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MOSCO CONVERGENCE OF MULTIVALUED SLLN

EZZAKI FATIMA

Abstract. Mosco convergence for strong law of large number for convez weakly
compact valued martingales and closed convez valued martingale difference in a
p-smooth separable Banach space are provided. As application, we present a new
proof of Mosco convergence of strong law of large numbers for independent convex
weakly compact valued random sets in p-smooth separable Banach space.

INTRODUCTION

Strong law of large numbers (SLLN) for multivalued martingales
are interesting because they are closely connected with both geometric
and probabilistic point of view. There are two main types of strong
law of large numbers for random variables. The first one deals with
independent identically distributed random variables, and the second
is concerned with independent random variables with the same mean
and some LP-norm conditions. The first type of SLLN is generally valid
for Banach space valued random variables (cf. (1], [9,10,11], [13,14],
[18,19]). On the other hand, the second type of SLLN for Banach space
valued random variables is valid under some geometric conditions (cf.
[16], [20], [2], [23], [13], [14]). In the present paper, we discuss several
versions of second type of SLLN for martingales in separable Banach
space.

In Section 1 we present a Mosco convergence result of SLLN for
convex weakly compact valued supermartingales in separable p-smooth
Banach space (in Pisie’s sense [20]).

In Section 2 we give a new proof of Mosco convergence result of
SLLN for independent convex weakly compact valued random sets in
a p-smooth separable Banach space via the techniques of supermartin-
gales introduced in section 1.

In Section 3 we introduce the notion of multivalued martingales
difference and we show the existence of martingales difference selectors
for this class of multifunctions. As application we present a new result
of Mosco convergence of SLLN for multivalued martingales difference
whose valued may be unbounded.
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1. PRELIMINARIES. LAW OF LARGE NUMBERS
FOR SUPERMARTINGALES

Notation and definitions

Throughout this paper, let (2, ¥, P) be a probability space, E a
separable Banach space, cc(E) the family of all nonempty closed convex
subsets of E, cwk(E) the family of nonempty convex weakly compact
subsets of E and £ the Effros tribe on cc(E). Set R = {C € cc(E) :
C nB(0, r) € cwk(E), Vr > 0} where B(0, r) denotes the closed ball
of radius r, centered at O.

In the present paper, we shall use a notion of convergence, for
sequences of subsets, which has been introduced by Mosco [18,19] and
which is related to the one of Kuratovski. Let ¢t be a topology on E
and (K,)»>1 a sequence in ¢(E). We put

i-iK, = {z € E, z =1t-limz, : z, € K,, Vn > 1}

t-IsK, = {z € E, z = t-limzy : zx € Kyx), Yk > 1}

where (Kn(k))kzl is a subsequence of (K,). The subsets t-liK,, and
t-IsK,, are the lower limit and the upper limit on (K,), relative to the
topology t. We obviously have t-iK, C t-IsK,. A sequence (Kp)
converges to Koo, in the sense of Kuratovski, relatively to the topology
t, if the two following equalities are satisfied:

t-hK, = t-IsK,, = K.

In this case, we shall write ¢-lim K,, = K; this is true if and only if
n

the two inclusion hold:
t-IsK, C Ko C t-liK,,.
Let us denote by s (resp. w) the strong (resp. weakly) topology on
E. A subset K, is said to be the Mosco limit of (K,),>; denoted by
M-lim K,, = K, if
n
Ko = s-iK, = w-lIsK,

which is true if and only if

w-IsK,, C Ko C s-liK,, .
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The corresponding definitions, for a sequence (X,) of multifunctions
on {1, are clear. In fact, in the previous definitions, if suffices to replace
K, by Xy(w) for all w € 0 (or for almost all w).

Concerning Mosco’s convergence, we refer to Mosco [Mo], Wets
[We], and Attouch [A]. In the present paper, N* will be denoted the
set of strictly positive integers, R (resp. R") the set of real numbers
(resp. positive real numbers).

