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A CLASS OF LATTICES L DETERMINED BY Sub(L)
UP TO ISOMORPHISM OR DUAL ISOMORPHISM

NGUYEN DUC DAT

Abstract. In this paper we deal with a Gratzer’s problem on Sub(L), the lattice
of all sublatices of a lattice L. We give a condition on a lattice L such that Sub(L)
determsnes L up to isomorphism or dual isomorphism.

1. INTRODUCTION

In [1] G. Gritzer has proposed the following problem: “Find con-
ditions on a lattice L under which the lattice Sub(L) determines L
up to an isomorphism”. Hoang Minh Chuong (2] has proved: “Let L
be a modular lattice of locally finite length which has no linear de-
compositions. Then Sub(L) determines L up to isomorphism or dual
isomorphism”.

In connection with this problem, in [4] we have proposed the con-
cept of a contractible sublattice. In this paper, we shall use this con-
cept to prove the following theorem: “Let L be a lattice having no
contractible sublattices, then Sub(L) determines L up to isomorphism
or dual isomorphism”.

For application, it will be proved that Boolean lattice have no con-
tractible sublattices. Moreover, in a forthcoming paper, we describe
some different types of lattices which also have this property: such as
modular lattices having no linear decompositions, atomistic lattices...
Therefore the class of lattices mentioned in our theorem is sufficiently
large.

2. SOME NOTIONS

First we revise some notions and results of [4]:

Definition 2.1. Let ¢ : L — L’ be a square preserving bijection. On
L there exists a relation pg defined as follows: a, b€ L, apyd if either
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a < b, p(a) > p(b) or a > b, p(a) < p(b) . The equivalence generated
by po is called “p-determined” and denoted by p or p(p).

For the equivalence p(p we have:

Theorem 2.2. Let o : L — L' be a square preserving bijection and A
with |A| > 1 and equivalence class of p(p). Then:

(a) A ts a convez sublattice.

(b) If {a,b; c,d) ts a square on L then c€ A & d € A.

This theorem lead us to the following notion:

Definition 2.3. A proper sublattice A of an arbitrary lattice L with
|A] > 1 is called a contractible sublattice if A satisfies conditions (a),

(b) in Theorem 2.2.

Now, a definition of invariable intervals is introduced. This concept
will be needed in Section 3.

From now on, we always consider a square preserving bijection
denoted by o : L — L'.

Definition 2.4. Let u,v€ Land u < v

1) If p(u) < p(v) and z € [u, v]  o(z) € [p(u), (v)], then [u, v]
is called an invariable interval of the type (I) with respect to .

2) If p(u) > p(v) and z € [u, v] & p(z) € [p(v), p(u)], then [u, v]
is called an invariable interval of the type (II) with respect to .

Remark. For simplicity when ¢ is fixed we shall drop the sentence
“with respect to p”. Further, if it does not make any confusion we
shall write “invariable interval” instead of “invariable interval of the

type (1) (or (ID))".

Example 2.5. Let o : L — L' be a square preserving bijection and
(a,b; a A b,a v b) be a square in L then [a A b, a V b] is an invariable
interval either of the type (I) or (II).

The proof of (2.5) follows directly from the properties of the square.

Lemma 2.8. If [u;, v;], © =1, 2, are invariable intervals of the type (1)
containing the subset A # 0, then [ug Aua, vy Vvg] is also an invariable
interval of the type (I) containing A.

Proof. Without loss of generality, assume that u,||u; (x; uncomparable
with u;) and vy ||v, (Fig. 1a). Once a € A, it is easily seen that u; < u,V
uz2 S a < v1 Avz <v; and thus w1 Vug,v; Avg € [ug, v1]. Since [u;, v1]



A class of lattices L determined by Sub(L) 77

is invariable, we have p(u; V u3) > p(u;) and p(v;) > ©o(v1 A vg).
For the squares (uj,us; u; A ug,u; V ug) and (vy,ve; v1 A vg, vy V v2)
we also have p(u1) > p(u1 A uz) and p(v; V vy) > p(v;) respectively.
Consequently p(vy V va) > p(v1) > p(u1) > p(ug A ua) (Fig. 1b).

So far, we have [u; Aug, v1Vvy] with p(u1Auz) < (v, Vvz). Denote
K = [p(uy A uy, p(v; V v;] we shall show that z € [ur Aug, vy Vo] &
p(z) € K.

(i) Let z € [uy A uz, vy V v3]. We shall prove p(z) € K.

Case 1: If z is uncomparable with at least one of the two elements
u1, uz then p(z) > p(u; A uy); because if p(z) < p(u1 A uz) we must
have z§u; (z is comparable with u1) and zSuz, but this is impossible.

To prove p(z) < p(v; V vs) we consider the relation between z and
V1, V2.

(1) If z is uncomparable with at least one of the two elements V1, U2
then we obviously have p(z) < p(v1 V v3).

