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SPLINE COLLOCATION METHODS FOR NEUMANN
PROBLEM FOR ELLIPTIC EQUATIONS

NGUYEN VAN TUAN

Abstract. In this paper fast direct methods are proposed for solving knear
systeins arising when orthogonal collocation with piecewise Hermste bicubics ¢s

employed for the approzimate solution of Neumann problems for elliptic equations
n a rectangle.

The new methods, which are matriz decomposition algorithms snvolving fast
Fourier transforms, require O(N1 N3logNy N3) arithmetic operations on an Ny x
N3 partition.

1. THE PROBLEM

Many authors [1], [2], [3], [4] have been interested in approximate-

ly solving partial differential equations which can be reduced to the
following form

(A®B+B®A)i=f, (L1)

where A, B are N x N matrices (N a natural number), 4, f are column
vectors of N2 coordinates

r
[ul 1yo++ yUL,Ny. - )uN,lv-'uN,NJ ’

U=
f=[fll, °’fl,Na--'1fN,1,---’fN,N]T,

and ® denotes the tensor product.

In 8], W. Sun and N. G. Zamani have established an algorithm to
solve (1.1). They have proved that the eigenvalues of matrix B~'A
are different and real. This follows that there exists a non degenerate
matrix @ such that B~'4 = QAQ™! (A is a diagonal matrix).

The purpose of this paper is to establish a more effective algorithm
than Zamani’s one to solve a.system of the form ;

(A1®B; +B1® As)@=f (1.2)
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arising in the study of the following problem by orthogonal spline
collocation

9%y ou
+ q(z2) z—

azl ( ) a + T(Zz)u = f(zly xZ) )
(z1, z2) E = (a1, b1) X (a2, b2) (1.3)
g:: 0, (:Cl, .'122) € 611,

. . ou . :
where p, ¢, r, [ are continuous functions, 3, Ban outer normal deriva-
n

tive.

Moreover, our algorithms allows us to obtain smooth solutions in
the whole domain due to which we get more informations than difference
methods about the exact solutions. the operations for finding the values
of approximative solutions and its derivatives on computers are simple
as well. With a new algorithm we can use the fast Fourier transform.

2. SPLINE COLLOCATION EIGENVALUE PROBLEMS

Let {zx}Y_, be an uniform partition of [a, b], zx = a + kh, k =

0,...,N with h = b]_v“.
Let Hs be the space of cubic splines on the segment [a, b] defined -
as follows

Hs = {veCa, b]:v|(z,,50,,] € P3, k=0,... ,N -1},

where P; denotes the set of polynomials of degree at most 3. We set
1?[3 = {v € H3 : v'(a) = v'(b) = 0}. (2.1)
Lemma 1.
(i) Hs is a real linear space of dimensions 2N + 2.
(ii) H 3 15 a 2N -dimensional subspace of Hs.
Proof. (i) See [7] page 59.

(i1) It is easy to prove Hg is a subspace of Hj.
Now we take the system B = {¢i, ¢ =0,...,N, ¢;1, 1 =0,...,N}
for a basic of Hs (see[7] page 59).

Take an arbitrary v(z), v(z) € Hs. Then v(z) € Hs, hence
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N N
v(z) = Zan $no(z) + E bp $n1(z), @n, b, € R.

n=0 n=0

Since v'(a) = bo. v'(b) = by and v(z) € Hg, we get by = by = 0. So if
we set

¢n($) = ¢n0<($)y n= 07--°’Ns
¢N+n(z) = ¢nl(z)a n = 1"'-,N -1 )

then the system {¢.(z)}2N-! is a basic of Iois. This system for k =

n=0

0,...,N, has the following properties:

Bn(zk) = bnk, by (xk) =0withn=0,..,N, (2.2a)
ON+n(Tk) =0, Sy n(zk) =h ™ 6k withn=1,.,N -1, (2.2b)
(here 6y, is the Kronecker delta).

Let us denote by {¢,}2/_, the set of Gauss points of [a, b] defined
by

h h
= g(k+1/2) _ 7 = g(k+1/2) L T
= — ’ = + 3 2.3
$2k+1 23 S2k+2 23 (23)
where z(k+l/2)= M, k:O’___ ,N_]_.

