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ON NUMERICAL MODELLING FOR DISPERSION
OF ACTIVE POLLUTANTS FROM A ELEVATED
POINT SOURCE!

DANG QUANG A* and NGUYEN DONG ANH **

Abstract. This paper deals with a problem of dispersion of active pollutants from
a elevated point source in the atmosphere. The problem is firstly reduced to some
relatively independent three-dimensional problems, which are of type solved by us
in earlier works. In this work we investigate further properties of the numerical
solution, namely, the dependence of the solution on the coefficient of reflection
and absorption of the bedding surface and the coefficient of transformation. A
comparison of numerical solutions of problems wsth various boundary conditions
s given. The conclusions derived from the theory are completely agreed with the
physical picture of the problem.

1. SETTING OF THE PROBLEM

Suppose that at the point (0, 0, H) of the half-space {(z, y, z), z >

0} there is located a source of emission of gaseous or particulate pollu-

tants, for example, the stack of a thermoelectric station or a chemical

plant. These pollutants disperse in the atmosphere and can be convert-

ed from one form to another. This conversion may be described by the
following chain

1 P2 = Pg - (1.1)

where ; is the concentration of the i-th pollutant.

We assume that the chain (1.1) includes more than N components
(N > 2) and that the components N + 1, N + 2,... are not essential
and may be neglected. Therefore, we shall consider (1.1) with N first
components.

According to Marchuk [1] the transport-diffusion process of active
pollutants is governed by the following equations

1 This work was supported in part by the National Basic Research Program in
Natural Sciences, Vietnam.
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Apr+o1p1=f
Ay + 0303 =610

(1.2)
ApN+0ONON =GN_1PN-1,
where
S . d 02 02 Jd J
A—E-}-dlv(u.)—wg’é;—uﬁ—ua—yz——a-;l/a—z, (1.3)

u = (u, v, w) is wind velocity, v and p are the vertical and horizontal
diffusion coefficients, respectively, o;, &; (i = 1, N) are the rate coef-
ficients of conversion of the i-th pollutant in general and to 7 4+ 1-th
pollutant, respectively, wy = constant > 0,

f=Qé(z)b(y)6(z— H), (1.4)

the constant @ is the power of the emission source, and 6 is Dirac delta
function.

We pose the following boundary conditions on p; (¢ = 1, N)
;i =0, z,y— too, z— +o00, (1.5)

dp;
dz
Since the source of the emission has constant power, we may regard the
process described above as a stationary process for each short interval
of time during which the wind velocity slightly changes. Hence, instead
of (1.2) we treat the system
Ap1+o1p1 =,

Aps + 0202 = 0107,

—ap;, z=0.

(1.6)
ApN + ONPN = ON_1PN—1,
where 5 52 - 52 4 73
A -"—‘le('l].) —wga —,ua—zz'—/l,a—yz o 51/5 (17)

The numbers 04, ..., oy are assumed to be distinct and positive except
for o, which may be zero if the N-th pollutant is not converted to
another forms. In practice this assumption is usually satisfied.
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The problem of dispersion of active aerosols was studied by some
authors. For example, Marchuk [1] obtained the solution for the (z, y) -
model with constant wind velocity, Pal and Sinha [2] constructed nu-
merical solution for the (z, z)- model with N = 2 in the layer z < ¥.

In this paper we shall consider the system (1.6) together with the
boundary condition (1.5) in the half-space z > 0.

2. REDUCTION OF THE PROBLEM TO N
INDEPENDENT PROBLEMS

In principle we can solve (1.5) - (1.6) by sequential finding ¢, and ©q
(¢ =2, N) after p;_; is known. But we observe that the right-hand side
of the equation for p; has the special form (1.4), while the one of the
equation for p; (¢ = Z,—N—) contains the just computed function o;_;.
Besides, each problem for p; is posed in the half-space z >0, ie. ina
three-dimensional domain. Therefore, solving it both analytically and
numerically is very difficult and combersome. Moreover, the problems
for p; (i > 2) should be solved in sequence one after another. Hence,
the total computation time required should be too long.

In order to overcome the above difficulties we suggest first to reduce
the problem (1.5)-(1.6) to N independent problems with right-hand
side of the same form as (1.4). In their turn, the independent problems
may be led to problems in two-dimensional domain and may be solved
concurrently on individual processors of a parallel computing system.

Below we present a way to reduce (1.5)-(1.6) to N independent
problems.

