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A CLASS OF LATTICES

UP TO ISOMORPHISM

, DETERMINED By sub(Z)

OR DUAL ISOMORPHISM

NGUYEN DUC DAT

Abstract. In this pap.r we deal uith a Grdaer'c prcblem on sublll, the lattio-.
ol all sublatie,c ol a lattiez L . we giae a condition on q lattice t suih tiat sub(L)
determines L up to isomorphism or dual isomotftism.

1. INTRODUCTION

. In [lj G. GrS,tzer has proposed the following problem: ,,Find con-
ditions on a lattice L under which the lattice sub(t) determines .L
up to an isomorphism". Hoang Minh chuong [zj has proved: ,,Let L
be a modular lattice of locally finite length which has no linear de-
compositions. Then sub(r) determines L up to isomorphism or dual
isomorphism".

In connection with this problem, in [a] we have proposed the con-
cept of a contractible sublattice. In this paper, we shall use this con_
cept to prove the following theorem: "Let L be a lattice having no
contractible sublattices, then Sub(Z) determines .L up to isomorphism
or dual isomorphism".

For application, it will be proved that Boolean lattice have no con-
tractible sublattices. Moreover, in a forthcoming paper, we describe
some different types of lattices which also have this property: such as
modular lattices having no linear decompositions, atomistic lattices...
Therefore the class of lattices mentioned in our theorem is sufficientlv
large.

2. SOME NOTIONS

First we revise some notions and results of [a]:

Definition 2.1. Let tp : L + Lt be a square preserving bijection. On
-L there exists a relation ps defined as follows: a, b € L, apsb if either
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@ 1 b, p(") > <p(b) or a ) b, p(") < eP) . The equivalence generated
by po is called ugr-determined" and denoted by p or p(p).

For the equivalence p(p we have:

Theorem 2.2. Let p: L -- Lt be a squore preseruing bijection and A
w;th lAl ) | and, equiualence class ol p(p). Then:

(.) A is a conuex sublattice.

(b) //  (a,b; c,dl is a square on L then c € A + d e A.

This theorem lead us to the following notion:

Definition 2.3. A proper sublattice A of an arbitrary lattice Z with

lAl > I is called a contractible sublattice if A satisfies conditions (a),
(b) in Theorem 2.2.

Now, a definition of invariable intervals is introduced. This concept
will be needed in Section 3.

From norv on, we always consider a square preserving bijection
denoted by p z L --+ L'.

Definition 2.4. Let u, u e Land z ( u

l) f i  p(") < p(u) and c € lu, al + p(n) e [p("), p(o)], then [u, u]
is called an invariable interval of the type (I) with respecl to p.

z) If  e(u) > p(u) and c e lu, ul + p(t) e Ip@), p(u)|, then [2, u]
is called an invariable interval of the type (II) with respect to p.

Remark. For simplicity when p is fixed we shall drop the sentence
"with respect to g". Further, if it does not make any confusion we
shall write "invariable interval" instead of uinvariable interval of the
type (I) (or (II))".

Example 2.5. Let g I L --. L' be a square preserving bijection and
(a,b; o Abra V b) be a square in -L then [a Ab, aV b] is an invariable
interval either of the type (I) or (II).

The proof of (2.5) follows directly from the properties of the square.

Lemma 2,6. If lu;, ,;1, i : L,2, are inuariable interuals of the type (I)
containing the subset A + 0, then lu1 Att2, u1v u2) is olso an inuariable
interaol of the tgpe (I) containing A.

Proof. without loss of generality, assume that u1llu, (u, uncomparable
with u2) and u1llu2 (Fig. la). Once a € A,it  is easily seen that u1 ( u1V
u z l  a  (  u 1 A a 2  l a l  a n d t h u s  u 1 V u 2 , a 1 A a 2  €  [ r r ,  u 1 ] .  S i n c e  [ r r ,  r r ]



A class of lattices L determined by Sub(I) 77

is invariable, we have tp(u1 y uz) > p(ui and rp(u1) > p(ut n or).
Fo r  t he  squares  (u r ,u r ;  u1  A  u2 ru1V u2 )  and  (u1  ta2 i  aL  A  a2 ru1V , i )
we also have tp(u1) > p(u, n uz) and, p(a1y ,r) > p(aL) respectively.
Consequently p(q y uz) > p(ar) > p(u1) > p(q x rr) (Fig.lb).