2
Let us consider the following eigenfunction problem.

Find U € Hj; so that:

~U"(¢m) = AU(¢m), m=1,... 2N, (2.42)
U'(a) = U'(b) = 0. (2.4b)

Lemma 2.
o 2N o
(i) In the space H3 the rule (u, v) = h 21 u(¢m)v(¢m), u, v € Hg
m=
ts an tnner product.
(ii) We have: (u", v) = (u, v"), u, v € Ha.

Proof. (i) It is sufficient show that from (v, v) = 0 it follows that v = 0.
Indeed '
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(v,v)=h Z v2{(¢m) =0,
m=1
hence v(¢,,) =0, m=1,...,2N.
o 2N -1 2N -1
Since v € Hz wehavev(z) = )  z;4i(z), hence Y z;¢i(¢m) =
=0 1=0

0,m=1,...,2N or Bz = 0, where

2N,2N-1
= [zo, ---,$2N—1]Ta B = (bm’")m=1,n=0 ’bm,n = ¢n(§m) .

Because B is non degenerate (Theorem 2.2), we obtain z = 0, that is
v=0.

(ii) Clearly that if f € C*[a, b] then

) (8x)h®

/; S f(z)dz = %h[f(s‘zkfl) + f{eat2)] + 4320 °

k
where 0y € [z, Tx+1] (see [7] page 310).

[
For arbitrary u, v € H3, assume that on [zx, zx41],k =0,...,N~1
we get

3 3
u(z) = Zak,wi, v(z) = Z bk,,-zi 5
1=0 1=0

Denote by (u, v) the inner product in Ly[a, b]. We have

b N-1 rzpy,
(u”, v) =/ uw'vdr = Z/ uv dz
a

k=0 v %k
2N N-1
1 ak,3bx 3h®
= —hu'" e el
S Lo ulon) + 3 Zesbs
m=1 k=0
Hence he s N-1
" M=y
(u",v) = 2<u , V) + i Z ak,3bk,3 .
k=0
Similarly we obtain
s N-1

1
(’U”, u) =] §<v”’ u) + o p— Z ak,3bk,3 d
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From (u”, v) = (u, v") it follows that (u", v) = (u, v").

Theorem 1. The eigenfunction problem (2.4) has 2N different non-
negative eigenvalues defined by
AT = 12[%
J 7 — T’]'
Mo=0, An=9h"2,

]h'z, J=ai_.N-1,

jm
where n; = cos M= \/43 + 40n, — 277? i

With respect to = € [Tk, Tk+1], kK = 0,...,N — 1, the eigenfunctions
are defined by

U;t(z) = cgi{ [ — (1 +n;)(19 = n; F 2u;) + 6(1 —n;)(2 + n; F w5) k()
+ 36(1 - n]z)pi(:c) +8(1 - 77_1')(4 +8n; + uj)pi(a:)] cos kJTW

+4/1-n2[19 — n; F 2u; + 6(2 + 15 F u;)px(2)

. kj

— 36(1 — 1;)p} (=) +8(4 + 5n; £ p;)p} ()] sin |
(2.5)
Uo(z) = co, Un(z) = (—1) enpr(z) [40}(z) - gl
z — g(k+1/2)

h
Proof. If A = 0 then it is sufficient to choose Up(z) = ¢ (co # 0).
Obviously that Up(z) satisfies (2.4).

Assume that A # 0 is a real eigenvalue and U(z) a corresponding
eigenfunction of (2.4), with z € [zk, k1], k= 0,..,N — 1.
Let

where co, c]ﬂ-:, cn are non zero constants, pi(z) =

— g(k+1/2)y2 _ p(k+1/2))3
U(z) = ak + Br(z — z*+/) + Lt ) + b i ) ,
2 6 (26)

where ak, Bk, Yk, O are constants. Putting (2.6) in (2.4a) and calcu-

lating ok, Bk through ~i, 6 we obtain
2

ak=—<'§+%>’7k, ﬂk=—<§'+%>5k. (2.7)

By the continuity of U(z) and U’(z) from (2.6) and (2.7) with
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_h 1 __’z(h_z_l) t_z(hj o ¥
e ool mtin s oty 2E)
we get rYk+1 — SOky1 = Yk + 86 , (2.9)
Ye+1 — tkr1 = — vk — ok . '
g LR ST S S LR
TS =onlios T ox Tzl T2nl3\e TR/ Taazl T
form (2.9) it follows that
Yerr|_ 1 |rt+s 28t ||
Ok+1 rt—s 2r rt+s|| 6|’ (2.10)
Using (2.4b), we get
h h?
]
= — — b — =
U'(a) = Bo "oz e 0,
' LK 1.4
U'(b) = Bn-1 = Shn-1+ gh*6n—1 =0 (2.11)
or tbo = Y0, toN—1 = —IN-1-
To find eigenvalues of A we first suppose that
rst < 0. (2.12)