A closed convex valued multifunction X, i.e., an application from
1 to cc(E), is said to be measurable if the application X is (¥, £)-mea-
surable. A measurable multifunction is also called a random set. A
function f from 2 to E is said to be a selection of X if, for any w in 0,
f(w) € X(w). A Castaing representation of X is a sequence (fn)n>1 of
measurable selections of X such that for all w, X(w) = el{fp(w) : n >
1}. It is known see ([5], Theorem IIL.9) that a closed valued multifunc-
tion F is measurable if and only if it has a Castaing representation, or
if and only if the real function d(z, X(-)) is measurable for any z in E.

Let L'(Q, 7, P, E) = L'(Q, E) denote the Banach space of (equiv-
alence classes of) measurable function f from ) to E such that

17l = Elfll = /n 1 (@) P(d)

is finite. For any #-measurable random set X we put
Sx(F)={fe L} E): f(w) € X(w) a.s.},

which is a closed set of L!({2, E) and is nonempty if and only if the
real function d(0, X(-)) is in L1(R2, R). In this case, we shall say that
a random set X is integrable. On the other hand, a random set X
is said to be strongly integrable or integrably bounded if the function
|X(---)| is in L' where |X(---)] is defined for all w in Q by |X(w)| =
sup{||z|| : £ € X(w)}. Given a sub-o-field B or 7, and a F-measurable
integrable random set X, Hiai and Umegaki ([15]) showed the existence
of a B-measurable random set G such that

S&(B) = cl{EB(f) : f € Sx(F)},

the closure being taken in £L!(f1, E). G is the multivalued conditional
expectation of X relative to B and is denoted by E2X.
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For K € cwk(E) and z* € E*, let F(z*, K) = {z € K : (z*, z)
= 6*(z*, K)}. Then F(z*, K) belongs to cwk(E) where 6*(-, K) is
the support function of subset K of E. Let Eclzwk(E) (7) be the set of all
F-measurable integrably bounded multifunctions X from 2 to cwk(E),
by an easy argument, we show that, for every z* € E*, F(z*, X())
belongs to Eiwk(E)(}') too.

Let (#2)n>1 be an increasing sequence of sub o-algebras of 7. A se-
quence (Xn)n>1in L}y () (F) is (Fa)n>1 adapted if Xy € L,y gy (Fn)
for every n. An adapted sequence (Xn, #)n>1 in Liwk(E)(T) is a su-
permartingale if E* X, ;;(w) C X, (w) for all n > 1 and all w € 1. See
[9] for details.

The following result is a particular case of a result due to Hess ([9],
Proposition 3.7).

Proposition 1.1. Let (X, #,)n>1 be a supermartingale in ‘Céwk(E)(?)-
Then there exists an adapted sequence ([, 7n)n21 in L}E(j) such that
(@) (fas Fu)n>1 15 a martingale,
(b) for alln>1, f, € Sx (%)

Let us recall the following notion of p-smooth Banach space given
by Pisier {20].

Definition 1.2. Let E be a Banach space and p € (1, 2]. We say that
E is a p-smooth space or the norm of E is p-smooth, if the modulus of
smoothness, pg defined as

pa(t) = sup {5 (12 + toll + |1z = ty]l - 2) s ] = Iyl = 1}

satisfies the following condition: there exists a constant k such that
pE(t) < ktP for each t €]0, cof.

Example. Hilbert space, super reflexive space, the L%, space with
p in [1,2] and E p-smooth space; are p-smooth spaces. We refer to
Hoffmann-Jorgensen [16], Woyczynski (23] and Pisier [20] for details
concerning p-smooth Banach spaces.

Before stating the main result, let us present first a useful lemma.

Lemma 1.3. Let E be a separable p-smooth Banach space. Let (¢rn)n>1
be a decreasing sequence in R such that lim ¢, =0 and (gn, Fn)n>1
n— o0 B =]

a martingale in LY, (F) such that
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(a) llm ckElgklp =0,

(6) 3 (e} — cb,y)Elaal? < oo.

Then lim c¢ng, =0 a.s.
n—o00

Proof. Recall first the Chow inequality for positive integrable sub-
martingales, see ([6], p. 107). If (hn, #,)n>1 is a positive submartingale,
then for every € > 0 and every m > 1, we have

hy > <E Eh —h
P[lg}ixmck k> €] ’;2 kE(hk — hi—_1) .

