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MINIMIZATION OF AN ALMOST-CONVEX

AND ALMOST.CONCAVE FUNCTIONI

NGUYEN ANH TUAN and PHAM CANH DUONG

Abstract. We prcsent two dgorithms lor aolving prcgramming prcblems uith
the oUjectiae lwutionbehg dmosL@nae, and qlrarricorioe (not necessaily dif-
feretffile). I'fu firct algorithm is prcpaed lor aohing tfu ptoblemc oou a linear
cotutrcint set. Thc cecond one deds with thc colsc uihen the coruhuint cet is sup-
paed to be compct and conaex. Some n.sul/a ol compdatiotul etperimentt arc
supplid.

r. INTRODUCTION

In this paper we consider the programming problem with an
almost-convex and quasi-concave objective function (not necessarily dif-
ferentiable). several well known programming problems, such as linear
programs or linear fractional prograrns, are among this class.

In the first section we will recall and introduce some concepts and
definitions concerning this problem. The second section deals with the
case when the constraint set is supposed to be linear. In this case
an algorithm, similar to the one of dual simplex method is proposed
(algorithm 1). The more general case when the constraint set is compact
and convex is treated in section 3. For solving this kind of problem we
develop the algorithm 2 which is a combination of algorithm 1 and the
outer-approximation scheme introduced in [S], [4], [O] and [7].

2. PRELIMINARIES

Let us recall some definitions.

lThis paper is partially supported by the National Bagic Research Program in
Natural Sciencee Vietnam.
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Definition 1. A function f , R" --+ Rl is said to be quasi-concave
if for any pair of points r,A € R', and any real number a € [0, f ] the
following inequality is satisfied:

f  (ar  *  ( t  -  
" )v)  

> min{ / (c) ,  / (y) }  .

Definition 2. A function f , R" --+ Rl is called quasi-convex if for
any points fr, U €?', and any real number a e [0, 1], it always satisfies

f  (ar  + ( t  -  
" )y)  

< max{ / ( r ) ,  / (y) }  .

Definition 3. A function f , R" --+ Rl is said to be almost{onvex
if i t  is quasi-convex and satisf ies f (ar+ (t - o)y)(max{/(z),/(y)}, for
a l l  c ,  a  € Ro,  f  ( " )  I  / (y) ,  and Va € (0,  1) .

The following properties of a quasi-convex and quasi-concave func-
tion / are immediates from their definitions:

1)  min{ / (c) , / (y) }  < f  (o ,  + ( l  -  o)y)  S max{ / (c) ,  f  (y) } ,  for  a l l
n ,a  e  R '  and  Va  €  (0 ,1 ) .

2 )  I t  f ( r ) :  l ( y )  t h e n  / ( z )  :  f ( a x + ( 1  -  a ) v ) :  / ( y ) , f o r a l l r e a l
number a.

So, if / is an almost-convex and quasi-concave function it tnust
satisfy (1) and (2). Moreover, since / is almost-convex every its local
minimizer must also be its global minimizer. Our algorithm is based
on the following facts.

Theorem l. If f is an almost-conuer, and quasi-concaae function,
s a t i s l y i n s  / ( " )  S  f ( y )  I o ,  a l l a l y , t h e n  f ( " )  3 l ( " + " ( y - n ) )  f o r
a l l  a )  O .

Prcof. If /(c) : f fu), for some r * V then the assertion of Theorem 1
is an immediate consequence of property 2). Let us consider the case
when I@) * /(y). From the quasi-concavity of f (n) it follows that

f  (") :  min{/(o), f  fu)} 3 f (av+F-.,)"): f  (r*a(a-r)),va e [0, r].

For a ) 1, that is j e (0,1), y may be represented as

u :  (L  -  
!1 "  * :1 "  t  o (y -  ' ) l  .
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From the almost-convexity of f (x) it implies

f  @) < max{/(o)  , f  ( ,  *  " fu 
-  

" ) ) } .
Hence,

f  (")  < I fu) < I@ + "(y 
-  

")) .
It is obvious from Theorem 1 that if / is an almost-convex and quasi-
concave function and if  for some r,U € R,f (") S Ifu) then z is a
minimum point of / on the ray r * a(y - z), a ) 0.

