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ON EQUIVALENCE BETWEEN CONVEX MAXIMIZATION

AND OPTIMIZATION OVER THE EFFICIENT SET!

LE DUNG MUU and LE TU LUC

1. INTRODUCTION

Let X be a polytope in R™ and C be a (p x n)— matrix. Denote
by X g the efficient set of the vector function Cz over X. The problem
under,consideration in this paper is given as

max{f(z) : z € Xg}. (1.1)

This problem has many applications in multiple objective decision mak-
ing and has been considered by some authors (2, 3, 4, 5, 6, 7, 10]. The
main difficulty arises from the fact that Xg is a nonconvex set.

In this note we examine the convex maximization and convex-con-
cave formulations of Problem (1.1) with f being a convex function. If
additionally f(z) = ¢(Cz) we show how to find a penalty parameter
for which the considered problem can be reduced to a single convex
maximization or convex-concave program. We also point out that the
penalized problem satisfies certain decomposable property which can
be used to reduce the size of the problem. Based upon these results an
inner approximation algorithm has been proposed in [7] for maximizing
a convex function on Xg.

2. CONVEX MAXIMIZATION AND CONVEX-CONCAVE
FORMULATIONS

Let e be the row vector in R? whose every entry is 1. Define
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r(s)= ma.x{e(C’y ~Cz):Cy>Cz, y€ X}. (2.1)

It is well known [1] that z € X iff z € X, r(z) = 0.
For each N > 0 define the problem

max{F(z) := f(z) — Nr(z) : z € X}. (2.2)

Let X3 and S(N) denote the set of all global optimal solutions of
Problems (1.1) and (2.2) respectively. Let

N*:=sup{N >0:S(N)n Xg = 0}. (2.3)
Then we have the following results:

Proposition 2.1. Assume that f is conver on X. Then N* < oo and
(i) S(N)c Xgpif N* <N < +oo,
(i) S(N)NXg=0if0<N<N™.

Proof. It is not difficult to show that

N* < No := (Ug — Lo) /Mo,

where
Mo := min{r(z) : z € V(X) : r(z) > 0} > 0,

and

+oo > Uo > max{f(z) : £ € X}, Lo := f(z°), z° € XE.

Now let N > N*. By the definition of N* there exists N’ such that
N* < N'< N and S(N')n Xg #0.
Let 2’ € S(N') N Xg and =" be any point in S(N). Then

f(.'L'N)—Nr(:cN) > f(:c')—Nr(z'),f(z')—N’r(z') > f(zN)—N'r(zN).

Adding these inequalities yields
(N' - N)(r(z™) - r(z")) > 0.

Since N’ < N this implies r(z"V) < r(z') = 0 ( because z’' € Xg).
Hence zV € Xg.
By the same argument we cansee S(N)NXgp=0if0< N < N*.
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For each vector u = (uy,...,u,) we define
lu|_ := max{—u;, u; <0}.
Proposition 2.2. Let C(X) = {u € R? : w = Cz,z € X} and

f(z) = ©(Cz) , where © is a differentiable convezr function on C(X).
Then

N* < |p'(u)|- Vu € C(X).

Proof. Let z! and z? be the global optimal solutions of Problems (1.1)
and (2.2) respectively, then

f(&") = £(&") = Nr(a!) < f(z?) - Nr(z?). (2.4)

We observe that if y is a solution of the linear program

r(z?) = max{e(Cz — Cz?) : Cz > Cz?, 2z € X}, (2.5)
then y € Xg. By the well known mean theorem we have

f(y) + Nr(y) - [f(z*) — Nr(z?)] = ' (6)(Cy - C=?)

+Ne(Cy — Cz?) = (Ne + ¢'(0))(Cy — Cz?) > 0. (2.6)

Since f(z!') > f(y), it follows
f(z') 2 f(z*) = Nr(?)

which together with (2.4) shows that f(z') = f(22?)~ Nr(z?). Moreover
from (2.6) and f(z!) > f(y) ( since y € Xg ) we have

(Ne+¢'(8))(Cy — Cz?) = 0.
Remember that Ne + ¢’(8) > 0 and Cy > Cz? we deduce Cy = Cz2.

Hence z? € Xg. Thus by virtue of (i) Proposition 2.1 we have N > N*
which implies z2 € X7}, O

Remark. If p(u) = Zi:l,p €;u; then from the above proof one can take
N* > max{0, max{—¢; : {; < 0}}.
Let S C IRP be the simplex defined in [8] and

g(A) := max{ATCy: y € X}.

