which belong to the class of the linearly decomposable lattices.

Theorem 3.5. Let L : u(A;, i  € I) with a f inite chain I,  be a
completely linearly decomposed, lattice. Then L satisfies (G) ;tr A; =
Ai, Vi, i e I and A; satisfi,es (G),Vi e I.

Proof . Necessity: First, for an arbitrary i e I, we have to prove that
A; satisfies (G). Let p : A; --+ B be a square preserving bijection for
some lattice B, we shall show that A;= B.

We construct a linearly decomposed lattice Lt : u(Ati, j € I),
where A!;: B, Ali  :  Ai, Vj + i .  This means that.L, Lonsists of
B and Ai, i € I, i f i, as the sublattices which form the linear
members, these linear members are ordered by the chain .I. Define a
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map pt ; L ---+ .L' putting p'(a) : p(a), Ya € A;, p'(a) : Q,, Va € t\Ai.

Clearly, g' is a square preserving bijection. Due to Filippov's theorem

(see (F) and Rematk), P' determines an isomorphism g i L ---' L'.

Notice that B is not linearly decomposable (Lemma 2.3). Therefore,

according to Lemma 2.4,it follows that g(,Ai) : A'j, Yj e I. Thus, we

have g(,4;) : B, that is, A; z B -

Now, let i, j € I, i # i,b. two arbitrary and fixed indexes, we have

to prove that A; = Ai. On the same set r, we establish a new chain

denoted by J, which is defined by a lattice isomorphism / : I --+ J such

t h a t  / ( i )  :  i ,  I U ) : i ,  f ( n ) : n , Y n €  I ,  n + i , i . B v  t h e  l a t t i c e s
A;, i € .I and the chain J, we construct a linearly decomposed lattice

L' :  U(Ax, k e l) ( i .e. L'contains A*, k € J, as the sublatt ices which

are linear members, ordered by the chain J).

Take a map p; L --+ L', p(o) : a, Va € -L, then 9r is a square

preserving bijection. Note that, since .L, L' are the lattices, tp is not

identity. Indeed, consider a € A;, b e A1 then rp(o) € At1, 9(b) €

A761, (since f (i) : i, f (i) : i). without loss of generality we can

urr"-" that i ( J' in .I which implies that /(i) < IU) in J. Therefore

w e h a v e  a l b  i n , L a n d  p ( " ) >  p ( b )  i . e .  a l b i n L ' .

Due to (F), p induces an isomorphism g I L -- Lt. Applying

L e m m a  2 . 4 w e h a v e  g ( A n ) :  A r @ ) , V n  €  I -  T h u s ,  g ( A ; ) :  A i , i . e .

A; = A1 which is to be Proved.

Sufficiency: Let Sub(.L) = Sub(Z') for some lattice -L', we have

to prove that L = L'. Due to (F), there exists a square preserving

bijection I i L --. Lt.

If each A;, i € -I, consists of one element, then -L is a finite linear

lattice. As p preserves the squares, lattice .L' is also linear and ll,l :

l-['1. Therefore ,L = Lt.

Now, assume that for every index i € I, lA;l > l, therefore A; forms

a contractible sublatt ice. Denote p(A;) - A' i ,  i  e I and c : p-r(r ')

for an arbitrary r' €. L'.

Let f € .I be an arbitrary index, then clearlv A!; is a sublattice of

Lt . We shall show that ,41 is contractible.

a) Take rt € L' such that a' < x' < b' with a, b' e A!t. We

deduce that r' € A';. Indeed, if n' ( Al then n ( A;,, this means

that r S z, Vz € A;, i.e. r' S z', Yz' e A'r. Therefore ,4f is linearly

decomposed into X' : {"' l r' € A'i, 
"t 

< ,') and Y' : {z' l r' e

A!;, z' > r'l1 (a' € X', b' e Y'). But .4; is not linearly decomposable'

This contradicts Lemma 2.3.
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b) Let (u',v'; c',d') be a square in .L'. Considering the square
(u,u; c,d) and the contractible sublatlice A; in .L, we have c' e A!, +
c € A ; e d € A ; # d t e A ! r .

In short, .41 satisfier (u), (b) of Definition 2.1.

Consequently, for every linear member .4;, i € L, we obtain a
corresponding contractible sublattice A!; in L'. By Lemma 2.2 it is
easy to deduce that,4l, i € I, form the linear members in L', i.e.
L' - u(A'i, i € J), where J is a chain defines on the same set 1
( i ,  j  e  J ,  i  1 j  +)nta A ' r ,  y '  €  A ' j :  n '  <  y ' ) .  S ince. I  is  f in i te ,  there
exists a lattice isomorphism f : I --+ J. Let /(f) - .1. The restriction of
p on Ai is a square preserving bijection Ai - A'i. as Ai satisfies (G),
it follows that Ar' = A'j. On the other hand, A; a Ai, therefore there
exists an isomorphism g;: A; - A'i.

In conclusion, we obtain a family of the isomorphism g; : A; -
A'y61, i e I, which determines an isomorphism g i L'- L'such that

the restriction of g on A; is g;, Vi € /. Thus L = Lt and the proof of
Theorem 3.5 is complete.
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