Theorem 2. Let f be a continuous, almost-conuer and quasi-concaue
function and z an arbitrary point in R. tf  f  (y) > /(") and f (r+ 

") 2
f (x) ,  then:

f (Y + o,z)  > f (u)  > f (y -  az) ,Va )  o.

Proof. rf f (x * z) : /(r) then it is clear from the assumption of the
theorem that /(z) :  I(,  - T), for al l  'y € Rr.

Assume that /(c * 
") 

> /(c). It is obvious that

f ( " + z ) >  f ( " ) >  f ( " - 1 2 ) , V 1  ) 0 .

So, in general, we always have

f  @) 2 f  ( ,  -  1z) ,Y1 )  0 .  ( t )

Let

v h ) : . L ,  , + l - y , 1  > o
r + ?  r + " y

From the almost-convexity and quasi-concavity of /(o) it follows

f ( " ) S f ( a h ) ) <  f f u ) , V r > 0 .  ( 2 )

Combining (1) and (2) gives

f (, - 12) < f fuhD,vr > 0. (3)

The point y(1) can be rewritten as

y ( t ) : ' 1 _ ( r _ 1 " r ,  1  t ^ . ,  _ \
r - f  J  

/ - r  1 + t \ Y + z ) '
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From (3) and the quasi-concavity of / we can easily deduce that

I @ - 1 2 ) <  / ( y ( r ) )  S I @ f  z ) , v 1  ) 0 .

Therefore,

f  @b) S f  (Y *  z) ,v1 )  o.

Since / is continuous we have

".!iT." 
/(Y(r)) : f fu) .

S o ,

f ( v ) s f (a+ '1  .  ( 4 )
From Theorem 1 and (+) we obtain

I f u ) s f ( v + a z ) , v a ) 0 .

Since y may also be represented as

1 ' l
a : ; ( y - " " ) +  r ( a * a z ) ,

we get, from the assumptions of /, that

f  ( ,  -  dz)  < f  (y)  S f  (v  + az) ,Va)_o.

The theorem is proved.

The following theorems specify a sufficient condition for a function
/ to be almost-convex and quasi-concave.

Theorem 3. If f : -Rr - Rl rs an almost-conuefr and, quasi-conco,ue

function in u, and, g i R" - Rr is a lineor function in r, then /(g(.))
is an alrnost-conuer and quasi-concave function in a.

Proof. For every pair c, y € R"(x I y), and Va e [0, 1], we always have

f ( s ( " "+ (1  - " ) v ) )  :  f (as ( r )  + (1  -  o )g (y ) ) .  (b )

Denoting ur: g(r) and uu: g(y), we can rewrite (S) as
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f  ( "g(")  + (1 -  
" )sfu)) :  f (au,  + (1 -  a)u) .  (6)

From the almost-convex and quasi-concave property of /(u) we have:

min{/(u")  , f  @)} 1 f  (au,  + ( l  -  a)uv)
< max{/(u,), f (u)}, Va € [0, t] . (z)

A combination of (5), (6) and (7) implies

min{/(s(z)) ,  / (g(s))}  S f  (s(o" + (1 -  
")y))  

< maxu(s@)), / (g(y))}  .

This means that /(g(.)) is quasi-convex and quasi-concave in c.

Since / is almost-convex it implies

f (ou" + (1 - a)u) < max{/(2,), f (ur)} ,

for all us.uv € 81, I(",) * I("y) and Va € (0, 1)

a f  (g(qc + (1 -  a)y))  < max{/(s(r)) ,1@@))) ,

for  a l l  r ,a € R", l (s(n))  *  f (s(y))  andVa e (0,1).  That is / (s( . ) )  is
also an almost-convex function in o. The proof is complete.

Theorem 4. f
1) f , Rr - Rl ds a fully monotone lunction in u.
2) g, Rn -+ Rl rs o linear lunction in n.
Then /(g(.)) is an olmost-eonuer and quasi-concoue function in r.