(2) If z5v; and zSv, then z < vy, v, 50 (z) < p(v1), p(vs) and
thus p(z) < p(v; V v3).

Case 2: If zSu; and zSu, then z > u;, u,, that leads to () >
©(u1), p(uz) and thus o(z) > p(u; A ug).

Considering similarly the relation between z and vy, ve, we can
easily deduce that p(z) < p(v; V v2).
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Figure 1

(ii) Let p(z) € K. We will prove = € [uy A ug, vy V v2] by contra-
diction.
Suppose that £€[u; A ug, v1 V vy] then £ < u; Aug or z > vy V v,
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(1) If z < uy A up then z < uy, up. Moreover, p(z) > o(u A uy)
implies that p(z) > p(u1), p(u2). From the invariability of (s, v5], 1 =
1,2, we have p(z) > p(v1), p(v2) and therefore p(z) > p(v; V v3),
which contradicts the fact that p(z) € K.

(2) ¥ z > vy Vs, by the same arguments we have () < p(urAuy)
which contradicts the inclusion p(z) € K. :

In short, p(z) € K then z € [u; A ug, v; V ).

The proof of the lemma is completed.

Lemma 2.7. If [u;, v;], i =1, 2, are invariable intervals of the type
(II) containing the subset A # 0, then [u; A uy, vy V v2] ts also an
invariable snterval of the type (II) containing A.

Proof. Suppose u; ||uz and v ||vs. By examining the squares (ug,ug; urA
u3,%1 V ug) and (v1,va; v1 Avz,v1V vs) we have p(u; Aug) > o(u1) >
©(vi) > @(v1 V va) (Fig.la,1c). Thus we have [41 A ug, v1 V vy
with p(u; A uz) > p(v; V v3). Acting similarly as is the proof of
Lemma 2.6, parts (i), (ii), we have z € [u; A ug, vy Vv v2] © p(z) €
[o(v1 V v2), o(u1 A ug)]. This completes the proof of Lemma 2.7.

3. MAIN THEOREM

Consider a square preserving bijection ¢ : L, — L’. We shall prove
that: if L has not contractible sublattices and ¢ is not an isomorphism,
then ¢ must be a dual isomorphism. We argue by contradiction. As-
suming that there exist @,, a; € L such that a; < a,, p(a1) < p(az),
we shall show that L has a contractible sublattice by the following state-
ments 3.1, 3.2, 3.3. We denote 4; = {a1}, A2 = {a2}, 4 = {a1, a3)}.

Statement 3.1. If on L there exists an invariable interval of the type
(I) containing one of three subsets A, Ay, Ay then L has a contractible
sublattice.

Proof.

(i) Suppose that [u, v] is an invariable interval of the type (I) con-
taining A. Since L has no contractible sublattices and ¢ is not an
isomorphism, L is an equivalence class and upv (Theorem 2.2). Ac-
cording to Definition 2.1 there exist z;, z,,...,z, € L such that
UPoZy, T1PoZ2,--. ,TnpPov, Where, without loss of generality, we may
assume that v < z1, p(u) > @(zr). Since p(v) > p(u) > o(z1),
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therefore vSz;. Moreover, z; > v because [u, v] is invariable. Putting
k = z, we obtain u < v < k and p(k) < p(u) < p(v).

Consider M; as a family of all invariable intervals [u’, v'] of the
type (I) containing A and v’ < k([u, v] € M;). Denote M = UM,
therefore A C M and k ¢ M. Consider z,y € M then z € [, vy],
y e [u2, ‘Uz] (El[ul, ‘Ul], ['ll,2, 1)2] € Ml) v

By lemma 2.6 we have [u; Aug, v1 Vvy] € M;. Note that v; Vv, < k
because if v; Vv = k then p(k) > p(v;) > p(a;) which contradicts the
relation p(k) < p(u1) < p(a1). Therefore Ay, zVy € [u1 A ug, v; V
vs] € M and this implies that M is a sublattice of L.

Now we prove that M is contractible.

(a) Obviously M is convex.

(b) Let (a, b; ¢,d) with ¢ < d be a square on L. We shall prove that
ceEM & de M.

1) Necessity: As ¢ € M, ¢ € [uo, vo](3[uo, vo] € My).

Case d||lvo (Fig.2): Consider the square (v, d; ¢1,d;) where ¢; =
voAd, di =voVd Asp(c1) < p(vo) then p(dy) > p(vo). Thus we
have [uo, d1] with p(uo) < ¢(d;). It is easy to prove that ug, di] € M,
and therefore we have d € M.

Uy
Figure 2 Figure 3

Case dSvp: If d < v then it is obviously that d € M. Let us
assume that d > vy (Fig.3). Further, considering o(d) and p(vo), we
have:

If p(d) < p(vo) then p(d) < p(uo) because [uo, vo| is invariable.
Moreover, [c, d] is also invariable (see Example 2.5). From (ug) >
p(d) and vg € [¢, d] it follows p(uo) > ©(vo), but it is impossible.