Since
e?P[maxcilgi| 2 €] = P P[maxcilgxl” > &’]

and (|gx|P, F)k>1 is a submartingale, by the preceding inequality, we
get

(o ]
e P[maxcl|gl” > ] < hBlgn” + > cLE(gel” — |ox1").
k=n+1
So we have to prove that
o0
Jom chBloal? + 3 cLE(akl” = lou-al) = 0.
=nH

(o)
Since lim ¢} Elg,|P = 0by (a), it is enough to check that Y ¢} E(|gx|P—
n— 00 k=2

|gk—1|P) < co. But for all integer m > 1, we have

m—1
PE|g1|P+Z PE(lgkl” —lgx—1/P) = Y (ch— b, ) E|gk|? + B, ElgmlP.
k=1

Then by (a) and (b) we get

Theorem 1.4. Let E be a p-smooth Banach space with strongly separa-
ble dual E*, (.n) as tn Lemma 1.8 and (X;);>1 a sequence of cwk(E)-
valued random variables. If the following two conditions are satisfied
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n
(i) (Sn = ¥ Xi. Fu)n>1 15 a supermartingale,

i=1

(ii) 3 P E| X < oo,
=1

13

then 0 € s-lic,Sp(w) a.s.

Proof. By Valadier [22| note that E7".Sn+1in£2wk(E)(7n). Since
(Sn, Fa)n>1 is a supermartingale, then for all n > 1 and for all z* € E~,
we have by integrating

/6*(z*,E7"Sn+1(w))P(dw)§/ §*(*, Su(w))P(dw).
Q Q

Equivalently by Strassen’s theorem, ([5], Theorem V.14), we get

6*(:::*,/QE7"S,,+1P(dw)) S&*(z*,/ﬂSnP(dw)).
Consequently
5@ [ Sulu)P(d) + 8" (e, [ Xora(w)Plde)
<6, [ sulwaw)).

Then 6*(z*, [y Xn+1(w)P(dw)) < 0 which implies that [, Xpnyi1(w)
P(dw) = {0}. By Lemma 5.7 in [13], there exists f,41 € Lg(¥) such
that Xn,,1(w) = {fnt1(w)} a.s. Then Vn > 1,

Sp(w) = X1 (w) + fa(w) + -+ + fa(w) a.s.
Since (Sn, Fn)n>1 is a supermartingale in LL(¥), by Proposition 1.1
there exists an adapted sequence (gn, Fu)n>1 in LE(F) such that

(9n, Fa)n>1 is a martingale and for all n > 1, g, € S§ . So there
exists b} in Sk, such that Vn >1

gn=hit+fot+-+fn.

Since (gn, Fn)n>1 is a martingale, then we have E%rgni1 = gn, hence
P h,'l""1 - Ef"fn_H. Therefore gn+1 — gn = frnt1 — E?”fn.H. Set
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dy = ¢; and d;y1 = ¢iy1 — gi- By applying the Pisier’s martingale
inequality {20] to (gn, #2)n>1, there exists a constant B > 0 such that

E|g.[” < B)  E|di|? = B(E|g1? + ) E|fi — B~ fi]P).

=1 =1
By Holder inequality, we get
Elgul? < 2B Y E|fi7. (1)
i=1

Now we must show that lim ¢,g, =0 a.s. By Lemma 1.3, it is enough
n—o00
to show that the following properties hold:
(a) llm ckE|gk|P = ;

o0
(b) 3 (e — ey 1) Elgsl? < oo.