Proof. For all r, ! € R (, t' y) and, a e [0,1], we have

f (s(o,  + (1 -  g)v))  :  f  (as(r)  + (1 -  
")s(v))  

:  f  (au,+ (1 -  o)u),

where rtrr : g(c) and uv : g(V). Moreover, since dun t (f - a)u, e
lur,uvl and /(u) is monotone, it implies that

.  min{/(u") ,  / ( "v)}  < f  (ou,  + (1 -  a)u) < max{/(u,) ,  f  (u)}

<+ min{/(s(r)) , / (g(v))}  < f  (s(""+ (1 -  
")y))

S max{/(  s(")) , / (g(y))}  .

61
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This means that /(g(.)) is quasi-convex and quasi-concave in r.

On the otlr", hand, from the fully monotonicity of / we deduce

min { / (u " ) ,  / ( "u ) }  <  f (qu ,+  (1  -  d )uy )

< max{ / (u, ) ,  / ( ru) } ,Va e (0,  r )  .

So, /(g(.)) is also almost-convex in r. This completes the proof of

Theorem 4.

There are several classes of almost-convex and quasi-concave func-

tions. Here we note some:

a : ( a ,

3. ALMOST-CONVEX AND QUASI-CONCAVE PROGRAMS
OVER LINEAR CONSTRAINT SETS

3.1. Problem setting

In this section we will be concerned with the following programming
problem:

,  ( o ,  x , ) + b
f r ) ,  a 

-  
7----- i - - i -  t  U:2(o' ' )  ,
( c , n )  t a

\  n )  2  0 ) ,  U  :  ln  (o ,  z ) ( \ " ,  
" )  

>  0 ) , . . .

( f (r) --+ mirr,
( P )  {  " . '\ -  /  

l .  ( o , ,  r )  *  b i  (  0 ,  . l  :  L , Z , . . . , t u .
(8)

Where / is a continuous, almost-convex and quasi-concave function
(not necessary differentiable) in.R', ai € Rn,m) n. Let assume that
(8) is a convex polyhedron. We show that the linear structure of the
constraint set of problem (P) may be exploited to develop an efficient
finite algorithm for solving it, based on the outer-approximation scheme
(see [3], [+], [0], [7],...). By its linear nature, this algorithm is somehow
similar to the dual simplex method. At each iteration we construct
some linear outer cone with the vertice being the minimizer for / over
the given cone. This cone and the associated objective function value
will be updated in subsequent steps until a solution to problem (P) is
found (or it will reveals that (P) has empty feasible solution set).

(a ,  r ) ( (a ,
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3.2. Theoretical background

Definition 4. A polyhedral cone M with the vertice cM is called a
min-cone for / if

f ( " M ) < f ( r ) , V n € M .

If, in addition, / is the objective function of problem (.F), then M is
called a min-cone of proble- (P).

Let M be defined by

M  : :  { r  €  R "  :  ( a i ,  a ) * D ;  <  0 ,  r  €  f } ,

where f c {t,2,.. . ,m},1 / l :  n and, ai are l inearly independent. M
is then a simplicial cone with the vertice rM being the gplution to the
following system:

( a i , r ) * b i - O ,  V i € f n  ( 9 )

and has exactly z edges zi, ; e..I, defined by

{ ( , u , , " ' . ! - 0 ,  
V r € I , r t ' i ,  

( 1 0 )
t (o', zi) : -l

Now, il^ssume that M is a min-cone for (P), and consider the set

J*( r* )  r :  { j  €  {1 ,  . . . , rn)  :  (a i ,  cMl  + D,  > 0} .

It  is clear that i f  t+(rM):0 then uM must be a feasible point for
problem (P) and.therefore it must also be a solution to (p). So, we
assume that J+ (c*) + 0. For each s e J+ (rM), we defiqe the iollowing
sets:

I t : : { ; e I :  ( a t , z i ) + O } ,

- f o  : :  { i  e  I  :  ( a " ,  zd )  : 0 } .

For every ; e 1" , the line r : aM +t zd will intersect with the hyperplane
(a", x) * 6" - 0 at the point

, i  :  , M  *  a ; . , i ,  ( 1 1 )

where
- (o", rM) + b"d i : - f f i .  ( 12 )



I l : :  { i  e  I "  :  a ;  >  0 } .

Theorem 5. If II : A, then the leasible set of the problem (P) is
empty.

