ON LATTICES L DETERMINED BY Sub (L) UP TO ISOMORPHISM

NGUYEN DUC DAT

Abstract

Denote by $\operatorname{Sub}(L)$ the lattice determined by all sublattices of a lattice L. The aim of this paper is to give some types of lattices L which are determined by $\operatorname{Sub}(L)$ up to isomorphism.

1. INTRODUCTION

Let L be a lattice. We say that the condition (G) holds for L if $\operatorname{Sub}(L)$ determines L up to isomorphism, that is, if $\operatorname{Sub}(L) \cong \operatorname{Sub}\left(L^{\prime}\right)$ for some lattices L^{\prime} then $L \cong L^{\prime}$. "Find conditions under which L satisfies (G)" is a problem proposed by G. Grätzer in 1978 [5].

In [1] H. M. Chuong dealt with this problem in the larger sense: he has given one type of lattices L which are determined by $\operatorname{Sub}(L)$ up to isomorphism or dual isomorphism. Following H. M. Chuong, in [2], by the contractible sublattice method we have proved the following:
(I) If L has no contractible sublattices then $\operatorname{Sub}(L)$ determines L up to isomorphism or dual isomorphism. With the help of this result, in [3] we have considered the lattices L which are determined by $\operatorname{Sub}(L)$ up to isomorphism and showed:
(II) If L is totally symmetric and has no contractible sublattices then L satisfies condition (G).

So far, it has still been difficult to indicate the lattices that satisfy (G). In this paper we will present some interesting lattices which satisfy this condition. One of the main results of this paper, Proposition 3.2, asserts that if a lattice L has direct decompositions the L has no contractible sublattices.

This proposition is very useful for our problem, first because it gives a criterion for identifying some lattices satisfying (I).

On the other hand, it allows to construct the lattices satisfying (II). They are:
a) $\Pi\left(L_{i}, i \in I\right)$ where L_{i} with $\left|L_{i}\right|>1, i \in I,|I|>1$, are totally symmetric lattices;
b) $L \times L^{*}$ for an arbitrary lattice L.

The other result of the paper concerns with the lattices with contractible sublattices. By Theorem 3.5 we will show some lattices, which satisfying condition (G) besides the lattices having no contractible sublattices mentioned in (II).

2. PRELIMINARIES

In this section we recall some concepts and prove three lemmas which will be needed in the sequel.

From now on, for $a, b \in L$ we denote by a $S b$ and $a \| b$ when a is comparable and uncomparable with b, respectively.

Definition 2.1. A proper sublattice A of a lattice L with $|A|>1$, is called a contractible sublattice if the following two conditions hold:
(a) A is convex.
(b) If $\langle a, b ; c, d\rangle$ is a square in L then $c \in A \Leftrightarrow d \in A$.

Lemma 2.2. Let A be a contractible sublattice of L and $a \in A, k \in$ $L \backslash A$. Then:
(P1): If $k<a$ then $k<x, \forall x \in A$.
(P2): If $k>a$ then $k>x, \forall x \in A$.
Proof. Let $k<a$. Consider an arbitrary element $x \in A$.
a) If $x<k$ then according to (a) of Definition 2.1 we have $k \in A$, but it is impossible.
b) If $x \| k$ then $x<x \vee k \leq x \vee a$; by (a) we have $x \vee k \in A$ and by (b) $x \wedge k \in A$. From $x \wedge k<k<a$ it follows $k \in A$, which is also impossible.

Thus, $k<x$ and (P 1) is proved.
By duality we have (P2) and the lemma is proved.
We say that a lattice L has a linear decomposition if there exist a chain I with $|I|>1$ and the sublattices $L_{i}, i \in I$ of L such that $L=$ $\cup\left(L_{i}, i \in I\right)$ and for $i, j \in I, i<j$, then $a<b$ for all $a \in L_{i}, b \in L_{j}$. Futher, $\cup\left(L_{i}, i \in I\right)$ is a completely linear decomposition of L if every linear member $L_{i}, i \in I$, is not linearly decomposable.

Lemma 2.3. If a lattice L is not linearly decomposable and $\varphi: L \rightarrow L^{\prime}$ is a square preserving bijection then L^{\prime} is not linearly decomposable.