So far, we have [u1Au2, arvaz]with tp(u1A ur) < p(u1vu2). Denote
K.: [p(rt,  Au2, tp(u1V u2] we shall  show that r € [u1 A trz, uLv u2] <+
,p(r) e K.

(i) Let x € [u1 A u2, u2 y ,r l .  We shall  prove p(r) e K.

case 7: If r is uncomparable with at least one of the two elements
ttrLt tL2 then rp(c) > p(q A uz); because if tp(r) < p(q n uz) we must
have cSul (r is comparable with u1) and cSu2, but this is impossible.

To prove p(t) < p(arv a2) we consider the relation between z and
a t ,  u2 .

(1) If c is uncomparable with at least one of the two elements u1, a2
then we obviously have p(c) < p(ar y uz).

(2) If  zSul and zSu2 then a 1u1, u2 so p(t) < p(aL), p(u2) and,
thus p(c) < e(or y or).

Case 2: If rSur and. rSu2 then c ) urt u2, that leads to p(") >
p(uL),p(uz) and thus p(x) > e(u1 n u2).

considering similarly the relation between r and urt u2, we can
easily deduce that 9(n) < p(ar y ,r).

(ii) Let e(n) e K.
diction.

c)

Figure I

We will prove x € lu1 A u2, a1V u2] by contra-

U1VA2

4 Auz

u,V u2

cl (t\ v u2)

q(u, Au2')

q (qAu2)

e(4 V az)

Suppose that rE[u1 A u2, u1v u2] then r 1 u1 A u2 or n ] a1V a2.
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(1) If  t  1 u1n u2 then n 1 u1, u2. Moreovet, p(r) > p(ur A u2)
implies that tp(r) > p(ur), p(uz). From the invariability of [u;, u;], i :
1 , ,2 ,  we have rp(r )  >  p(a i ,  p@z) and therefore <p(r )  > 'p(at - i  ,z ) ,
which contradicts the fact that 9(a) e K.

(2) If  n ) a1Va2,by the same arguments we have p(") < V(u1Au2)
which contradicts the inclusion rp(c) e K.

In  shor t ,  p( r )  e .F(  then x e [u1 A u2,  a1v , r ] .
The proof of the lemma is completed.

L.emma 2.7. I l  [u;,a;1, i :  l ,Z, are inuariable interuals of the type
(II) contoining the subset A + 0, then lu1 Auz, ,1V a2l is also-an
inuarioble interuol of the type (II) containing A.

Proof. Suppose urlluz and ulllrr. By examining the squares (ur, u2i u1A
ur 'u !  V u2)  and (or ,oz;  a1Au2,urV uz l  we have p(q nur)  > p(ur)  >
p(aL)  

? V$n v u2)  (F ig. la , lc ) .  Thus we have [u1 A r rz ;ar '  V 'a2]
with 9r(u1 n ur) > p(at y ,r). Acting similarly as is the proof oi
Lemma 2.6, parts ( i),  ( i i ) ,  we have r e lu1 A uz, a1V v2l + 9(a) e
lp(otv uz), p(q A u2)J. This completes the proof of Lemma 2.7.

3. MAIN THEOREM

Consider a square preserving bijection g i L --+ Lt. We shall prove
that: if .[ has not contractible sublattices and g is not an isomorphism,
then rp must be a dual isomorphism. we argue by contradigtion. As-
suming that there exist o1 , az € tr such that o1 1 @2, p(a1) < p(az),
we shall show that .L has a contractible sublattice by the following state-
ments 3.1,3.2,3.3. We denote At : {or}, Az : {orl1, A : {ar, az}.

statement 8.1. If on L there erists on invarioble interuol ol the type
(I) containing one of three subsets A, Ar, A2 then L has o controctible
sublattice.