Proof. We proceed by contradiction. Assume that so is a feasible
point of (a). It's clear that r0 must belong to the cone M and may be
represented as

,o :  ,M + t  d i .zr ,  a;  )  0,  Vi  e I .  (18)
ie I

Since Ii :0 it implies that

(a",2 ' )  > o,  Vr 6 /8 4 (o" , " i l  > o,  Vi  € . f  .
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(14)

(15)

substituting (rr) into the left hand side of s - th constraint from (8)

gives
(o", ,o) * be : (o", sM + D d.i .zi) + bs

: (ou, ,M, +b" + D 
'r1{."", 

"') .
i e I

From (13), (14) and the fact that s € J+ (r'), we can deduce that the

right hand side of (15) is positive. It means that (4", 
"0) 

+ 6" ) 0.

It contradicts the a.ssumption imposed on ro. The theorem is
proved.

So, if (8) has a feasible point then the set /i must be non-empty.
For r e ll,let us consider the set of all point z satisfying following
inequalities

(  ( a ' , r ) + b ;  < o , V i € I , i f  r ,

I  (o" ,o)  + b" < o.

This set determines a new cone (denoted by M(r, s)) with the vertice

, M ( r , d ) : a r : r M  + d r . z ' ,

where ar comes from (12).

(16)
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The vertice rr satisfies (9) with the new index set f(r, s) : (/ U
{"}) \ {r}. Thus, the new index set .I(r, s) may be obtained froin the
old index set .[ by just replacing one index (index s) by a new one
(index r). The direction vectors zi, i €.I(r, s), of the new cone M(r, s)
can be determined by solving (tO) with the new index set .I(r, s), or
they may be obtained using following simple formulas which are direct
consequences of (fO) and (tf):

i f  i e I o ,
i f  i e l i , i * r ,

i f  i e { I \ { / i u / o } } ,
i f  i : s .

(17)

Denote

Ymin ' :  { ,  €  / i  :  f  @):  r l i { r { / ( "d) } }  .

Theorem 6. For each r € l/*io, the cone M(r, s) is the rnin-cone of
problem (P).

Proof. Since M is a min-cone of the problem (P) we have

f (r*) < f (r '  - t  a;.zi),  Yi e I .

In particula4 f (nM) < f ("* * a,.z') : f (r'). By applying Theorem
2 w i t h  f r : t r M ,  a : t r ' ,  z : d i . z i ,  i e l o  a n d f  : . s w e o b t a i n

f  ( r ' )  <  I ( r '  +  a; .z i ) ,  V i  €  - fo ,  f  :  s .  (18)

On the other hand, since r € Vtio, we have

f ("') < f (ri), vi e Ii.

Therefore, from Theorem 1 we get

f(r') < f(r' * a(ri - r')), Va ) o,vi € ll, i I r . (19)

Taking into acount that a; ( 0 for every i e {I \ (/i u.I0)}, we deduce
from Theorem 2 that

f (r i )  :  f (r* + a;.2;) < f(r ,) ,  vi  e {/ \  ( / i  u /o)}.
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Bf i  f ( rM) s  / ( " ' )  +  f ( " i )  <  f ( r , ) , for  a l l  i  e  { r \  ( / i  u  /o) } .
Therefore, from Theorem 1, we have

f ( " ' )  S  I@t  +  o ( r '  - " i ; ; ,  va  >  0 ,  v i  €  { / \  ( / i  u  1o ) } .

Applying Theorem 2 again gives

f ( " ' ) <  f ( r ' 1 - a ( r '  - " t ) ) ,  V a ) 0 ,  V i € { / \ ( / i u / o ) } .  ( 2 o )

A combination of (tz), (rs), (to) and (zo) show that / is non-decreasing
along the directi or's z' for all i e I (r, s). It means that M (r, s) is indeed
a min-cone of the problem (P). The proof is complete.

In several optimization problems such a simplicial min-cone may
be easily identified from the problem setting. If it is not the case, we
can proceed as follows. since the constraint set of (P) is a polyhedron,
we cover it by a sufficiently large simplex and choose a vertice of that
simplex where / reaches its minimum. The chosen vertice and the edges
of the simplex, adjacent to it, determine then a min-cone of (P).