Indeed by (1) we have c} E|gx|P < 2PBc}, Z E|f:|P. But

(o o] 00
Y LEIfilP <) EXP < oo

1=1 =l

then by Kronecker’s lemma ([17], p. 238) we have hm ck Z E|f:|P =
It follows that lun ckE|gk|1’J = 0. This proves (a). Whlle (b) follows

from the 1nequa,11t1es

[e%) k
D (ch — b, ) Elgil? < 2”BZ — el 1) ) EIfifF
1=1

k=1 k=1
oo o0
=2PB ZEI-MP Z(ci = Cy1)
i=1 k=1

oo
="2?B) " E|f,Ff¥%

1=1

Then lim ¢pgn(w) = 0 a.s. Since gn(w) € Sp(w) a.s.,500 € s-lic, Sp(w) a.s.

n—0o0
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Corollary 1.5. Let E be a p-smooth Banach space with strongly sepa-
rable dual E*. Let (X;):>1 be a sequence of cwk(E)-valued random sets

as in Lemma 1.3. If the following two conditions are satisfied
n

(i) (Sn = Y. Xi, Fn)n>1 15 a martingale,

1=1
[0 o]

(ii) | 1cfE|X,-|” < .
1=

Then M- lim ¢,S, = {0} a.s..
n— o0

Proof. Since (Sn, 7n)n>1 is a martingale and Y PE|IXiP < oo, by
1=1
Theorem 1.4 it follows that 0 € s-lic,Sp(w) a.s. Now we show that
w-Is¢,, S (w) = {0} a.s. Let z* € E*, then (6*(z*, Sn), Fu)n>1 is a real
n

valued martingale and 6*(z*, S») = Y 6*(z*, X7). By Lemma 1.3 it
=1
is enough to show that the two following conditions are satisfied

(2) Jim fE|6" (2", Sk)lP = 0.

o0
(b) 3 (ch = chy1)El6*(z™, Sk)|P < 0.
k=1
By Burkholder’s inequality for a real martingales (3], there exists a
constant A such that Vn € N*, we have

E|§*(c*, Sa)IP < A)_ E|6*(z*, XJ)|P.
i=1
Then for all £ > 1 we have

k
EE|6*(z*, Sk)|P < Ac} Y E|8*(z", Xi)IP.

1=1
Since = co
S PE|s (2", 8P < Y |2t |FE|XqfP < o0
=1 =1

by Kronecker’s lemma ([17], p.238), it follows that

k
. p * * . -
klgxgock;E|5 (z*, X;)|P = 0.



Mosco convergence of multivalued SLLN 407

So . 30
klgr;gcﬁEM (@ P Sk)|h=0:
We have
[o%) oo k
Y (ch =l )E6*(z*, S)P <A (ch— b, 1) Y El6* (2, Xi)|P
k=1 . k=1 =1
o0 oo
=AY E|6* (", Xo)P D _(ch ~ b))
=1 k=1

Whence (b) is proved. By Lemma 1.3 we conclude that

lim 6*(z*, ¢nSn(w)) =0 a.s.

n—oco

Let D = {z}, i > 1} be a countabie dense subset of E*. Then for all 1 >
1, lim 6*(z}, cnSn(w)) =0 a.s. so there exists a negligible set N € 7
n—o00
such that Vw € (2 \ N) and V¢ > 1, lim 6*(z}, ¢, Sn(w)) =0 a.s. Let
n—oo
w € (@\ N) and z € w-lsc,S,(w). Then there exists T,k € ¢, Spi(w),
Vk > 1, such that

Vi > 1, (z, z) = lim (z}, T,k)

k—oo
< lim 6*(z}, ¢pSp(w)) =0 a.s.

n—oo

Whence w-lsc,, Sp(w) = {0}. Finally M- lim ¢,S,(w) = {0} a.s.

2. APPLICATION: LAW OF LARGE NUMBERS FOR
INDEPENDENT cwk(E)-VALUED RANDOM VARIABLES

Before stating the main application, let us mention the following
lemma.

Lemma 2.1. Let E be a separable Banach space, 1, ¥, P) a probabil-
ity space and (X;);>; a sequence of independent random variables in
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‘LE(F ) Let 7, = o(X1,..., Xp) be the sub o-field of 7 generated by
(X:)i<n. Then for all v > n, E*X; = E(X,).