Proof. First, we recall that for a square preserving bijection $\varphi: L \rightarrow L^{\prime}$, there hold two assertions:
a) X is a sublattice in L iff $\varphi(X)$ is a sublattice in L^{\prime}.
b) $x S y$ iff $\varphi(x) S \varphi(y)(\forall x, y \in L)$.

Now, we assume that L^{\prime} has a linear decomposition $X^{\prime} \cup Y^{\prime}$ such that $x^{\prime}<y^{\prime}, \forall x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime}$. Denote $X=\varphi^{-1}\left(X^{\prime}\right), Y=\varphi^{-1}\left(Y^{\prime}\right)$ then X, Y are the sublattices in L such that $X \cap Y=\emptyset$ and $x S y$, $\forall x \in X, y \in Y$. Moreover, if A and B are the sublattices in X and Y, respectively, then $A \cup B$ is a sublattice in L, because all elements of A are comparable with ones of B.

Consider $y_{0} \in Y$. Without loss of generality we can assume that $\exists x \in X$ such that $x<y_{0}$. Putting $X_{0}=\left\{x \mid x \in X, x<y_{0}\right\}$, we show that it is a sublattice in L.

Indeed, take $x_{1}, x_{2} \in X_{0}, x_{1} \| x_{2}$, then $x_{1} \wedge x_{2}<x_{1} \vee x_{2} \leq y_{0}$. Since $x_{1} \vee x_{2} \in X$ and $X \cap Y=\emptyset$, therefore $x_{1} \vee x_{2}<y_{0}$. Thus, $x_{1} \wedge x_{2}$, $x_{1} \vee x_{2} \in X_{0}$.

For x_{0} we have the alternative:

1) If $X_{0}=X$, we take $Y_{0}=\{y \mid y \in Y, y>x, \forall x \in X\}$. For $y_{1}, y_{2} \in Y_{0}, y_{1} \| y_{2}$, we have $y_{1} \vee_{y} 2>y_{1} \wedge y_{2} \geq x, \forall x \in X$, where the equality does not occur as $X \cap Y=\emptyset$. This means that $y_{1} \wedge y_{2}, y_{1} \vee y_{2} \in$ Y_{0}, i.e. Y_{0} is a sublattice.

1a) If $Y_{0}=Y$ then $X \cup Y$ is a linear decomposition of L.
1b) If $Y_{0} \neq Y$, we denote $Y_{1}=Y \backslash Y_{0}$. It is observed that: $y \in Y_{1}$ iff $y<x$ for some $x \in X$. This permits us to prove that Y_{1} is a sublattice in Y, therefore $X \cup Y_{1}$ is a sublattice in L. Thus, Y_{0} and $X \cup Y_{1}$ form a linear decomposition of L.
2) If $X_{0} \neq X$, consider $X_{1}=X \backslash X_{0}=\left\{x \mid x \in X, x>y_{0}\right\}$ and $Y_{2}=\left\{y \mid y \in Y, y>x, \forall x \in X_{0}\right\}$. It is easy to deduce that these sets are the sublattices in L.

2a) If $Y_{2}=Y$ then $X_{1} \cup Y$ is a sublattice and thus $X_{0}, X_{1} \cup Y$ give a linear deposition of L.

2b) if $Y_{2} \neq Y$ we take $Y_{3}=Y \backslash Y_{2}$. Clearly, $y \in Y_{3}$ iff $y<x$, for some $x \in X_{0}$, therefore Y_{3} also forms a sublattice. Thus, we have the sublattices $X_{0} \cup Y_{3}, X \cup Y_{2}$ which form a linear decomposition of L.

In short, we have showed that L is linearly decomposed, which is the contradiction and the lemma is proved.

Lemma 2.4. Let $L=U\left(A_{i}, i \in I\right)$ and $L^{\prime}=U\left(B_{i}, i \in I\right)$ be two completely linearly decomposed lattices with a finite chain I. If $g: L \rightarrow$ L^{\prime} is an isomorphism then $g\left(A_{i}\right)=B_{i}, \forall i \in I$.
Proof. As the chain I is finite (and $|I|>1$) we can assume that $I=$ $\{1, \ldots, n\}$ (with the natural order). From this we have $L=A_{1} \cup \cdots \cup A_{n}$ and $L^{\prime}=B_{1} \cup \cdots \cup B_{n}$.