In the next subsection we will develop a simple algorithm, based
on Theorems 5 and 6, for solving problem (P).

3.8. ALGORITHM r.

rnitialization. we start with an initial min-cone Ms of the given
problem (P). Its vertice so and the direction vectors zio aredetermined
respectively by (9) and (10).

I terat ion k(k :1,2, . . . ) .  Assume that  a  min-cone of  (P) ,  denoted by
Mv, has been found. Its index set, vertice and direction vectors are
respectively In, xk, and, zik.

Calculate l* (rr).
a) If  J+ (rr) :0 then stop, c& is a solution to (P).
b) l f  "f+@o) + 0 then compute sr : min{ j  :  j  e J+(re)} and

determine .If .

b.1) If /ff : 0 then stop, (8) has no feasible point.
b.2) If ti + 0 then intersection points of the hyperplane (osr. ,E> +

6". :0 with all edges of. Mp will be calculated using (11):

fr ik : rk + o!." ik.
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Next, calculate

Vp*io :: {u e /f, f@'\ :,2rr**{/("t&)}}

and
r & : m i n { u : a € Y f l t o }

Then we construct Mn+t : My(rp,sp); In+t : Ip(rp,sp) :
(/* u {"r}) \  {rrh nk+r - ,Mp(rp,ap) - , ,*; (from (16)), and new
direction vectors zi,k+L (using (17)).

Return to iteration /c with lc <- k + L.

Notes.

1) From Theorem 6 it is easy to see that the newly constructed
cone M111 is still a min-cone of the problem (P).

2) The choice of rs : min{u : a € Vfin} and sr : min{ j , j e
J+("*)) prevents our algorithm from cycling. So, it can solve problem
(P) in a finite time.

Theorem 7. Algorithm 7 terminates after a finite nurnber of iterations,
either indicating that the feasible set (S) is empty or yielding an optimal
solution to problem (P).

Proof. We will show that the selection rule for rp (the index going
out of index set 11) and sp ( the index entering into .Ip) prevents our
algorithm from cycling and, therefore, guarantees its finiteness.

Indeed, let assume the contrary that some cycling occurs. Since
the number of different n-elements subsets -I of {1,2,...,rn} could not
excess Cfi, some of indexes must be entered into and taken out of .[r
infinitely many times. Let denote by V the set of all such indexes. We
notice that if some j 4 V then either j e.I1 for all /c ory never enter
I x .

Let denote by
p: ma)({r :  j  ev}.  (21)

Assume that at iteration fr1 index p is chosen to enter /pr. From (21)
and selection rule for entering index we have

67

[  
( aP ,ak ' )  +  bp  >  o ,

[  ( a r , z k ' )  + \  S o ,  v ,  <  p .
(22)
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For p € V , itr will be taken out of index set ,I1 some iteration later, say
k2.

We denote by sr, the index that replaces p, and by Ip, the index
set obtained at this iteration.

We note that s1, € tr/ and p € Inr.

For every i € Ip, and i ( tr/ we have

( o i ,  , k ' )  *  6 ;  :  g ,

(a ,kz ,  z ikz )  :  Q.

For those z € Ip, AV we can get from (ZZ) that

(o i ,  r k , )  +  b ;  <  0 ,

(oP,  ,kr )  + bp > o.

Thus, for all i € Ip" we have

( a i , s k ' )  + f r ( 0 , V i e 1 1 , " ( ; * p ) ,  ( Z s )

\aP, rk') + 6o > o. (26)

on the other hand, for p is leaving the index set Ip, at iteration k2, we
must have

a!, :  -(o"r- ' ' -- 'k ') -!  b"r, 
a o-r 

(auhz , zikz) 
-: v

f o r a l l  i € I p ,  a n d i  € V . I t  i m p l i e s

(ot r ,  ,  " * r )  
)  O.  (27)

For r in Ip" and not belonging to 7, we get from (Za) tnat

(a8*z , zikz\ - o. (2g)

Combining (27) and (28) gives

(o"*r, t ' rr) 2 o.,Vi € In,( i  * p). (29)

Now, let us consider the following linear system of inequalities in y

{ 
("', v) + bi < o, Vi € lr,,(i * p) ,

[ (oP, y) + 6e - o. (30)