Proof .

(i) suppose that [u, uj is an invariable interval of the type (I) con-
taining ,4.. since ^[ has no contractible sublattices and p is not an
isomorphism, -L is an equivalence class and upu (Theorcm 2.2). Ac-
cording to Definition 2.1 there exist z1 snzt... trn € .L such that
upottt rLpofrzt.. .  t frnpot, where, without loss of general i ty, we may
assume that u 1 Ert p(") > p(Er). Since p(a) > p(u) > p(a),
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therefore uSay Moreover, x1) t) because [u, u] is invariable. putting
l c : a t  w e o b t a i n  u 1 a  < & a n d  p ( k ) < p ( u ) < e ( a ) .

Consider Mt us a family of all invariable intervals Iu,, o,l of the
type (I) containing A and u' < k(lu, ul e Ml. Denote M - uMr,
t h e r e f o r e  A g M  u " - d l  e M .  C o n s i d e r  t , U € M t h e n  n € l u 1 , u 1 l ,
A e luz,  u2]  ( l [u1,  , t r ] , luz,  a2 l  e  M).

By lemma 2.6 y9 have [u1 Au2, a1va2] € Mr. Note that u1 Vu2 I k
because if ur V vz : k then rp(ft) > p(ar) > p("r) which contradicts the
re la t i on  ,p (k )  <  p (u t )  <p (a ) .The re fo re  sAU,  Ev  y  €  [21  n  u2 ,u1y
ur) C M and this implies that M is a sublattice of .L.

Now we prove that M is contractible.
(a) Obviously M is convex.
(b) Let (a,b; c,d) with c 1 d, be a square on ,L. We shall prove that

c € M + d € M .

1 )  Necess i t y :  As  c€M,c€ lus ,  ue ] (3 [us ,  ao ]€M) .
Case dl lue (Fig.2): Consider the square (ro,d; q,dr) where c1 :

as A d, dt : ao V d. As p(cr) < p(ao) then rp(d1) > p(ao). Thus we
have [us, d1] with p(uo)r < pkl). It is easy to prove that us, dl e M1
and therefore we have d e M.

Figure 2 Figure 3

Case dSu6: If d, ( us then it is obviously that d e M. Let us
assume that d > us (Fig.3). Further, considering 9(d) and rp(u6), we
have:

It e@) < p(ao) then rp(d) < p(uo) because [ro, ,o] is invariable.
Moreover, [c, d] is also invariable (see Example 2.b). From p(uo) >
,p(d) and ao €lc, d] it follows p(uo) > p(ao), but it is impossible.

Thus necessarily p(d) > p(uo) (> p("0)) and we have an interval
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lus, d] with rp(ue) < e@). We can easily show that luo, dl € M1 and

thus d e M.
" 2) Sufficiency: By symmetry we, have: d e M * c € M.

(ii) Now, suppose that there exists an invariable interval [u, u] of

the type (I) containing /r. If Az e [r, u] we have the case (i). Let
us assume that [u, u] does not contain Az. Take M1 as family of all
invariable intervals of the type (I) which contain A1 and do not contain

Az (lu, al e My). Denote fu[ - UMr, it can be proved that M is a
contractible sublattice.

Symmetrically, if on -L there exists an invariable interval of the type
(I) containing A2 then .L has a contractible sublattice. This completes
the proof of the statement.

Statement 8.2. If on L there enists on inaariable interval on the type
(II) contoining A; and which does not contain Ai, i, i = L,2, i + i,
then L has a controctible sublattice.

Prnf. It is sufficient to consider the case where i :2, i : l.