1) We prove that $g\left(A_{1}\right)=B_{1}$. Consider an arbitrary element $a \in$ A_{1}. If $g(a) \notin B_{1}$ then $g(a)>b, \forall b \in B_{1}$. Because of the isomorphism of g we have $g^{-1}(b)<a, \forall b \in B_{1}$. Denote $X=g^{-1}\left(B_{1}\right)$ and $Y=$ $A_{1} \backslash X$. Obviously, X is a sublattice in A_{1}. On the other hand, as $Y=\left\{y \mid y \in A_{1}, g(y)>b, \forall b \in B_{1}\right\}$, we conclude that Y is also a sublattice in A_{1}. Note that $x<y, \forall x \in X, y \in Y$. Therefore A_{1} is decomposed into X, Y. But this contradicts the assumption that A_{1} is not linearly decomposable.

Thus, we have $g(a) \in B_{1}$ and hence, $g\left(A_{1}\right) \subseteq B_{1}$.
Conversely, considering the isomorphism $g^{-1}: L^{\prime} \rightarrow L$ we have $g^{-1}\left(B_{1}\right) \subseteq A_{1}$.

Consequently, we obtain $g\left(A_{1}\right)=B_{1}$.
2) Denote $L_{1}=A_{2} \cup \cdots \cup A_{n}$ and $L_{1}^{\prime}=B_{2} \cup \cdots \cup B_{n}$. The restriction of g on L_{1} is an isomorphism between L_{1} and L_{1}^{\prime}. By the similar arguments as in part 1) we have $g\left(A_{2}\right)=B_{2}$.

Thus, by this way we obtain $g\left(A_{i}\right)=B_{i}, i \in I$. The lemma is proved.

Finally, we recall a result of N. D. Filippov [4], that is:
(F): Let L, L^{\prime} be the lattices, then $\operatorname{Sub}(L) \cong \operatorname{Sub}\left(L^{\prime}\right)$ iff there exists a square preserving bijection $\varphi: L \rightarrow L^{\prime}$.

Let L be a lattice satisfying (G) and $\varphi: L \rightarrow L^{\prime}$, a square preserving bijection. Due to (F), we have $\operatorname{Sub}(L) \cong \operatorname{Sub}\left(L^{\prime}\right)$ and by (G) there exists an isomorphism $f: L \rightarrow L^{\prime}$. Thus, we have
Remark. If a lattice L satisfies (G) then every square preserving bijection $\varphi: L \rightarrow L^{\prime}$ for some lattice L^{\prime}, induces an isomorphism $f: L \rightarrow L^{\prime}$.

3. RESULTS

Let $L_{i}, i \in I$, be the lattices, whose direct product is denoted by $\Pi\left(L_{i}, i \in I\right)$. The element $f \in \Pi\left(L_{i}, i \in I\right)$ is understood as a map $f: I \rightarrow \cup\left(L_{i}, i \in I\right)$ (disjoint union) such that $f(i) \in L_{i}, \forall i \in I$.

We say that a lattice L has a direct decomposition if there exist the lattices $L_{i}, i \in I$, with $|I|>1,\left|L_{i}\right|>1, i \in I$, such that $L \cong \Pi\left(L_{i}, i \in\right.$ I).

Lemma 3.1. If a lattice L has a direct decomposition then L has no linear decomposition.

Proof. Let $L=\Pi\left(L_{i}, i \in I\right)$. Suppose that L has a linear decomposition. Without loss of generality we can assume that $L=A \cup B$ such that $u<v$ for all $u \in A, v \in B$.

Take $f \in A, g \in B$, then $f<g$, i.e. $f(i) \leq g(i), \forall i \in I$. suppose that for some fixed index $j \in I$ there is $f(j)=g(j)$. As $\left|L_{j}\right|>1$ there are two following possibilities:
(1) $\exists a \in L_{j}: a>g(j)$ or
(2) $\exists b \in L_{j}: b<g(j)$.