For i = 2, N we multiply the first equation of (1.6) by a;;, the
second equation by a;; and so on, the i-th equation by a;;, where
i3y @i2,-.-, @;; are undetermined coefficients. After summing up from
1 to ¢ just multiplied equations we obtain

Alairpr + -+ aiip5) + (a; 00 — ai201)p1+

+ +(8i202 — @i363)p3 + -+ + aii0ip; = ainf (i =2, N)
(2.1)

We can choose a;; (j = 1, ¢) so that
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(@101 — @i201)p1 + -+ + (@4i-10i—1 — @iiGi—1)pi—1+
tai0;0; = 0i(a;101 + - + aiipi),
(2.2)

e.g. g;
a=

Gt 7Ty =1L T
oy — oy It d (2.3)

a;; 7 0 is arbitrary, ¢ =2, N.

Now putting

®,=p1, ®i=anpr+-+aup;, 1=2,N, (2.4)
F1=f1 Fizailf’ 1::2,N,

we get the equations
A®; + 0,9, =F;,, 1=1,N (2.6)
and boundary conditions

QiZO, I:B‘, |y|,2—>00,

6;: =ab;,, 2z=0, 1=1,N. (2.7)

Thus, we have reduced the problem (1.5)- (1.6) to N independent prob-
lem (2.6), (2.7) for 7 = 1, N with the special right-hand side (2.5). After
solving these problems we can calculate p; (¢ = 1, N) from (2.4).

Theorem 2.1. Let ®; (i = 1, N) be the solution of Problem (2.6)-
(2.7). Then p; (i = 1, N) calculated from (2.4) are the solution of
Problem (1.5) - (1.6).

Proof. First, we introduce the following notations

1 0 0 0
agy ang 0 0
A= @1 a3z aszz 0 ,

ayi @nN2 anN3 *** OGNN
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A+01 0 0 0 0
-0 A+ oy 0 0 0
= 0 -0y A+4+o0z - 0 0 :
0 0 0 ver —ON—1 A+ opn
A+ oy 0 0
0 A+ogy - 0
D: = . - . 3
0 0 A+opn
©1 P, f f
/s8] @2 0 aElf
= bee W 2y 2L, i iy B3 Lok 1o F = :
N dy 0 an1f

Then Systems (1.6), (2.6) and Relation (2.4) may be written respec-
tively in the forms

Lo=G, (2.8)

Dp=F, (2.9)
and

Ap=2. (2.10)

From the last relation we derive
p=A"19. (2.11)

Since ¢ also satisfies the same boundary conditions as ® does, the
theorem will be proved if we show that ¢ defined by (2.11) satisfies
(2.8). |

For this purpose we note that the elements a;j of A given by (2.3)
satisfy the matrix equation AL = DA or

ALA7'=D. (2.12)

Indeed, setting a;; = 0 for j > ¢ we have

(AL)ij = aij(A + 05) — ai,j4165,
(Dﬂ)ij =(A +0,-)a,-j, =1, N ,7 <1
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Equating corresponding elements of the matrices we obtain (2.3).
Now we can rewrite (2.9) in the form

ALAT'®=F.
In view of (2.11) we have ALp = F. Whence, taking into account the
obvious fact that AG = F we get (2.8). Thus, the proof is complete.
3. NUMERICAL INVESTIGATION OF THE

INDEPENDENT PROBLEMS

As seen above Problem (1.5)-(1.6) is reduced to N independent
problems of the form

dp dp dp 0%p d%p 3 dp
“az+”ay+(w "’9)az h oz ”ayz_az”az+
+op = Q8()6(w)8(z — H), (3.1)
=0, |z, |y, z—> 00,
%—:— =ap, 2=0.

Also, this problem under the assumptions that
u=u(z) >0, v=w=0, u= kou, ko = constant > 0 (3.2)
is reduced to the following problem (see [3,4])

P} dp . 9 8 ‘
i v _2,% L6p=0,z>0, (3.3)

Yz Y99, T 9z 0z

up=Q6(z-—H), z=0

=0, z—o00, (3.3a)
dp

— = z2=0.

92 P,

A numerical method for solving this problem was proposed and in-
vestigated in [4,5]. In this section we study dependence of numerical
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solution of the problem on o, o and compare the solutions of problems
with other boundary conditions.

First we recall some facts from [4, 5].

On the grid
O ={z =th,y z; = jhs, 4,5 =0,1,...}.
we constructed the following difference scheme for Problem (3.3)

Ayl —CylP + Byl =-Fl, i=1,2,..., (34

1

vt =yt + 87, (3.4a)

¥t > 0,i00,j=01,2,...,

oo [ O, =k o5
' 0, i1 #£k,
where
Ai = pxiai, B;=pxiait1+ pbia;iih,,
Ci=Ai+Bi+u; +oh,, Fi=uyl,
p=nhy/h2, k=]|H/h,], (3.6)
Ag + By Fo

’ﬂlz

(23]

= Co+ 20k, Ag Co + 2ah,Ap

and the quantities a;, b;, u;, x; are defined in [4, 5].