By rst < 0 we get |rt + s| < |rt — s|. It follows that there exists an
angle 0 so that
rt+ s
cosf = oy 0 € (0, ). (2.13)

By (2.10), (2.13) we obtain
st

~k = Yo cos(k8) + 60\/—_7'& sin(k6) ,
Yoy —rst
8k = 6o cos(k6) — ﬂ% sin(kf), k=0,..,N—-1.  (2.14)
The use of (2.11), (2.13), (2.14) gives us
t
cotg(N — 1)0 = — - ,+s = —cosf.
' 24/ —rst

Hence 0 = ‘%, j=1,..,N — 1. Setting n; = cos‘% and using (2.13)

we obtain
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rt+ s
rt—s’

n;

Putting r, s, t from (2.8) into ; we get a second degree equation

(7= n;5)(Mh*)* — 24(8 + n;)(AR?) + 432(1 — mj) = 0. (2.15)

Solving (2.15) we obtain /\i’s as defined in the theorem. Now we show
that all just found A%’s satlsfy (2.12).
Since /\;-t are solution of (2.15) we get

AERE B4yt \/43 + 40n; — 2n?

12 7—n;

8 + V43 + 40z — 212
Consider the function y* = e \/7 028 s e
—z
It is obvious that y* (y~) is increasing (decreasing) on (-1, 1).

Consequently

yt(-1) <yt (z) < yH(1), y™(1) < ¥y~ (z) <y~ (-1).
It follows that

127 < AT <36h7% 0< A7 <9h~2, (2.16)

From (2.8) and (2.16) we immediately see rst < 0.
Setting ¢ = 0 we obtain Ay = 922, Replacing t = 0 in (2.11) we
get v0 = yn-1 = 0. Using (2.9) we have
=0, & =(-1)%6, k=0,..,N —1. (2.17)

The eigenfunction corresponding to Ay is
(z — x(k+1/2))3

Un(z) = Bi(z — 2*+1/2) 1 g,

Using (2.7) and (2.17) we get
Un(z) = (-1)*enpr(2)[4p}(z) - 3]

For calculatlng the eigenfunctions corresponding to A we apply

formulas (2.6), (2.7), 2.14) and then by reducing we will obtam U; (z)
as stated in Theorem 1.
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Corollary 1. Let U]?t(:z:), Us(z), Un(z) be the eigenfunctions of (2.4)
defined by (2.5). If we choose

G g[z_@?——a)]a"f’ % & [z(bl—a)]a’ = g[z(bg—a)] ’

with 05 = [27(1+n;)(8+n; F p5)* + (1 —n;) (11 +Tn; F4u;)?] "%, then
the system M = {Uji, j=1,..,N =1, Uy(z), Un(z)} s orthonormal
with respect to the inner product { , ).

Proof. For arbitrary U;(z), U;(z) € M, i # j we have

U (¢m) + AiUi(em) =0, U} (¢m) + AiUs(6m) =0, m=1,...,2N.

It implies
<U£’ + AU, Uj) =0 (U]'-’ + A;U;, U;) =0.
Taking into account that (U/, U;) = (U}, Ui) and A; # A;, we get

(Ui, U;) = 0. Orthonormalizing the system M we obtain the coefficients
mentioned in Corollary 1.

Corollary 2. Let M be an orthonormal system with coefficients men-
tioned in Corollary 1. For 3 =1,..,N -1,k =0,...,N we have

kym de: (zk)
N - g0 dz

= qﬂ;th_l sin kin_ .

UJ-i (zx) = qaf cos

3 1% ' + . Jm
'7=—5[ ] y o =(5+477j:{:uj)0j L ﬂ;-t=—180;-tsm——-

2(b—a) N
and
_ B - k+17
U, =——, U = (-1 =,
o(zk) V3 n(zk) = (=177 2
dUo(:Dk) L dUN(zk) 0
dz dz
Proof. For k = 0,...,N — 1 by substituting px(zx) = —% in (2.5)

and reducing, we obtain immediately the results. For £k = N we have
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1 TCa— . : .
pN—1(zn) = =. Then by substituting and reducing we get the desired
formula. Similarly the other formulas are proved.

aN—1 o ' 2N—-1
Now let {¢n}n=0 be a basic of H3 and U(z) = Y z,¢,(z).
n=0

Then the eigenfunction problem (2.4) becomes the general eigenfunction
one

A7 =)= \BZ, (2.18)

h % : :
where Z = [ZO,..., z2N—l]T ’

2N,2N -1 "
m=1n=0 1 @m;n = _¢n(§m) )

(

Smx) (2.19)
(bm,n),znl\_r—_!ffzv;-ol 3 bm,n = ¢n(§m) .