Proof. Let C = {fn] A;, A; € 0(X;)}. Then % = o(C). In fact

we known that %, = of U 0(X:)) and for all 4 € o(X;), A € C,

) LnJ o(X;) € C, then of LnJ o(X:)) € (C). Now let A € C then

A= ﬂA with A; € o(X;). So A; € o( U o(X;)) for all « < n,

1,1 1=1

then ﬂ A; = A€ o( J o(X:)). This implies that ¢ C o 0 o(X3)).
=1

1= 1=1

Ca

Whence o(C) C o( U o(X3)).
i=1
Now we show that for all A € 7,, z* € E* and ¢ > n, 14 and
(z*, X;) are independent. From ([12}, Property 9-1, p.77) it sufficient
n

to show this for all A € C. Let A € C, then A = [ A; with A4; € o(X;)

i=1
so there exists D1, ..., Dy in B(E) such that A = [) Xi_l(Di). Let By
=1
and B; in B(R) we claim that

P[lA € By, (z*, X;) € Bz] = P[lA € BI]P[(:E*, X;) € Bz] .

Set Hy = {w : 14(w) € B1} and Hy = {w : (z*, X;(w)) € B2}

Then
A iflEB[&HdOéBl

A® ifl1¢ Byand0€ B,
9] iflEBlandOEBl
@ ifl1¢B,and0¢ B,
if H, = O we have P[H; N Hy| = P[H,|.P|H,),
if H, = 0 we have P[H — 1N Hy| = 0 = P[Hy]. P[Hz]
if H; = A, we have H; = {w: X1(w) € Dy, ..., Xn(w) € D,}.
Since (z*,.) is (B(E), B(R)-measurable, then D = z*7!(B;) €
B(E), and H, = X '(D). Then

H'l:

P[H, N Hy] = Plw: X1(w) € Dy, ..., Xpn(w) € Dy, Xi(w) € DJ.

Since X; is independent of Xj,..., X, so
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P[H, N Hy] = Plw : X1(w) € Dy, ..., Xn(w) € D,).Plw : X;(w) € D]
= P[H,].P[H,]

If H; = A°, similarly we show that 14 and (z*, X;) are independent.
Now for all z* € E*, A€ 7, and 1 > n we have

z* Fn X (w w) = | (z*, E*X(w w
@ [ BN P) = [ (o) B X)) Plds)
= [ B, i) P(a)
A
= / 14(z*, X:(w))P(dw) .
Q
From ([7], Theorem 3.3.3, p.51) it follows that

/ 1a(z*, X:(w))P(dw) = P(A) / (2%, Xi(w)) P(dw)
Q Q

Az, /n X:(w) P(dw
— (z*, P(A) /ﬂ Xi(w) P(dw))

Put [, X;(w)P(dw) = X. Then

(z*,/ E* X,(w)P(dw)) = (z*, P(A /X
A

Then E*X; = X = E(X,).

Corollary 2.2. Let E be a separable Banach space, (Q, ¥, P) a proba-
bility space and (X;);>1 a sequence of independent random variables in

LE(¥). Put #, = 0(X1,..., Xn) and S, = Y X;. If E(X;) =0 for all
1=1
t > 1, then (Sn, Fo)n>1 15 @ martingale in L% (7).
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Proof. By construction S, is 7,-measurable and E*S, 1= E*S, +
E* X, 1. By Lemma 2.1, it follows that E™ X, 4, = E(X,4). Since
E(Xp41 = 0then E*»Spyy = E%" Sy, 50 (Sp, Fa)n>1 is a martingale.

Now we have the following application

Corollary 2.3. Let E be a p-smooth Banach space with strongly sep-
arable dual E* and (X;)i>1 a sequence of independent random sets in
Btlzwk(E)(‘T) SUCh that

[e’s) Xi r
i) SESw
=1 1P

(ii) fn X;i(w) P{dw) = C for all v > 1.
Then M- lim ﬂ"nﬂ =C a.s.

n—oo

Proof. Let us prove first the following inclusion, C' C .f)‘-lz"g—("nﬂl a.s.