For the first case, we take $g_{1} \in B$ as follows: $g_{1}(j)=a, g_{1}(i)=$ $g(i), \forall i \neq j$. Thus, we have $f \in A, g_{1} \in B$ such that $f<g_{1}$ with $f(j)<g_{1}(j)$.

For the second case, we define $f_{1} \in A$ putting $f_{1}(j)=b, f 1(i)=$ $f(i), \forall i \neq j$. We obtain $f_{1} \in A, g \in B$ such that $f_{1}<g$ with $f_{1}(j)<g(j)$.

Consequently, we can always assume that $\exists f \in A, g \in B$ such that $f(i)<g(i), \forall i \in I$.

Now, as $|I|>1$, from f, g, for some index $i \in I$, we construct $p, q \in L$ as follows: $p(i)=f(i), p(j)=g(j), \forall j \neq i, q(i)=g(i)$, $q(j)=f(j), \forall j \neq i$. Thus, we have $p \| q$ and $p \wedge q=f, p \vee q=g$.

Since $L=A \cup B$, the element p must belong to one of two linear members, hence, we can suppose that $p \in A$. Now, if $q \in B$ then $p<q$, but it is impossible. Thus, it is necessary $q \in A$, which implies that $g=p \vee q \in A$. This contradicts the fact that $g \in B$.

Thus, L is not linearly decomposable and the proof is complete.
Proposition 3.2. If a lattice L has a direct decomposition then L has no contractible sublattices.

Proof. Let $L=\Pi\left(L_{i}, i \in I\right)$. Arguing by contradiction we suppose that there exists a contractible sublattice A in L.

Take $f \in A$, as $|A|>1$ we can assume that $\exists a_{i} \in L_{i}$ such that $a_{i}>$ $f(i)$ for some index i (otherwise, instead of f, we take $f_{1} \in A, f_{1}<f$). We define $\bar{a}_{i} \in L$ as follows: $\bar{a}_{i}(i)=a_{i}, \bar{a}_{i}(j)=f(j), \forall j \neq i$. Thus
$\bar{a}_{i}>f$. From this moment we have to examine two following cases:
Case 1. If besides \bar{a}_{i} there exists \bar{a}_{j} for some $j \neq i$, then from the square $\left\langle\bar{a}_{i}, \bar{a}_{j}, f, \bar{a}_{i} \vee \bar{a}_{j}\right\rangle$ it implies that $\bar{a}_{i}, \bar{a}_{j} \in A$ (Definition 2.1).

Thus, in general, whenever there exist $n \in I$ and $a_{n} \in L_{n}$ such that $a_{n}>f(n)$ then it always follows that $a_{n} \in A$. This permits us to prove the following assertion:
(A): If $h>f$ then $h \in A$.

Proof of (A). We take $h>f$. Assume that $h \notin A$, according to (P2) $h>g, \forall g \in A$. Consider an arbitrary index $j \in I$. If $\exists b_{j}>h(j)$ then $\bar{b}_{j} \in A$ since $h(j) \geq f(j)$. This deduces that $h>\bar{b}_{j}$, i.e. $h(j) \geq b_{j}$, but it is impossible. Thus $h(j)$ must be a unit-element in L_{j} which is denoted by 1_{j}.

As $h>f$, there exists an index n such that $f(n)<1_{n}$. We take g as follows: $g(n)=f(n), g(j)=1_{j}, \forall j \neq n$. Clearly $g \notin A$ (otherwise, $h=g \vee \overline{1_{n}} \in A$, but it is impossible). By virtue of (P2) we have $g>\overline{1_{n}}$, hence $f(n) \geq 1_{n}$. The obtained contradiction proves the assertion (A).

Now, we continue to study the case 1: Let $g \in B=L \backslash A$ then, due to (A), g can not be greater than f. If $g \| f$ then $g \vee f \in A$ (as A is contractible). This contradicts the inclusion $g \in L \backslash A$. Thus, we have $g<f$ and hence $g<k, \forall k \in A$, by (P1). Further, if $g_{1}, g_{2} \in B$ then $g_{1} \wedge g_{2}, g_{1} \vee g_{2} \in B$. In short, B is a sublattice and for all $g \in B$, $k \in A$ then $g<k$, i.e. B and A form a linear decomposition of L. This contradicts Lemma 3.1.
Case 2. If there exists \bar{a}_{i} for a unique index i then it is necessary that $f(j)=1_{j} \in L_{j}, \forall j \neq i$. Let $c_{j} \in L_{j}$ such that $c_{j}<f(j)$ for some index j. We have \bar{c}_{j} by defining $\bar{c}_{j}(j)=c_{j}, \bar{c}_{j}(n)=f(n), \forall n \neq j$.