A
B

Il

Theorem 2. Let A, j =1,..,N — 1, o, Ay be eigenvalues of (2.4)
given by Theorem 1 and Uji, Uy, Un are corresponding orthonormal
etgenfunctions given by Corollary 1. Let

2N-1 2N-1
Uf(2) = ) 25;dn(2), Uo(z) = Y 2n0én(z),
n=0 n=0
2N—1
Un() = Y znnén(z).
n=0
Set
A =diag(AT, ..., AN_1, Aos AT, ., A% 1, AN), (2.20a)
Z = WA Bl o T ik 12 FER (2.20b)
where _
Zji = [zc:it,j""’zzizv—l,j] » Zo = [20,0,-y22n-1,0]7 ,
Zy = [zo,n, - 22n—1,n]T .
Then

AZ=BZA, ZTBTBZ =1,
(I is the unit matriz of rank 2N ).

Proof. Using directly Theorem 1, we can prove the first equality. By
Corollary 1 we can show the second relation.
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Now we try to find an explicit form of the matrix Z by means of a

special basic of H 3. Choosing the basic system (2.2) of H 3 we get the
representation, say:

N N-1
== Z Z’:lt’]¢n(z) + Z z':f+N’j¢N+n(z) E
n=0 n=1

By Corollary 2 we obtain
kym

z,%,“,j = 4B sin 1 k=1,..,N-1,
kym :
z,:f,j = 'ya;-': cos N k=0,..N,

L k=0,...,N, ZN+]¢,0=0, k=1,...,N—1,

2 = 5
k,0 6\/5,

Bk ‘
Ze,N = (_1)’=+1§, k=0,.,N, zvikn =0, k=1,.,N—1.

Set

N Jkj=1 N Jk=0,5=1 N /kj=0
Then we get L
6\3 | CA; CAL
Z=—3(——) 2 _loal (2.21)
N/ |5A;|0|sAf|0

(0 is a column vector zero of dimension N — 1).

3. ALGORITHMS FOR SOLVING ORTHOGONAL SPLINE
COLLOCATION EQUATION

3.1. Consider the problem

—Au+cu = f(zl, 122), (.Tl, Iz € 0= (a]_, bl) X (0,2, b2) g (318.)

ou

é; (0] (131, .'112) €oN. (3.1b)
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| du
where ¢, a;, b;, 1 =1, 2 are constants. an 1s an outer normal deriva-
n

tive, A\is Laplace operator, f is continuous on {1. Moreover we assume

that (3 1\} has an unique solution. Let N;, ¢ = 1, 2 be positive integers

b;—a; °
N :(3) spaces of piecewise

{.'Bkt)}k=0 an uniform of [a;, b;], h; = :
cubic splines on [ai, b;| defined as in (2.1). :

Let {¢(’)}2N be a basic ofH( P asin (2.2) with zx, h, N replaced

respectlvely by :z:(’) hi, N;. Then we have the orthogonal collocation
approximation
2N, —1 2N, —1

U(zi, z3) = Z Z unx,nz¢1)(z1)¢(2)( 2) . (3.2)

n;=0 n,=0
The problem (3.1) will be solved by solving the following sygtem
—AU(g(l) S‘(2)) CU(g(l) S‘(2)) f(S‘r(nll), 5‘(2)) : (3.3)

where m; = 1,...,2N;, { ’.} '_ is a set of Gauss points on [a;, b;]
defined by (2.3) with =y, A, N repla.ced respectively by :c h!, N;. Set:

u= [uo,o, <oos U0, 2Ny =15 o=+ U2N, —1,0) ---,u2N1-1,2N2—1]T )

= [f1,1-02 f1,2N5 s s J2Ny 15 ooos fony 2na T
foyimy = f( (1) (2))_

Then (3.3) can be written in the form of a linear system of equatiags
(A1 ® B, + By ® A; + ¢B1 ® By) i = (3.4)

where the matrices A;, B are defined as in (2.19) with @n, ¢m, N
replaced respectively by ¢n, , g,(,:) N;.