(n)
(24)
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It is easy to see that for every solution y of (30) we always have

(o " r r ,  a )  +  b " * ,  t  0 .  (g1 )

Indeed, in this case y may be written as

y : s k 2 +  t  g ; . " i k ' , 0 ; ) o .
i€r*r(ilp)

From (29), it implies that

(our r ,  y )  *  h r * "  :  (a 'kz ,  , k " )  a  baxz

+ D g;.(aur",  
" ik ')  

)  o.
i €16" ( i lP )

So, (ef) holds.
since p is the index to be eliminated from .ft, at iteration k2 we

have

( o i , r k ' )  * b ; : 0 ,  V i €  l x , ( i * p ) ,  ( g 2 )
(atk, ,  xk,) * b"*, :  0, (BB)

(aP, zk,) + De < 0. (84)

By using (2s), (26) and (82), (aa) we can find

u* :  \*.ak, + (1 - )*)."* ' ,  I*  € [0, r ]  ,  (a5)

so that

[ 
(o;, v.) f  6; ( o, vi € 11,,( i  * p) ,

[  ( oP ,  y * )  +  6e  -  0 .

From (30) and (31) we have

\o"*r ,  y*)  + bs*2 > 0.  (86)

Together with (33) and (3b) it implies that

( a " k r , x k r )  + 6 " , , ,  > 0 .
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On the other hand, since s1, ( pr we can deduce from (22) that

( o " r r r " k t ) * b r * ,  S 0 .

This contradiction proves that the cycling can not occur and algorithm
1 is finite.

we note here some interesting features of the above algorithm: It
may be used to solve (P) without knowing weather its feasible set is
empty or not; or it is quite convenient for solving problems with re-op-
timization required. when applying to linear prograrns, our algorithm

. behaves exactly like the well known dual simplex algorithm.

4. ALMOST-CONVEX AND QUASI-CONCAVE PROGRAMS
OVER COMPACT CONVEX CONSTRAINT SETS

In this section we will be concerned with the following problem

@ )  m i n { / ( c )  : a € D } ,

where / is as in previous section and D is a compact convex set in R',
defined by

D : :  {x  e Rt '  :  g i ( r )  _(  0 ,  f  :  I ,2 , . . . , rn} ,  (BZ)

g;(i  :  L,.. .rn) are convex functions in Rn.
For solving (Q) *" can use algorithm I and the outer-approximation

scheme (see [3], [4], [6], [7],...). combining these two techniques lead to
following.

ALGORITHM 2.

Initialization. Cover D by following simplex

D s : :  { n e  R " : h i @ ) :  ( o i , r )  + 6 i  S  0 ,  J :  1 , 2 , . , . , r 2 *  1 } .

Set  c0-  argmin { / ( " )  :  n€V(Ds)} ,  where V(Do) denotes the set  o f
all vertices of Do.
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Iteration k (k-t,!,...). Solve the subproblem

m i n { / ( z )  : x € D p }

using algorithm 1 with an initial feasible point z&-l being the solution
of the subproblem encountered at previous iteration k - l. Let denote
by ,k the obtained solution
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Else: Select some index fp such that g;* ("0) > 0. Let o;r 1c&) be a
subgradient vector of 0;*(u) at c&, we define Dj_r.1 as follows

Dn+r  -  D*  n { r :  hn+h+ t  ( " ) :  ( o r r ( r r ) ,  r _  ro )  +g ; * ( xk )  <  o } .

Then return to iteration /c with k +- k + t.
Algorithm 2 may either be finite or infinite. In the first case, like

algorithm 1, it provides us with an exact solution of (e). If it is infi_
nite then the following result may be established using Theorem z and
results given in [a].

Theorem B. If algorithm p is infinite then eaery accumulation point
of the sequence {"*} * an optimal solution to priblem (e). 

r--"-

If o& satisfies g;(c&) ( 0 for all i :
solution to problem (Q).

f(") :

We consider the problem

/(r) --+ min

3 o r + 4 x 2 - 1 2
- 4 r r + r z * 2

-tr J- 4x2 - 2
- r 1 - x z * 2

- t 1

- 4 2

5. COMPUTATIONAL EXPERIMENT

Let function / from .R2 into R, be given as follows

l r2r . . . rn  then stop;  z& is  the

w i t h  z 1  -  1 2  1 O  ,
w i t h  0  (  t 1 -  E 2  1

w i t h  1 1  -  1 2  )  l .

