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ON MARKOV NETWORKS

COLETTE ANDRIEU(!) and BUI TRONG LIEU(2)

Abstract. The aim of this paper is to propose an approach based on statistics
Jor studying some Markov networks. As an application, we quote an ezample
related to distributed computing.

1. MARKOV NETWORKS AND OPTIMAL SOLUTIONS

The stochastic models where optimization intervenes are usual (cf.
for example, [1] and [3]) but their use is more interesting when the
stochastic dependence is simple. Hence, the interest of Markov depen-
dence.

Let (*X:)icrn, k € {1,...,v}, be v homogeneous Markov chains
with discrete time (IN denoting the set of positive integers), defined
on a probability space (2, A, P), the state space of the kP chain being
(*x, ¥B). We suppose that all these Markov chains verify the Doeblin
condition (cf. [5]), and every one of them has only a single ergodic set
without cyclically moving subsets. Let ¥ P be the transition probability
of the kP chain and let kP, be the tth step transition probability, given
recursively by 2

Vz e *y, VBekp

kPy(z, B)=/ *P(z, dy)*P,_i(y, B), t>2

L35%

and let 7 be the stationary absolute probability given by
Jlim kPi(z, B) = *x(B).

Recall that VB € *8,

krie) = | trlde) Ple, B), 1)
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and that the kP chain is said to be in permanent regime if *7 is taken
as initial absolute probability.

Suppose now that Vk € {1,...,v}, *P depends on a parameter ) €
k®. The Markov v chains are said to constitute a network if there
exists a finite number of relations R (6y,...,8,), h € H, between the
01,...,0,.

The problem we have to examine consists of two stages:

According to the context, to choose a real function f of the 01,...,0,
to be optimized; and to fin “solution (s)” (fy,...,0,) satisfying the re-
lations Rp(0y,...,8,), h € H, which optimize the function f(6y,...,6,).

We propose a way for choosing the suitable function f:

Let {¥B;, i € I} be a finite ¥ B-measurable partition of kx and let
*C be the o-algebra generated by {¥B;, i € ¥I o

Consider now (kXt(w))tG[O, njnIn a fragment of the trajectory of
the k*h chain (the sample) corresponding to the point w € Q.

For (*C*C") € (¥C)?, we denote by n(*C x ¥C'; w) the number
of direct transitions from *C to *C', and by n(*C x *C') the corre-

sponding random variable. We know (cf. [3]) that the mathematical
expectation E[n(*C x ¥C’)] is n [, ; *¥r(dz, 0¢) *P(z, *C’; 6)) and that

: *n(*C x *¥C") is an almost surely consistent estimator (as n — o0) of

i :

fic En(dz, 6x)%P(z, kC'; 6%).

As all useful information contained in the sample relatively to the

partition {¥B;, 1 € *I} is given by n(kC x k¢’ w), (¥C, *¥C’) (kC)?,
1

f may be chosen as a function of —E[n(*C x ¥C")], (¥C, *C') € (kC)2.
n

More precisely, according to the context of the problem, in order to
take advantage of information, we propose to choose a set of characteris-

tic pairs (¥C, *¥C’) € (¥C)2, namely ¥ § = {(*C}, *C}), ..., (*C,, kC!)}.
We then define f as function of the parameters 6,,...,0,:

£(01,,6,) = 9 / Enlde, 0)*P(s, *C's ),

Fc,*ce*g, ke {1,..,1}).

f being chosen, we have to find the v-uples (0, ...,0,) € Rx(4y,...,0,),
h € H, which optimize f, or in the absence of such optimal solutions,
to find solutions which make f as close as possible to its optimal value.
For the convenience of the formulation, we can express the optimization
in the form of a maximization.
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2. APPLICATION TO A DISTRIBUTED
COMPUTING PROBLEM