In fact C = fn w)P(dw) is convex weakly compact, see Cas-
taing-Valadier [5], Theorem V.14). Then by ([8], p. 106), C is the closed
convex hull of its strongly exposed points. Since s- lt—"(‘—"—)- is closed
and convex, it suffices to show that any exposed point of C is con-
tained in s-lii"}f‘—’l for as. w € . Let z be any exposed point of
C, then there is z* € E* with F(z*, C) = {z}. Let Ax, be the o-
field generated by X;. Then it is easy to check that, for all + > 1,
F(z*, X)) is in L],y (g (Ax.)- Let f € Sp(zv,x)(Ax;), then f €
Sk.(Ax,) and [, f(w)P(dw) € [o X;(w)P(dw) = C. But (z*, f(w)) =
6*(z*, Xi(w)) a.s., then

(z*,/n,f(w)P(d /X —6*(z*, C)
/ﬂ f(w)P(dw) € F(z*, C) = {z}.
/nf(w)P dw) =

/n F(z*, Xi(w))P(dw) = {z}.

S0

This implies that

Whence for all z, we get
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From Hiai ([13,14]) there exists f; € Sx(Ax,) such that

F(z*, X;(w)) = {fi(w)} a.s.

Consequently, we have fn fi(w)P(dw) = z for all ¢ > 1. Set g; =
fi—z and %, = o(91,..., gn) and h, = gl +--- + g,. since (Xi)i>1
is independent, by Hess ([10]) it follows that (g,)1>1 is independent.
By Lemma 2.1 and Corollary 2,2, we conclude that (hny Fo)n>1 is a
martingale. Moreover, we have

SSEE  poes § BIAP + o

1,
=1 =1

[ e]

1 o .|P
= ZP“1|z|PZ a2 Z E|_J::|
4 1

i=1 =1

[ee] oo
1 " E|X;|P
~1{..|p e 1 ]
27~ |z| E 2.p+2’J 2 : < 00.
i=1

P
=1

By Theorem 1.4 we have lim A—Z—Oaa so lim Z ——(—Z—Oas

n—o0 n—»oo

Then lim ZJ—E——Oas So:z:Eslz—Jﬂl a.s. Then

n—»oo
CCshS n( )CC’as
n
Now we show that w- ls—"(ﬂ)- - Let D = {2}, j > 1} be a countable

dense subset of E*. Then for every 7 > 1, (6*(z ;‘, Xn))n>1 is asequence
of independent integrable random variables such that for all n > 1,

/6*(:c;'f,Xn(w))P(dw):6*(1;,/Xn(w))P(dw)=6*(z;,C)
Q Q

and that
>, E|6*(z%, X;) — 6*(z, C)[P o9
> 2 X P OF < naeiag, op ¥ L
1 D

=3 =N
N E|6*(zf, Xi)|P

wgert § c:

=1
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By ([16]) it follows that

" 6 (xk, Xi(w
lim Z—(—Jn—(—ﬁzé*(m;,C).

=1

Then there exists a negligible set N € 7 such that for all w € (2 \ N)
and j > 1 we have:

== Xa(w) L
i SO 1 )

Letw € (Q\N) and z € w-lsi'%ﬂ, then there exists Tnx € Mr’:kﬂ, Vk >
1, such that

S (w)

) = 8z}, ©),

(zf, z) = lim (27, Tnk) < limsupé*(z;, j

k— o0 n— oo

then z € C, so w—ls“;—"g‘—’l C C a.s. and finally we get

=C a.s.

M- lim 2n)

n—00 n

3. EXISTENCE OF MARTINGALE DIFFERENCE SELECTORS
OF MULTIVALUED MARTINGALE DIFFERENCE.
APPLICATION TO MULTIVALUED SLLN

In this section we aim to prove the existence of martingales dif-
ference selectors for multivalued martingale difference which help us
to state a new result of Mosco convergence of SLLN for unbounded
multivalued martingales difference.

We begin by recalling some notations and definitions.