As before, for each fixed positive number N define the problem
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max{f(z) — N(g(A) = \TCz) : z € X, A € S}. (2.7)
Then we have the following results

Proposition 2.1°. Proposition 2.1 with the same assumptions is al-
so true for Problems (2.2°) and (2.7). In other words, for any global
optimal solution (zV,AN) of (2.7) we have

(i) (zV,AN) is global optimal for (2.2) if N* < N < +oo,

(i) zNgXgif0O<N <N

Proposition 2.2°. Under the assumptions of Proposition 2.2 any global
optimal solution of Problem (2.7) with N is the same as in the Propo-
sition 2.2 is also a global optimal solution to (2.2°).

3. DECOMPOSABLE PROPERTY AND DIMENSION
REDUCTION FORMS

Definition 3.1. Let @ be a (p X n) - matrix and K be a convex
set in R™. A function ¢ defined on K is said to be nondecreasing with
respect to Q ( or briefly Q-nondecreasing) on K if ¢(z) < ¢(z') for every
z,z’ € K satisfying Qz < Qz'.

The function q is said to be increasing with respe}:t to Q ( or briefly
Q-increasing ) on K if it is nondecreasing and ¢(z) < g(z') whenever
z,z' € K, Qz < Qz' and Qz # Qz'. It follows immediately that if g is
Q - increasing on K then

max{q(z) : € K} = max{q(z) : ¢ € Kg}
where Kg denotes the efficient set of Q over K

Proposition 3.1. (i) 0 := {y € R": Cy < 0} Cc Ot G(X),
(ii) —r s C-increasing on G(X),
(iii) The constancy space of —r is'L(Q) = {y : Cy = 0}.

Proof.
(i) and (ii) are immediate from the definitions.

(iii) It is easy to verify that —r is closed proper convex and dom (=)
= G(X). Since G(X) = {z : —r(z) < 0}, by Theorem 8.7 in [9] the
constancy space of —r is the lineality space of G(X) which is equal to
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the set ~O*G(X) N O*G(X). From (i) we have L(Q2) € Ot G(X). For
every t > 0, y € 1 one has

Cz>Cr>Cz—tCy=C(z—ty)

which means that z — ty € G(X). This is true for all t > 0 and y € 0.
Hence 2 C —OtG(X). O

From this proposition it follows that r is constant on L(2) = {z :
Cz = 0}. Note that dim L(f?) = n — k because rank C = k.

Proposition 3.2. If f is C-nondecreasing on G(X) then for any N > 0
Problem (2.2) is equivalent to (1.1).

Proof. Let zV be a global optimal solution of (2.2). Then zV € Xg.
Thus

f(@N) = f(zV) = Nr(zV) > f(z) — Nr(z) = f(z) V€ XD Xg

which means that zV solves Problem (1.1) globally.
Conversely, if z* is a global optimal solution of (1.1), then

f(27) = Nr(z*) = f(z*) > f(z") = f(zV) - Nr(zV).

Hence z* is a global optimal solution of (2.2). O

Proposition 3.3. Under the assumptions of Proposition 2.2 the func-
tion f(z) — Nr(z) with

N > [/ (w)]-s Vu e O(X)
1s C'—1increasing on G(X).

Proof. Let z, z' € G(X) such that Cz < Cz’ and Cx # Cz'. Since
Cz < Cz' we have

max{e(Cy — Cz') : Cy > Cz',y € X}
< max{e(Cy — Cz) : Cy > Cz,y € X}.

This and f(z) = p(Cxz) imply
F(z') = f(z') — Nr(z') = f(z') - Nmax{e(Cy — Cz') : Cy >
Czl,y € X} = f(2') - Nmax{e(Cy —Cz+ Cz— Cz) : Cy > Cz',y €
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X} > f(z') — N max{e(Cy — Cz) : Cy > Cz',y € X} — N max{e(Cz -
Cz'):Cy>Cr',ye X} > f(z) — Nmax{e(Cy —Cz) : Cy > Cz,y €
X} + f(z') — f(z) — Nmax{e(Cz - Cz') : Cy > Cz',y € X} = F(z) +
o(Cz")—p(Cz)—Ne(Cz—Cxz') = F(z)+(p'(8+Ne)(Cz'-Cx) > F(z).

O
The more detailed proofs of the above propositions can be found
in [7].
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