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SYLOW p-SUBGROUPS OF FINITE DIMENSIONAL
LOCALLY COMPACT GROUPS WITH A FINITE
NUMBER OF CONNECTED COMPONENTS

LE QUOC HAN

Abstract. Let G be a finite dimesional locally compact group with a finite
number of connected components. We prove that all the Sylow p-subgroups of G
are comjugate, where p i3 a fized prime number and we give also two counter-
ezamples.

INTRODUCTION

Sylow p-subgroups are interesting in both the abstract and topo-
logical group-theories. Many interesting results were obtained, see for
examples [1], [2], [3], [4], [10], [11], [12]. Onme of the most interesting
results is that all Sylow p-subgroups of a finite group are conjugate. It
has many applications in other problems, say in Brauer theory. One of
questions in which we are interested is: what kind of results are available
also for topological groups? Our purpose is to study the classification
of Sylow p-subgroups under conjugation.

We prove that in an arbitrary finite dimensional locally compact
groups with a finite number of connected components, all the Sylow p-
subgroups are conjugate one-to-another. This means that there is only
one conjugation class of Sylow p-subgroup. We show then that if the
conditions are not satisfied there may be counter-examples.

The main part of proofs were verified before for the group case.
We use the presentation of an arbitrary locally compact group as a
projective limit of Lie groups. Our technique therefore is developed in
this context.
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1. SYLOW p-SUBGROUPS OF FINITE DIMENSIONAL LOCALLY
COMPACT GROUPS WITH FINITE NUMBER
OF CONNECTED COMPONENTS

All groups we shall concern are supposed to be locally compact and
we shall not repeat this later.

Lemma 1. Let G be a group with a finite number of connected compo-
nents and P a p-subgroup of G. Then, the closure P of P is compact.

Proof. The lemma was proved in [7] for Lie group case.

Consider the general case. Following Yamabe’s theorem [11], [12]
in G there exists a compact normal subgroup H such that G/H is a
Lie group. Then G/H is a Lie group satisfying the conditions of the
lemma. One deduces that ?_H-/ H = P* is a compact subgroup, and
hence P is a compact subgroup.

Proposition 1. Let S, be a Sylow p-subgroup of a Lie group G. Then
the connected component (Sp)o of indentity is a torus.

Proof. Following lemma and the well-known Cartan - Iwasawa - Maltsev
theorem, we can suppose G to be a compact Lie group. If G is a
linear group, then our proposition is derived from a theorem in [9]: i
that case, S has a normal Abelian subgroup H of finite index. Thus
(Sp)o C H and (Sp)o is a torus.

In general case , we consider Ad(G) = G/Z, which is a linear Lie
group, following the Lie theory and Ado theorem. Thus S Z/Z has
a normal Abelian subgroup H* of finite index. The preimage H =
@~ 1(H*) of the natural projection p: G — G/Z is a compact solvable
normal subgroup and (S,Z/Z)/H* = S,/H is finite.

Therefore, the connected component Hp of indentify e € H is a
compact solvable connected group and hence Hj is Abelian and S / Hy
is finite, because H/Hp is finite. One deduces that (S Jo € Hp and
(Sp)o is a torus.

Proposition 2. Suppose G be a compact group, P a p-subgroup of G.

Then P is contained in the normalizer Ng(T) in G of some mazimal
torus T of G.

Remark. To prove the proposition it is enough to suppose that G is
locally compact and G/Gp is compact.
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Proof. The proposition is valid for Lie group case, see [7] . In general
case

G =1lm({Gp},{ppatp>a),

where G are Lie groups, see [8].

Denote Fg the set of all the closures H g of Sylow p-subgroup H 8
of Gg. Because in Lie groups the Sylow p-subgroups are conjugate, so
are also their closures.

Suppose Hﬁ € Fp. Then, as said previously, there exists a maximal
torus T of G such that Hp C Ng,(Tp).

Denote Tp the Sylow p-subgroup of the torus. Then Tp C Hg and
therefore (Hﬂ)o =Tg = Tﬁ Clearly

Fs ={9sHpgz" l9p € Gp}.

We endow Fg with the natural topology of conjugate subgroups. This
means that a complete system of neighbourhoods of H 8 is the set of all
W = (UgHp | Ug is a neighbourhood of Gp).

Thus Fp = Gg/Ng,(Hp) and so Fp is compact.

We define Fjg O F,, if 8 > a. Because in Gp the Sylow p-subgroup
are conjugate, the morphism pp,: Gg — G4 induces Tha: Fg - F,,
i.e Tpa(Hp) = ppalHp).

It is easy to see that mg, are continuous maps, having transitive
property on indices,

Le Mga Mgy =Tgy If B>a>q.

Thus 7 = ({Fs},{7ga}p>a) is a projective system. Let S €
lim({Fs},{mpa}p>a), then S = ({Hp}, {ppa}p>a). Pose

H =lim({Hp},{ppa}p>a) -

From the construction H is a maximal torus of G.

Suppose @ is a Sylow p-subgroup of G, ps5:G — Gp the natural
projections. Then

Q =1m({Qp},{ppa}s>a) With Qp=1p(Q).

Denote by Dpg the set of elements dg € ®@p such that dﬁQﬁdﬁ &
Hﬂ Then Dg is a closed subset of Gg. By an analogy, we have a

system
wga:Dg - Dy, VB>«
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such that wpa(dﬁ) = (pﬁa(dp) , dg € Dg and D = ({Dp}, {wpa}{ﬁ>a})
is a projective system.

Let d € lim({Dp},{wpa}(B > a}). Then d = ({dp},{wpa}p>a)
with ds € Gp and dQd™1 C H. The proposition is proved.

Theorem 1. Suppose that G is a finite dimensional locally compact
group with a finite number of connected components. Then the Sylow
p-subgroups of G are conjugate one - to - another.