Let Ml be a set of all invariable intervals [u, u] of the type (II) con-

taining Az and, which do not contain .4r. Obviously o1 < u. Take M :

U M r . . L e t  r , y  e  M  t h e n  r  € l u , r , a t j , A  € l u r ,  u 2 ]  ( 3 [ u 1  , a 1 ] i ,  l u 2 , u 2 l e
M1). Using Lemma 2.7 wehave [u1 Au2, rtlYrt2l € Mr, thus rAy, tVy €

lu1 A u2,ul V uzl C M, i.e. M is a sublattice on tr. It is easy to prove

that M is contractible. Q.E.D.

Statement 8.3. If on L there enist neither inuoriable interuals of the
tUp" (I) which contain ony set among A, At1 A2 nor any inuariable
interuals ol thc type (II) which contain A; ond do not contain Ai, i, i :

L ,2,  i  I  j ,  then e i ther  X: la t ,a2J orY = (at ,a2\  (open in tetual )  is

o controctible sublottice.

Proof.

(i) f X I L we shall show that X is a contractible sublattice.

(a) Evidently X is convex sublattice.

(b) Take a square (a,b; c,d) on .L with c 1 d, we have to prove:

c € X + d e X .
1) Necessity: Consider d' and a2z

It d,lla2 then o2 belongs to [dn a2,dY a2] which is an invariable
interval (see Example 2.5). Moreover, if it is of the type (II) then it
does not contain Ar. This contradicts the conditions of the statement.

II d,Saz and d ) a2 then a2 €lc, dJ. But [c, d] is also invariable.
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Furthermore, if it is of the type (II) then it does not contain 41. This
is impossible" Thereforc d, 1 @2, i.e. d, e X.

2) Sufficiency: Follows by symmetry.

(ii) If x : Lwe prove that Y : (ar, a2) isacontractible sublattice.
As x : L ii is clear that lYl > 1. Evidently y satisfies conditions

(u), (b) of definit ion 2.3. Q.E.D.

In short, by statements 3.1, 3.2r 3.3. we come to the desired con-
tradition i.e. we have proved.

Proposition 3.4. Let L be a lattice having no contractible sublatices.
If the square preserving bijection g i L --, L' is not isornorphic then p
is o dual isomorphism.

Now we are ready to state the main theorem:
'Theorem 

3.5. If L is o lattice houing no contractible sublattices then
Sub(L) determines L up to isomorphism of dual isomorphisrn.

Proof. Suppose t'hat L is lattice having no contractible sublattices and
/: Sub(I) -t Sub(.[') is a lattice isomorphism. We have to prove either

L = L' or I & I' (dually isomorphic).
As well-known, / induces a square preserving bijection p I L -- L,

(see [2, s]). since .[ has no contractible sublattice, by Theorem 2.2
there are only two possibilities as follows:

1) Every equivalence class of p(tp) consists of only one element. In
this case rp is an isomorphism.

2) Lis the only one equivalence class of p(p),i.e. p is not isomor-
phic. By Proposition 3.4 we have g as a dual isomorphism.

This completes the proof of Theorem 3.S.

Now we prove that the Boolean lattices satisfy the conditions of
Theorem 3.5.

we recall that a distributive lattice B containing 0 and 1 is called
Boolean if vo € B, 3c € B (which is called a complement of a) such
t h a t :  a A c : 0 , o V c : 1 .

Remark 3.6. The Boolean lattice B has no contractible sublatices.

Proof. we argue by contradiction, assuming that ,4 is a contractible
sublattice of B. Since l,4l > 1, there exists a,b e r4, such that o ( b.
C l e a r l y 0 ,  1 8 , 4 .  T a k e c  a s  a c o m p l e m e n t  o f  a : q , A c : 0 ,  a V c : 1 .

C o n s i d e r  t h e  e l e m e n t  c :  b n c .  S i n c e  a V  n :  o , V  ( b n c )  :
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(o v b) A (a v c) : b we have allr ' Applving (b) of Definition 2'3 to

io, rr'on),a) *" have 0 = aA, i A, but this is a desired contradiction.

The Proof is comPleted'
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