1) If besides \bar{c}_{j} there exists $\bar{c}_{n}, n \neq j$, then by the same arguments as in case 1 , we have L with a linear decomposition, but it is impossible.
2) If there exists \bar{c}_{j} for a unique index j then $|I|=2$. Denote $i=1, j=2$, we have $L=L_{1} \times L_{2}$. Thus, $f(1)$ is a null-element of L_{1}, which is denoted by 0 , and $f(2)$ a unit-element of L_{2}, denoted by 1 .

For the sake of convenience, we shall denote element of $L_{1} \times L_{2}$ as $\left(a_{1}, a_{2}\right), a_{1} \in L_{1}, a_{2} \in L_{2}$ (thus f is equal to $(0,1) \in A$).

As $|A|>1$ we consider three following cases:
(i) If there exists $\left(0, a_{2}\right) \in A, a_{2} \neq 1$, then $\forall a_{1} \in L_{1}, a_{1} \neq 0$, we have in $L:\left(a_{1}, a_{2}\right) \|(0,1)$ and $\left(a_{1}, a_{2}\right) \wedge(0,1)=\left(0, a_{2}\right),\left(a_{1}, a_{2}\right) \vee$ $(0,1)=\left(a_{1}, 1\right)$. From $\left(0, a_{2}\right) \in A$ it implies that $\left(a_{1}, 1\right),\left(a_{1}, a_{2}\right) \in A$.

With this we can deduce that $(x, y) \in A, \forall(x, y) \in L$, i.e. $A=L$, but it contradicts the assumption that $A \neq L$.
(ii) By the same arguments, if there exists $\left(a_{1}, 1\right) \in A, a_{1} \neq 0$, then we also have $A=L$, i.e. we come to the same contradiction.
(iii) If there exists $\left(a_{1}, a_{2}\right) \in A, a_{1} \neq 0, a_{2} \neq 1$, then $\left(0, a_{2}\right)=$ $\left(a_{1}, a_{2}\right) \wedge(0,1) \in A$ and $\left(a_{1}, 1\right)=\left(a_{1}, a_{2}\right) \vee(0,1) \in A$. Thus, it lead us to the case (i) or case (ii).

In conclusion, the lattice L has no contractible sublattices and the proof of (3.2) is complete.

Now we apply Proposition 3.2 for constructing the lattices which satisfy (II) (Section 1).

Proposition 3.3. Let L_{i} with $\left|L_{i}\right|>1, i \in I,|I|>1$, be the totally symmetric lattices then $L=\Pi\left(L_{i}, i \in I\right)$ is determined by $\operatorname{Sub}(L)$ up to isomorphism.

Proof. Due to (II) we have that L is totally symmetric and has no contractible sublattices. As $L_{i} \cong L_{i}^{*}, i \in I$ (totally symmetric) we have $\Pi\left(L_{i}, i \in I\right)^{*} \cong \Pi\left(L_{i}^{*}, i \in I\right) \cong \Pi\left(L_{i}, i \in I\right)$. Thus L is totally symmetric and the proposition now follows directly from Proposition 3.2.

Proposition 3.4. Let L be an arbitrary lattice then $L \times L^{*}$ is determined by $\operatorname{Sub}\left(L \times L^{*}\right)$ up to isomorphism.

The proof is trivial due to Proposition 3.2 and the fact that ($L \times$ $\left.L^{*}\right)^{*} \cong L^{*} \times L^{* *} \cong L^{*} \times L \cong L \times L^{*}$.

In the sequel, we deal with some lattices with contractible sublattices, which belong to the class of the linearly decomposable lattices.

Theorem 3.5. Let $L=\cup\left(A_{i}, i \in I\right)$ with a finite chain I, be a completely linearly decomposed lattice. Then L satisfies (G) iff $A_{i} \cong$ $A_{j}, \forall i, j \in I$ and A_{i} satisfies (G), $\forall i \in I$.