Proof. Following the well-known theorem of Cartan - Iwasawa - Maltsev,
the maximal compact subgroups of G are conjugate, and therefore by
virtue of Lemma 1, we can assume G to be compact.

Following [7], in G the maximal tori are conjugate and following
Proposition 2, we need only to prove that in Ng(7T'), the Sylow p-
subgroups are conjugate.

First, we show that there exists in G a normal subgroup H in
N¢(T), such that G/H is a Lie group. Really, following [9] there exists
in G a totally disconnected normal subgroup K such that G /K is a
Lie group. Because G/Gy is finite, G and Gy are compact, as assumed
, following [9], G/(Go N K) is also a Lie group. The group Go N K
is compact and totally disconnected and therefore is contained in the
center of Go. The maximal torus of G is also contained in Go. Then
H = Gon K C Ng(T) for some maxima. torus T of G.

Denote ¢: G — G/H the natural epimorphism. If T is a maximal
torus of G, then T' = (T) is a maximal torus of G/H. Because
H c Ng(T) then ¢~ 1(Ng(1)(T')) = Ne(T). We have the isomorphic
finite groups

Ng(T).H/T.H = Ng/u(T")/T' = Ng(T)/T .
In Lie group Ng/pu(T') the Sylow p-subgroup are conjugate, following

[7]. Therefore, the same fact is valid in Ng(T). But the Sylow p-
subgroups of G are the same of Ng(T). The theorem is proved.

2. COUNTER - EXAMPLES

We construct in this section two counter - examples for Theorem 1
to show that the conditions of the theorem are really needed. The first
example gives us a totally disconnected compact group G such that
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G/Gy is infinite and in G the Sylow 2-subgroups are divided into an
infinite number of conjugation classes. The second example will show
an analogous situation when dim G = oo.

Theorem 2. Let Gop:= {aap, bap}a,B = 1,2,... be the order 2%+2
groups defined by the relation

a+1
a® =b§ﬁ = (3

aqpbap = baﬁa;é .

Then, in the topological direct product

G = ﬁ Fp where Fg = ﬁ Gap
B=1 a=1

there are infinitely many classes of conjugate Sylow 2-subgroups.
Proof. Les us denote

gg = (blﬁafﬂ, bzgagﬂ, S bmpafnﬂ, 1.
for $=1,2,...,n;and hp = (b1pa18,b2p0a28,...). We introduce some

symbols

go = (9(1)792, 1ga’°")

g1= (3,92, ,9%:--)

gi = (h1,ha,.. . hiygdy,. . 8 TS )
From the defining relations between generators, we have
9. = (e) = (1,1,...),vt =0,1,2,...
Remark that gg and hg are not cojugate in Fp. In fact
a0 5bapatsbapaly = azfbagalga? = bapaly  # bapaas .

Because ai';;:s =1
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Denote S; the Sylow 2-subgroup of G, containing g;. All S; are
different one- from-another. Indeed, if gm,,9m, € Sm, for some m;
and mg > my, then

g;,:gml —3 (o ,h,'nllggnz,e,e,...) € S, -

But
-1.0 _
hmgng = (a1m1,a2m2a"- 7akmk,'--)

has infinite order. This contradicts the assumption that Sy, is a Sylow
2 — subgroup. We show now, that 97 gm, 9 & Sm, Vg € G, if m1 # ma.
Suppose g~ 'gm, g € Sm, - Then we have

. k —k;—-1 _ _—2k+2;—-1 _k ;k ) —2k
baﬁaaﬁbaﬁaiﬁaaﬂ af = aaﬂ baﬂ,adﬁbaﬁaiﬁaaﬂ = baﬁaa; +2 .

It follows from the first relation that

-1 _ 3—2k _3-2k 3—2k
99,9 9my = (-0 381m; s%2my s+ 1%nm, . mn)e

From the second relation we have

-1 -1 _ 1-2k _1—-2k 1—-2k
Iy 99, 9 = (e Qpm; 282my 3¢+ 10nm, "oy,

In every case we have an infinite order element. Thus 99m, 9" ¢
Sm, Vg € G, if my # m3. This means that the Sylow 2-subgroups
Sm, and Sy, are not conjugate if m; # ma. The theorem is proved.

Theorem 3. Let Gop = U(2) be the unitary group and
(o ]
G= [] Gas»
a,f=1

the topologycal direct product. Then in G there are infinitely many non-
conjugate Sylow 2-subgroups.

Proof. We first remark that U(2) contains the infinite diedral group

o 01 & 0 2a _ .
b= {[2 35 8] ramian)
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We choose g; in the same way as in the proof of Theorem 2, and use the
some notion Sy, as the Sylow 2-subgroup containing g; and the direct
product of goups Dqg.

We show now that if g € G, m; # m; and ¢S, g7 = Sy, then

- oo
g€ H Gaﬁ,

a,f=1

the topological direct product of Deyg .
Indeed, g = (gop) and upto a scalar factor, either

g [hap 0 ] Lh ,: 0 hapJ
aff = ; -1 8= -1 .

In the first case

hag O 0 e|[rzl o 0 h2 .e
(s ] aﬁ — C!ﬁ aﬁ
O R A e e o

where Sy, = (S2). From the construction S2P = D,p.

Thus 5 B2 B2 "
g L5 )= [T ] es
o€ 0 € 0 0 A 5 2
In virtue of the structure of direct product , we have

hag 0

By analogy, in the second case we also have

0 ha 3

We have then

[o o]

g€ D.p.
a,B=

One reduces the proof of theorem to the same assertion for

(e ]
G'= [] Das-

a,f=1
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The last assertion can be proved in the same way as Theorem 2. The
proof is now complete .
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