Note that (3.5) is obtained by integration of the initial condition
in (3.3a) over the interval (z; — 0.5h,, 2 + 0.5h;). Equation (3.4) may
be written in the form

gi = pi'gi—l + qiﬁi+1 + 7 (1 = 0: la . ) ’ (37)

where § stands for y/*!,

There have been established the following result:
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Theorem 3.1. Assume that one of the following conditions is satisfied:

a) e
Uy L
b)) — — o0 ast— .

Then,

i) the difference scheme (3.7) - (3.8) has the unique solution, which
is nonnegative and for each j (1 =0, 1,2,.. .) monotonously tends to
zero,

—-L#0 ast— 00,
a;

i1) the scheme is unconditionally stable and there is the estimate

Iy < 1yl (3.9)
where ||y-7|| = sup]y{].
i>0 .

In addition to the above result we shall obtain some new properties
of the solution of (3.7)-(3.8).
For this we need the following

Lemma 3.1. Let the infinite system

[ ]

$i=zcik$k+bi’ cik >0, b; >0,
k=1

(o o]
Xi=ZCika+Bi, Ci >0, B;>0, (i,k=1,2,...)
k=1

have the unique bounded nonnegative solution.

If
cik <Cik, b <B;, 1,k=1,2,...,

then
z; < X;, 1=1,2,....

Proof. The assertion follows from the theorem on existence of solution
of an system via dominating system in [6].

Having in mind Theorem 3.1 and applying Lemma 3.1 to the system
(3.1) with different values of o and o we get the following

Theorem 3.2. If a or o increases then the solution of (3.7) - (3.8)
decreases.
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This conclusion completely fits to physical picture of the problem,
- namely, from increasing of the coefficient of conversion and coefficient
of absorption of the bedding surface z = 0 follows decreasing of the
concentration of the pollutant in the atmosphere.

Now we shall compare the solution of (3.7) - (3.8) with the solutions
of the problems with other boundary conditions.

First, let us consider the problem in a layer 2z < X with the bound-
ary condition

dp

3 , 2=X, (3.10)
or

=0, z2=X, (3.11)

and the boundary condition on z = 0 being the same as in (3.3).
Assume that ¥ = Nh,.
As for the boundary surface z = 0 we suppose that the differential

equation (3.3) is valid inclusively on the boundary z = ¥ ie. the
difference equation (3.4) is true for ¢ = N inclusively

ANYN-1— CNiN + BNn41 = —Fy. (3.12)

For the approximation of (3.10) with second order accuracy we use the
centered difference derivative. In result we get Un+1 =9Jn_1. Inserting
this into (3.12) we get

UN =pNIN-1+ TN,

where
_ Av + By
= Cn ,

= G

PN TN

Thus, the solution Yij (=0, N, y=0,1,...) of the problem with the
boundary condition (3.10) will satisfy the system

?izpz'?i—l‘f'Qi?i+l+Ri, 1=0,N-1,

g = (3.13)
YN =PnYn_1+ Ry,

where
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Po=0, Qo=a1, Ro=p1,

% B; F; B e wal -
P,'=-A—,Q,'=—1-,Ri=—t-,(z=1,N-—1),
@ Gis Ci (3.14)
Ay + By FN
TN AN B =
Py = Caaoit N= T

At the same time, denoting by y" ({=0,N, j=0,1,...) the solution
of the problem with (3. 11) we have

y P% 1+Qyz+1+Rz,z—ON—1
gN=0.

Adding ¥; =0and §J; = 0for i > N+1to (3.13) and (3.15) respectively
and applying Lemma 3.1 with preliminary convincing of the existence
of the unique bounded nonnegative solutions of these systems we get

(3.15)

Lemma 3.2. For the solutions Y; and g,- of (3.18) and (8.15) respec-
tively there holds the relation

V:<¥: 6=0,N,j=0,1,...).

Now we compare }7, with the solution §; of (3.7) - (3.8).

According to Theorem 3.1 we have §Jy4; < Jn-1. Hence g1 =
pyn—1 with p < 1 and we can rewrite {3.7) for ¢ = N in the form
gN = PNGN-1 + TN, Where PN = PN + PgN.

Taking into account (3.8) and (3.14) we have pxy < Py. Arguing
similarly as in obtaining Lemma 3.2 we arrive at

Theorem 3.3. For the approzimate solutions y{, y;?. and Yij of Problem
(8.3) with one of the following boundary conditions

p=0, z=X,
p=0, z—> 00,
dp

Peal &

respectively, there hold relations

y’ <y’§Y’ ((=0,N, j=0,1,...).

Remark. The above result can be also obtained by using corollaries of
the maximum principle for finite difference scheme (see [7}).
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