Let E be a Banach space. Let (1, 7, P) be a probability space and
(F.)n>1 an increasing sequence of sub o-algebra of . Let (fn, Fu)n>1
be an adapted sequence L, ie, Vn > 1, f, is F.-measurable and
integrable. (fn, 7n)n>1 is a martingale difference ifvn>1, E*fo,i 1 =
0 a.s.. This suggests the following definition.
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Definition 3.1. Let (X;);>; be a sequence of integrable multifunc-
tions with nonempty closed convex valued and such that Vn > 1, X -
is Fp-measurable. We say that (X, Fo)n>1 is a multivalued martin-
gale difference if, Vn > 1, 0 € SII,;;"XHI(}’n). An adapted sequence
(fa» Fa)n>1 is a martingale difference selector of multivalued martin-
gale difference (Xn, Fa)n>1, if (fr, Fo)n>1 is a martingale difference
and Vn > 1, f, € Sk (#).

Before stating the Mosco convergence for SLLN of bounded multi-
valued martingales difference, let us first mention the following theorem
of existence of martingale difference selectors of multivalued martingale
difference.

Theorem 3.2. Let (Xnr, 7n)n21 be a martingale difference with valued
in R such that

Vn > 1, / sup |E™ fldP < oo.
Qfesk , (Fari)

Then there exists a martingale difference selector of (Xns Fa)n>1 -

Proof. Since 0 € Sl{J’ﬂan(?f‘) — Cl{Efnflf € Sk, ., (Fas1)}, then
there exists a sequence (E* fi,);>; with Tat1'S SJlan(?n‘H) such
that lim E* fi | =0 for the norm of Lg. For all w € 0, set
rat1(w) = d(0, Xny1(w)) + S [E7 frg1(w)].
12
Then ry,; is #,41-measurable and integrable. For all w € 01, set

Ynt1(w) = Xni1(w) N B(O, rppq(w))

Yni1is 7, 1-measurable (see Hess [11], Proposition 3.3.3) and we have

/ [Yosi1)(w)P(dw) < / Tnt1(w)P(dw) < oo
Q Q

Then Yy, 4, is #,,-measurable integrably bounded multifunction, with
values in cwk(E). By James-Pryce’s theorem [21], it follows that
S%. ., (Fa41) is convex and o(LL;, (L)) compact. Then C,, = {E*f:

f €8y, (%)} is o(LY, (LY)") compact and convex. We claim that
ge Cy. It is obvious that foralli > 1, E*fi | € C,. As lim E%fi |

1— 00

= 0 for the norm in L}, then 0 € C,. Hence there exists
gn+1 € Sy (Fat1) such that EFg, 1 = 0. Let g; € Sk (#), then
(gns Fa)n>1 is a martingale difference selector of (X, Fa)n>1-
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APPLICATION: MULTIVALUED SLLN FOR
MARTINGALE DIFFERENCE

Theorem 3.3. Let E be a Banach space with separable dual and such
that the norm of E is equivalent to a p-smooth norm. Let (X, #)n>1
be an integrable martingale difference with values in R such that

() vn > 1, [g sup |E* f|dP < oo,

fe€5%, 4, (Fnt1)

Proof. By Theorem 3.2, there exists a selection martingale difference
(fn, 7n)n21 of (Xn’ fn)nZl- Set

n
gn = Z fi
=M

then (gn, #u)n>1 is a martingale. By a Pisier’s result in [20] there exists
a positive constant B, such that

n
Vn>1, Elgal? <BY_E|filP.
i=1
By assumption (ii), it follows that

(o o]

P
Z ——Elft| < 00
1P
‘ =1
We claim that lim In — (0 g.s. We have
Elgel? _ B S~ pirip
g il ElflRs 2)

o0
Since ) E_lth'li < oo by (ii), then by Kronecker’s lemma ([17], p. 144)
i=1

and (2), it follows that
k

B
sl Bt
khm e -E_IEM =0.



Mosco convergence of multivalued SLLN 415

Moreover we have
. Elgkl?
Hr ===t
k—oo kP

Z( k-:l) )E|gklpSB

Then by Lemma 1.3 it follows that lim I = 0 a.s. Since g,(w) €

n—oo

n n
> Xi(w) a.s. then 0 € s-lil 3 Xi(w) a.s
L= 1=1

=0

and

8

Remark. Corollary 2.2 and Theorem 3.3 are actually valid when we
replace (+) by any (c,) where (c,) is a positive decreasing sequence
with lime, = 0.

n
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