Proof. Necessity: First, for an arbitrary $i \in I$, we have to prove that A_{i} satisfies (G). Let $\varphi: A_{i} \rightarrow B$ be a square preserving bijection for some lattice B, we shall show that $A_{i} \cong B$.

We construct a linearly decomposed lattice $L^{\prime}=\cup\left(A_{j}^{\prime}, j \in I\right)$, where $A_{i}^{\prime}=B, A_{j}^{\prime}=A_{j}, \forall j \neq i$. This means that L^{\prime} consists of B and $A_{j}, j \in I, j \neq i$, as the sublattices which form the linear members, these linear members are ordered by the chain I. Define a
$\operatorname{map} \varphi^{\prime}: L \rightarrow L^{\prime}$ putting $\varphi^{\prime}(a)=\varphi(a), \forall a \in A_{i}, \varphi^{\prime}(a)=a, \forall a \in L \backslash A_{i}$. Clearly, φ^{\prime} is a square preserving bijection. Due to Filippov's theorem (see (F) and Remark), φ^{\prime} determines an isomorphism $g: L \rightarrow L^{\prime}$. Notice that B is not linearly decomposable (Lemma 2.3). Therefore, according to Lemma 2.4, it follows that $g\left(A_{j}\right)=A_{j}^{\prime}, \forall j \in I$. Thus, we have $g\left(A_{i}\right)=B$, that is, $A_{i} \cong B$.

Now, let $i, j \in I, i \neq j$, be two arbitrary and fixed indexes, we have to prove that $A_{i} \cong A_{j}$. On the same set I, we establish a new chain denoted by J, which is defined by a lattice isomorphism $f: I \rightarrow J$ such that $f(i)=j, f(j)=i, f(n)=n, \forall n \in I, n \neq i, j$. By the lattices $A_{i}, i \in I$ and the chain J, we construct a linearly decomposed lattice $L^{\prime}=\cup\left(A_{k}, k \in J\right)$ (i.e. L^{\prime} contains $A_{k}, k \in J$, as the sublattices which are linear members, ordered by the chain J).

Take a map $\varphi: L \rightarrow L^{\prime}, \varphi(a)=a, \forall a \in L$, then φ is a square preserving bijection. Note that, since L, L^{\prime} are the lattices, φ is not identity. Indeed, consider $a \in A_{i}, b \in A_{j}$ then $\varphi(a) \in A_{f(j)}, \varphi(b) \in$ $A_{f(i)}$, (since $f(j)=i, f(i)=j$). Without loss of generality we can assume that $i<j$ in I which implies that $f(i)<f(j)$ in J. Therefore we have $a<b$ in L and $\varphi(a)>\varphi(b)$ i.e. $a>b$ in L^{\prime}.

Due to (F), φ induces an isomorphism $g: L \rightarrow L^{\prime}$. Applying Lemma 2.4 we have $g\left(A_{n}\right)=A_{f(n)}, \forall n \in I$. Thus, $g\left(A_{i}\right)=A_{j}$, i.e. $A_{i} \cong A_{j}$ which is to be proved.

Sufficiency: Let $\operatorname{Sub}(L) \cong \operatorname{Sub}\left(L^{\prime}\right)$ for some lattice L^{\prime}, we have to prove that $L \cong L^{\prime}$. Due to (F), there exists a square preserving bijection $\varphi: L \rightarrow L^{\prime}$.

If each $A_{i}, i \in I$, consists of one element, then L is a finite linear lattice. As φ preserves the squares, lattice L^{\prime} is also linear and $|L|=$ $\left|L^{\prime}\right|$. Therefore $L \cong L^{\prime}$.

Now, assume that for every index $i \in I,\left|A_{i}\right|>1$, therefore A_{i} forms a contractible sublattice. Denote $\varphi\left(A_{i}\right)=A_{i}^{\prime}, \quad i \in I$ and $x=\varphi^{-1}\left(x^{\prime}\right)$ for an arbitrary $x^{\prime} \in L^{\prime}$.