Consider the following network of v homogeneous finite Markov
chains. Its k*P Markov chain has *r states, ¥x = {1,..., kr}, kri, krq, Frg
being integers > 0 such that b +Ery + krs < kr. Let us denote

kB, ={1,....kr1},

kBy = {¥r1 +1,....,%r; + *r3},

KBy = Fry + Fro + 1, Fry + Fry + Frg},
kBy=Fri +Fry 4+ Frg+1,.., %),

The entries of the transition matrix *P = (kp,-]-) are described as
follows

Vi € kB, 3 kpl-j =1—ax and ), kp,-j = a, where aj €

JE*B, JjEXB,
10, 1[;

viekB;, Y kp,-j =1-byand ) "p,-j = by, where bi €]0, 1[;
j€kB, j€* By

Vie¥Bs, Y "p,-j =1—crand ), kp,-j = ck, where ¢x €]0, 1[;
J€E*Bs JE*B,

Vi (& kB4, Z kpij =Rl
Jj€FB,

For the other (¢, j), "p‘.j =0.
The v chains are connected into a network by the following rela-
tions:

(s, ') € B, x ¥+1B,,

3 Epi+ ) Ftlpy;=1for ke{l,..,v—1} (2)
JjEFB, jEkF+LI B,

and (i, i) € VB, x 1B,

Z Ypij Z 'puj = 1.

JEY B2 JE'B;

Proposition 1. With the partition {¥B;, *B,, ¥Ba, ¥B,} of *x, the
k*® Markov chain is lumpable. The lumped chain is an homogeneous
Markov chain with four states; its transition matriz *M = (¥m,,) s
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the following: *my; = 1 — ag, *mys = ag, *moy =1 — b, ¥mos = b,
km33 =1~ Clk, kTTI,34 = Ck, km14 =g i

The other *m, are equal to zero.

The v lumped chains are connected tnto a network by the relations

{ak +bgt1 —1=0, ke {1,..,.v—1}, (3)
ay"'b]_l:oi

the parameters being 0, = (ax, bi).

Indeed, it is easy to complete the description of the matrix *P by

writing: Vi € ¥B;, ) kp,-j =S kp,-j = 0, and so on. We then
j€E* B3 JE*B,
see that for every pair (*B,, *B,), s,u € {1, 2, 3,4}, kPij, 1 €
JE*FB,
kB,, depends uniquely on s (but does not depend on 3 individually).
The common value of the sums kp,-j, i € kB, is the *m,, of the
JE*B,

transition matrix of the k*® lumped Markov chain (cf. [6]). Because of
(2), the lumped chains are connected by relations (3).

We rediscover then the network of the dining philosophers problem
studied in [2].

Proposition 2. For every k € {1,...,v} the initial k*h Markov chain
satisfies the conditions of §1. With the partition {*B,, ¥B;, *Bs, *B,}
and tn permanent regime, we have

Eln(*By x *By)) = ML= ak)bkck

Dy ?

E[n(*B; x *By)] = ——”“"(ID; i
naxpbe(1l —

E[n(kBa X kB3)] - _kkl()k—ck) J

E[n("Bl X kBg)] = E[n(sz X kB3)] =
nakbkck
D, °’

E[n(*Bs x ¥By4)] = E[n(*B, x ¥B})]

where Dy = akbi + bkck + ckak + akbick. The other E[n(*B, x "Bu)]
are equal to zero.
In particular,
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b

Eln(*By x *x)] = n5~ £k E[n(*B. x *x)] = n2E%
D’ D’

E[n(*Bs x ¥x)] = n %% | Bln(*By x *x)] = n 20k
Dy Dy

Indeed, with the indicated partition of *y, the kth lumped chain
has only one ergodic set without cyclically moving subsets and satisfies
the conditions of §1. Let us denote by Fu = (* /.tl, ku,, Ns’ ku,) its
absolute stationary probability. Solving (1), i.e. *u.*M = ¥4, we have

k bkck k = AkCr akbk k . akbkck

Dk L] Mo = Dk ’ I‘l’3 ¥, Dk ] ”’4 = Dk

Then,
E[n(*B, x"Bu)]—-n Do) kmikpy
i€kB, ickB,
=n > Fm. ) Fpy
iekB, i€kB,
=n Z *n:.*m,, (because of the lumpability)
i€k B,
3l A