Let A;, Z; be defined as in (2.20) and (2.21) with [a, b], N and h
replaced respectively by [a;, b;], N; and h;. By Theorem 2 and by using
some properties of tensor products it follows that the equation (3.4) is
equivalent to

(AMi® L+ 1 ®@A;)(27 @ 27 )= (2] BT 27 BY) f,  (3.5)

where Kl = A1 + ¢I;. Form (3.5) we obtain the following algorithm to
solve (3.4).
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Algorithm I
1. Calculate § = (2T BT @ z] BY) f.
2. Solve the system (I&l QIL+1I; @A) T =g.
3. Calculate @ = (Z, ® Z5) ¥

From the work [6] (page 132) we see that the operation number to
calculate the sums

Pl knw ol | knx
fi(k) = ZC’l(n)cos-———, fa(k Z s1n—,
n=0 n=0
k=0,.,N—-1.
) knt | knm | "
(with Cy(n), Ca(n), cos —y 0 Sin - siven, N =2") is O(NlogN).

By the expansion of the product (Z; ® Z,) ¥ = § we can assert that
the operation number for this product depends on the calculation of
four following sequences of the form

Na—1
FapET SES1 dr
n=0

Ny—1
P ges 50 o [ENDs & 5
k==0

wheret =0,...,.N; — 1,/ =0,...,N, — 1

nlw ik
cos — , cos — ,
Anl = N3 b; k1= Ny
it . nlr b . kT
sin — sin — .
Nz’ N;

For calculating f;; we need O(N; N;logN;) operations. For hi; we
need O(N; N;logN;) operations. So the needed operation number is
O(N; Ny logN;N;). We have

§=(2F BT ® 2T BY) f = (2T ® 2])(BT ® BY) f.

Since the lines of BT and BT have four non zero elements at most
therefore the operation number for calculating (BT @ BT) fis O(N; N3).
By the use of this result for calculating @ we see that the operation
number for the product (ZT ® ZT)(BT ® BY) f is O(N1NzlogN,).
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The second step is to solve a diagonal system of equations of rank
4 N1 N3 so the operation number for this step is O(N1N;). Consequent-
ly the operation number of the algorithm I is O(N; N, log Ny N,).

3.2. Consider the Neumann problem for elliptic equations
(1.3)

9%u 9%y du
_a_zg “P(xz)a—xg + Q(zz)g + r(z2)u = f(zq, z2), (z1, z9) €N
= (a’l’ bl) X (0'21 b2))
du
an =0, (z1, z2) € 90,

! . du .
where p, g, r, f are continuous functions, 3y, San outer normal deriva-
tive.

Assume that (1.3) has an unique solution. Then the collocation

solution (3.2) of (1.3) can be obtained by solving the following linear
system:

-

(A]@Bz +BI®A2)U:fa (3'6)
where 2Nz, 2Nz -1
A2 T ( (2) )m 21 n—20 Y

a2 = p(s$) [ - 82 ()] +a(c)8P” (D) + r(s)6D (62).

The matrlces Ay, By, B3 are defined as in (2.19). Replacing bns ¢ny, N
by ¢n, ' gm ,» N; and by using Theorem 2 we can get

(M®By+ L@ 4;)(Z7' 9 ;)&= (ZT BT @ I) §. (3.7)
From (3.7) we get the following algorithm to solve (3.6).

Algorithm II
1. Calculate §= (ZT BT @ I,) f .
2. Solve the system (A; ® By + I; ® A3) 7 =g.
3. Calculate @ = (Z; ® I,) v.
The first and third steps are similar to the ones of algorithm I.

Choosing the basis system of H(z) as
Yo =97, ¢ =62, ys= o, V2N, - 1—¢
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Vg1 =2, k=2, Na— 2, Yoe =05 4 k=1,.,Na— 1.

The second step is reduced to solve 2N; systems of linear equations of
rank 2N;. The coefficients of these 2N; systems take the form A; +
A1 B (the lines and columns of this matrix have got at most four non
zero elements). These matrices are of four diagonal type. Using the
Gauss substitution we see that the operation number of the-second step
is O(N;N;). Consequently the algorithm II needs O(N; N3 logN;N3)
operations.

Finally the author would like to express his deep gratitude to Pro-
fessor Doctor Nguyen Minh Chuong for suggesting the problem and
drawing attention to the results.
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