Let $i \in I$ be an arbitrary index, then clearly A_{i}^{\prime} is a sublattice of L^{\prime}. We shall show that A_{i}^{\prime} is contractible.
a) Take $x^{\prime} \in L^{\prime}$ such that $a^{\prime}<x^{\prime}<b^{\prime}$ with $a, b^{\prime} \in A_{i}^{\prime}$. We deduce that $x^{\prime} \in A_{i}^{\prime}$. Indeed, if $x^{\prime} \notin A_{i}^{\prime}$ then $x \notin A_{i}$, this means that $x S z, \forall z \in A_{i}$, i.e. $x^{\prime} S z^{\prime}, \forall z^{\prime} \in A_{i}^{\prime}$. Therefore A_{i}^{\prime} is linearly decomposed into $X^{\prime}=\left\{z^{\prime} \mid z^{\prime} \in A_{i}^{\prime}, z^{\prime}<x^{\prime}\right\}$ and $Y^{\prime}=\left\{z^{\prime} \mid z^{\prime} \in\right.$ $\left.A_{i}^{\prime}, z^{\prime}>x^{\prime}\right\}\left(a^{\prime} \in X^{\prime}, b^{\prime} \in Y^{\prime}\right)$. But A_{i} is not linearly decomposable. This contradicts Lemma 2.3.
b) Let $\left\langle u^{\prime}, v^{\prime} ; c^{\prime}, d^{\prime}\right\rangle$ be a square in L^{\prime}. Considering the square $\langle u, v ; c, d\rangle$ and the contractible sublattice A_{i} in L, we have $c^{\prime} \in A_{i}^{\prime} \Leftrightarrow$ $c \in A_{i} \Leftrightarrow d \in A_{i} \Leftrightarrow d^{\prime} \in A_{i}^{\prime}$.

In short, A_{i}^{\prime} satisfies (a), (b) of Definition 2.1.
Consequently, for every linear member $A_{i}, i \in I$, we obtain a corresponding contractible sublattice A_{i}^{\prime} in L^{\prime}. By Lemma 2.2 it is easy to deduce that $A_{i}^{\prime}, i \in I$, form the linear members in L^{\prime}, i.e. $L^{\prime}=\cup\left(A_{j}^{\prime}, j \in J\right)$, where J is a chain defines on the same set I $\left(i, j \in J, i<j \Leftrightarrow \exists x^{\prime} \in A_{i}^{\prime}, y^{\prime} \in A_{j}^{\prime}: x^{\prime}<y^{\prime}\right)$. Since I is finite, there exists a lattice isomorphism $f: I \rightarrow J$. Let $f(i)=j$. The restriction of φ on A_{j} is a square preserving bijection $A_{j} \rightarrow A_{j}^{\prime}$. as A_{j} satisfies (G), it follows that $A_{j} \cong A_{j}^{\prime}$. On the other hand, $A_{i} \cong A_{j}$, therefore there exists an isomorphism $g_{i}: A_{i} \rightarrow A_{j}^{\prime}$.

In conclusion, we obtain a family of the isomorphism $g_{i}: A_{i} \rightarrow$ $A_{f(i)}^{\prime}, i \in I$, which determines an isomorphism $g: L \rightarrow L^{\prime}$ such that the restriction of g on A_{i} is $g_{i}, \forall i \in I$. Thus $L \cong L^{\prime}$ and the proof of Theorem 3.5 is complete.

Acknowledgement. The author would like to express his warm thank to the referee for his valuable suggestions that have led to many improvements.

REFERENCES

1. H. M. Chuong, n a Grätzer 's problem, Acta Math. Vietnamica, 10 (1) (1985), 134-143.
2. N.D. Dat, A class of lattices L determined by Sub(L) up to isomorphism or dual isomorphism, Vietnam J. Math., 24 (1996), 75-82.
3. N.D. Dat, On the conditions under which $\operatorname{Sub}(L)$ determines L up to isomorphism, VNU J. Sci., 2 (1996).
4. N. D. Filippov, Projectivity of lattices, Math. Sb., 70 (112) (1996), 36-45 (Russian).
5. G. Grätzer, General lattice theory, Akademie-Verlag-Berlin, 1978.

Faculty of Mathematics, Mechanics and Informatics
University of Hanoi
Hanoi, Vietnam.