Thus necessarily p(d) > p(vo) (> ©(uo)) and we have an interval
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[wo, d] with p(uo) < p(d). We can easily show that [ug, d] € M; and
thus d € M.
! 2) Sufficiency: By symmetry we have: d € M = c € M.

(ii) Now, suppose that there exists an invariable interval [u, v] of
the type (I) containing A;. If A2 C [u, v] we have the case (i). Let
us assume that [u, v] does not contain A;. Take M; as family of all
invariable intervals of the type (I) which contain A; and do not contain
A; ([u, v] € M;). Denote M = UM, it can be proved that M is a
contractible sublattice. /

Symmetrically, if on L there exists an invariable interval of the type
(I) containing A, then L has a contractible sublattice. This completes
the proof of the statement.

Statement 3.2. If on L there exists an invariable interval on the type
(II) containing A; and which does not contain A;j, i,j = 1,2, ¢ # j,
then L has a contractible sublattsce.

Proof. Tt is sufficient to consider the case where 1 =2, j = 1.

Let M; be a set of all invariable intervals [u, v] of the type (II) con-
taining A2 and which do not contain A;. Obviously a; < u. Take M =
UM;. Let z, y € M then z € [uy, v1], y € [ug, va| (3[uy, vy], [z, vs] €
M,). Using Lemma 2.7 we have [u;Aug, viVvz] € My, thus zAy, zVy €
[u1 A ug, v1 Vvz] C M, ie. M is a sublattice on L. It is easy to prove
that M is contractible. Q.E.D.

Statement 3.3. If on L there ezist nesther invariable sntervals of the
type (I) which contain any set among A, A;, Az nor any snvariable
intervals of the type (II) which contain A; and do not contain Aj, 1, 5 =
1,2, § # 7, then either X = [a1, az] or Y = (ay, az) (open interval) is
a contractible sublattice. '
Proof.

(i) If X # L we shall show that X is a contractible sublattice.

(a) Evidently X is convex sublattice.

(b) Take a square (a,b; ¢,d) on L with ¢ < d, we have to prove:
ceX&deX.

1) Necessity: Consider d and a2:

If d||la; then a; belongs to [d A az, d V az| which is an invariable
interval (see Example 2.5). Moreover, if it is of the type (II) then it
does not contain A;. This contradicts the conditions of the statement.

If dSas and d > a2 then a; € [¢, d|. But [¢, d] is also invariable.
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Furthermore, if it is of the type (II) then it does not contain A;. This
is impossible. Therefore d < a5, i.e. d € X.

2) Sufficiency: Follows by symmetry.

(ii) If X = L we prove that ¥ = (a;, a2) is a contractible sublattice.
As X = L it is clear that |Y'| > 1. Evidently Y satisfies conditions
(a), (b) of definition 2.3. Q.E.D.

In short, by Statements 3.1, 3.2, 3.3. we come to the desired con-
tradition i.e. we have proved.

Proposition 3.4. Let L be a lattice having no contractible sublatices.
If the square preserving bijection ¢ : L — L' is not isomorphic then )
15 a dual tsomorphism.

Now we are ready to state the main theorem:

‘Theorem 3.5. If L is a lattice having no contractible sublattices then
Sub(L) determines L up to isomorphism of dual tsomorphism.

Proof. Suppose that L is lattice having no contractible sublattices and
f: Sub(L) — Sub(L') is a lattice isomorphism. We have to prove either
b ,
L= L' or L = L' (dually isomorphic).
As well-known, f induces a square preserving bijection ¢ : L — L'

(see [2, 3]). Since L has no contractible sublattice, by Theorem 2.2
there are only two possibilities as follows:

1) Every equivalence class of p(p) consists of only one element. In
this case p is an isomorphism.

2) L is the only one equivalence class of p(p), i.e. ¢ is not isomor-
phic. By Proposition 3.4 we have ¢ as a dual isomorphism.

This completes the proof of Theorem 3.5.
Now we prove that the Boolean lattices satisfy the conditions of
Theorem 3.5.

We recall that a distributive lattice B containing 0 and 1 is called
Boolean if Va € B, 3¢ € B (which is called a complement of a) such
that: aAc=0,aVe=1.

Remark 3.6. The Boolean lattice B has no contractible sublatices.

Proof. We argue by contradiction, assuming that A is a contractible
sublattice of B. Since |A| > 1, there exists a, b € A such that a < b.
Clearly 0, 1€ A. Take c as a complement of a:aAc=0, aVe=1.

Consider the element £ = bAec. SinceaVz=aVv (bAe) =
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(aVb) A (aVc)=>bwe have a||z . Applying (b) of Definition 2.3 to
(a,z; aAz,b) we have 0 = aAz € A, but this is a desired contradiction.

The proof is completed.
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