0

0

0

0

0

0 .

1 ,

s
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First, we cover the constraint set of above problem by the following
simplex

r t  )  O r x 2  )  O , 3 r 1 *  4 n 2  -  1 2  <  0 ,

with vertices (0,0), (0,3), (e,O). We choose point (O,f) as the vertice of
the initial min-cone for /. It is determined by the constraints

- n r  1 .  0 ; 3 o 1  l 4 r 2  -  1 2  <  0 .

Initialization. Set r0 : (0,3), Io - 
{t,s} and direction vectors

zLo and z60 of the edges of. Ms are obtained from (fO) as: zro -

(0,  -g) ;  260 :  (+,  -g) .

So,  J+("0)  :  {2 ,3} ,so :2 .  Using (12)  we get

oor :  \zo)  
+ 6o 

,p  :  b2- ,  ?o)  j -bz :  s l r9 .' pffi 
: 5/3' ao (a2, zso)

Hence ,  f | :  { f ,S } .

Next, we use (rt) to determine

rr0 : ,o + o!."10 : (0, -2), r5o: c0 * o?."uo : (zof lg,42lrg).

After substituting them into the objective function and comparing ob-
tained results we obtain the point r50 : (ZOlrc,42ltq which will be
the vertice of the newly constructed min-cone M1 with new index set
/1 : {1,2) (ro: 5, and so : 2). Direction vectors of. Mt are calculated
using (17):

z tL :  c lo  -  n6o :  ( -zo l to , -80/19) ,  z2r  :  z5o - -  (4 , -g)  .

Now, we are in a position to start iteration 1.

fteration l. Putting frL - E'o into the constraint system and com-
paring obtained results gives

t * ( r t ) :  { 3 }  *  s 1  :  g .

Using (rZ) and (11) we get

6l :  l l lSo,o l  -  L l f  8 ,+ 4 :  {1 ,2}  ,
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and
r r r  :  (z lg ,2 lg) ,n?r  -  (512,  g lB)  .

New min-cone M2 then has the vertice at sLr and index set 12 : {2, 3}
( t t  :  1 ,  and s r  :3 ) .

222 -  c2L -  r r1 :  (L l l6,Ll lz4),  zB2 :  zrr  = (-zolrc,  _g0/19) .

f terat ion 2.  nz -  r r t  :  (z l \ ,z ls) ;  $:  {4}  *  s2 :  { .
c l | :  t6 l5s,ol2s -  - tgf  5s,+ I1:  {z} ,
n22 -  (615,41s),r32 -  (et lst ,TolBs).
Min-coneMs has its vertice at x221ls : {8, a} (rr: 2 and sz:4),

233 : 232 : (-2olLg,-g0/r9), zo2 : r22 - n32 : (2g1165, _zLBlL6s) .

fteration 3. 13 : r22 : (615,4lS) + J+("t) : 0, we stop. The
optimal solution is 

sopr : # : (6f 5, 415).

Results obtained using an IBM pc show that Algorithm 1 is quite effi-
cient. Calculating time of some experiments are given in the iollowing
table.

The calculating time table

Dimention
of

problem

(")

Number
of

constraints

(-)

The time take
by computer 286

(RAM 2 MB)

The time take
by computer 486

(RAM 4 MB)

L 7
20
20
20
25
25
30
30
30
30

35
32
38
4L
5 1
46
50
56
58
61

0 ' 5 4 '  4 g
0 ' l g u  4 5
o '33"  23
o ' 3 2 "  6 0
o" 49" 32
o ' 4 2 "  6 7
o ' 4 7 "  6 L
1 ' 0 2 u  5 6
2 ' 4 5 "  O O
3 ' 0 7 "  3 5

0 '02n 91
0 '00"  gg
0 '01"  75
0 '05"  06
0 '06"  16
0 ' 0 1 "  6 3
o'02', L2
0 ' 0 7 "  0 3
0 '09"  34
o'14" 42
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