In particular, Vs € {1, 2, 3, 4}
4
En(*B, x*x)] =n Z kg Fma, =nky,.
u=1

Let us examine now the problem of choosing a suitable and workable
function f following our method indicated in §1. Let us recall that,
because of its context (exposed in [2]), one “privileges” the access to
state 3 of the kth lumped chain, i.e. to the set *By of the k*! initial
chain. Thus, we take

kg={kBaka}-

1 _
For every k, we suggest maximizing ;E [n(*Ba x * x)], viz. minimizing
3 .
Eln(*Bs x *x)]

, so that, globally, under constrains (3), we minimize

v v
e
£ E[n(kBs x kx)] & axbi
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This leads to the same result as [2], found by another approach. Let the
ck's be fixed, and consider the 8i’s (6 = (ak, bx)) as tuning parameters.
f, as indicated in §1, is here the concave function

v

Fl@1, b1), - (@0, B)] = = 3 [(1+ex) + 2 4 s

T ar bx

The Lagrange multipliers method used by [2] for lumped chains
proves that there exists only one optimal solution, which is

((alv bl)v'", (aka bk)s X3 (aV: bu))
o (e e o Ly SEN R
1+P1’ 1+Py ’ g 1+pk’ 14+ pg—1 : : 1+Pu, 14+p,1

where px = ‘/c—"c?, for k € {1,..f,u —{1} and p, = 1/'—2’».

We then infer the following result:

Suppose that the *p;;, (i, 7) € [¥*Bs x (*Bs U kBy)U(*Bs x *B,),
be fixed, and consequently, so are the ¢x’s and suppose that the kp;,-,
(i, §) € [FBy x (*B,U*B,)|u[* B2 x (¥ B;U* B3)], be tuning parameters.
Then

Proposition 3. The snitial Markov network has the following optimal
solutions:
* For the first chatn,
the 'p;;, (i, 4) € [*By x (1 B1U 'By)], are such that

1
1+p

. P1 =
Vi€ ’B‘;,, E lp,-j oy -’:—p and E lp,-j =
. j€'By 53 jE1 By

the 'p;;, (s,7) € [* B, ‘X.(lev U 1B3)], are such that

. ] » 1 Pv
Ve € le, E : IP.{J' = and E : ng'j = .
i€ B, —T+p, i1 Bs 1+4p,

* For the kt* chain, k € {2,...,v},
the kPij, (¢, 7) € [1By x (* B1 U 1B3)}, are such that
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1.

) : Pk k 1

Vie *B, ki and 2' L vl :
0 P = Tyt oo P T
Jj€FB, JE*B,

the *p;;, (i, j) € [FB2 x (*B3 U*B3)], are such that

- 1 Pk—1
Vie*B kp.=— ~  and kp e fE01
= z P T 14 e zk: ] + Pr—1
J€*B; JE*B,

Among these optimal solutions is the following particular one:

For the first chain

VG, 3) € By x *Ba), Ypij = r s
V(z, 5) € (kBl X sz), 1I’s‘j = Tr';(11_+;;;_j;
V(3, §) € (*B2 x ¥B3), 'pij = 1—,2—(11+—p:) ;
V(i, j) € (*By x *B3), 'pij = ﬁ;(_{”m :
o For the k*} chain, k € {2, ...,v},
¥(s, §) € (*B1 x *By), *pi; = El(fkTpki;
V(i, j) € (kBl X sz), kpij = m;
V(i, 5) € (*Bz2 x *By), *pi; = W;

Y(t, 5) € (*B; x ¥Bs), kpij = m
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