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MINIMIZATION OF AN ALMOST-CONVEX
AND ALMOST-CONCAVE FUNCTION!

NGUYEN ANH TUAN and PHAM CANH DUONG

Abstract. We present two algorithms for solving programming problems with
the objective function being almost-convez and quasi-concave (not necessanly dif-
ferentiable). The first algorithm is proposed for solving the problems over a linear
constraint set. The second one deals with the case when the constraint set is sup-
posed to be compact and conver. Some results of computational ezperiments are
supplied.

1. INTRODUCTION

In this paper we consider the programming problem with an
almost-convex and quasi-concave objective function (not necessarily dif-
ferentiable). Several well known programming problems, such as linear
programs or linear fractional programs, are among this class.

In the first section we will recall and introduce some concepts and
definitions concerning this problem. The second section deals with the
case when the constraint set is supposed to be linear. In this case
an algorithm, similar to the one of dual simplex method is proposed
(algorithm 1). The more general case when the constraint set is compact
and convex is treated in section 3. For solving this kind of problem we
develop the algorithm 2 which is a combination of algorithm 1 and the
outer-approximation scheme introduced in (3], (4], [6] and {7].

2. PRELIMINARIES

Let us recall some definitions.

1This paper is partially supported by the National Basic Research Program in
Natural Sciences Vietnam.
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Definition 1. A function f : R* — R! is said to be quasi-concave
if for any pair of points z,y € R", and any real number o € [0,1] the
following inequality is satisfied:

flaz + (1 - a)y) 2 min{f(z), f(v)} .

Definition 2. A function f : R®* — R! is called quasi-convex if for
any points z, y € R", and any real number « € [0, 1], it always satisfies

flaz + (1 — a)y) < max{f(z), f(v)}.

Definition 3. A function f : R® — R! is said to be almost-convex
if it is quasi-convex and satisfies f(az + (1 — a)y)(max{f(z), f(y)}, for
all z, y € R™, f(z) # f(y), and Va € (0, 1).

The following properties of a quasi-convex and quasi-concave func-
tion f are immediates from their definitions:

1) min{f(z),f(y)} < flez + (1 = o)y) < max{f(z),[(y)}, for all
z,y € R™ and Ve € (0,1).

2) If f(z) = f(y) then f(z) = f(az + (1 — a)y) = f(y), for all real
number o.

So, if f is an almost-convex and quasi-concave function it must
satisfy (1) and (2). Moreover, since f is almost-convex every its local
minimizer must also be its global minimizer. Our algorithm is based
on the following facts.

Theorem 1. If f is an almost-conver and quasi-concave function,

satisfying f(z) < f(y) for all z # y, then f(z) < f(z + a(y — z)) for
all > 0.

Proof. If f(z) = f(y), for some z # y then the assertion of Theorem 1
is an immediate consequence of property 2). Let us consider the case
when f(z) # f(y). From the quasi-concavity of f(z) it follows that

f(z) = min{f(z), f(y)} < flay+(1-a)z) = f(z+a(y—z)),Va € [0, 1].

For a > 1, that is é € (0,1), y may be represented as

y=(1- )z +lz+aly 1)),
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From the almost-convexity of f(z) it implies

f(y) < max{f(z), f(z + a(y — z))} .

Hence,
f(z) < fly) < flz + ey - 2)).

It is obvious from Theorem 1 that if f is an almost-convex and quasi-
concave function and if for some =,y € R", f(z) < f(y) then z is a
minimum point of f on the ray z + a(y — z),a > 0.

Theorem 2. Let f be a continuous, almost-convex and quasi-concave
function and z an arbitrary point in R™. If f(y) > f(z) and f(z+2) >
f(z), then:

Fly+a2) > f(y) > fly - e2),Va > 0.

Proof. If f(z + 2) = f(z) then it is clear from the assumption of the
theorem that f(z) = f(z — vz), for all vy € R!.
Assume that f(z + 2) > f(z). It is obvious that

f(z+2) > f(2) 2 f(z —v2), ¥y > 0.

So, in general, we always have

f(z) > f(z — vz),Vy > 0. (1)
Let ;
i
< e 4 >0.
¥ = =t T

From the almost-convexity and quasi-concavity of f(z) it follows

f(z) < fly(v)) < fly),vv>0. (2)

Combining (1) and (2) gives

f(z—92) < f(y(n)), ¥y > 0. (3)
The point y(v) can be rewritten as

yh)=1i7@—7d+1%;@+¢k
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From (3) and the quasi-concavity of f we can easily deduce that

flz—72) £ f(y(7)) < fly+2),¥v>0.

Therefore,
fly() < fly+2),vy>0.

Since f is continuous we have

lim f(y(7) = f(v).

v = oo

So

a fy) < fly+2). (4)

From Theorem 1 and (4) we obtain
f) < fly + az), Va > 0.

Since y may also be represented as
1 1
y==(y—az)+ -(y + a2),
2 2
we get, from the assumptions of f, that

f(z—az) < fly) < fly+ @2),Ya >0.

The theorem is proved.

The following theorems specify a sufficient condition for a function
f to be almost-convex and quasi-concave.

Theorem 3. If f : R! — R! is an almost-conver and quasi-concave

function in u, and g : R™ — R is a linear function in z, then f(g(.))
ts an almost-convezr and quasi-concave function in z.

Proof. For every pair z,y € R™(z # y), and Va € [0, 1], we always have

flg(az + (1 - a)y)) = flag(z) + (1 — )g(v)) . (5)

Denoting v, = g(z) and u, = g(y), we can rewrite (5) as
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fleg(z) + (1 - a)g(y)) = flau, + (1 — a)u,). (6)

From the almost-convex and quasi-concave property of f(u) we have:
min{f(u,), f(u,)} < f(ous + (1 - a)u,)
< max{f(uz), f(uy)}, Va €0, 1]. (1)

A combination of (5), (6) and (7) implies

min{f(g(<)), f(9(v))} < flo(ez + (1 - a)y)) < max{f(g(z)), f(9(y))} -

This means that f(g(.)) is quasi-convex and quasi-concave in z.

Since f is almost-convex it implies
flauz + (1 - a)uy) < max{f(u,), f(uy)},

for all uz,u, € R!, f(u,) # f(u,) and Ve € (0, 1)

= flg(ez + (1 - o)y)) < max{f(g(z)), f(9(v))},

for all z,y € R", f(g9(z)) # f(9(y)) and Vo € (0,1). That is f(g(.)) is

also an almost-convex function in z. The proof is complete.

Theorem 4. If
1) f: RY - R! is a fully monotone function in u.
2) g : R™ — R! is a linear function in z.
Then f(g(.)) is an almost-convez and quasi-concave function in z.

Proof. For all z, y € R™(z # y) and «a € [0, 1], we have
flglaz + (1 - a)y)) = flag(z) + (1 - a)g(v)) = f(ou, + (1 - a)uy),

where u; = g(z) and uy = g(y). Moreover, since au; + (1 — a)u, €
[uz,uy] and f(u) is monotone, it implies that

~min{f(uz), f(uy)} < flavs + (1 - &)uy) < max{f(us), f(uy)}
+ min{f(¢(z)), f(9(v))} < flg(ez+ (1 - a)y))
< max{f(g(z)), f(g(¥))} -
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This means that f(g(.)) is quasi-convex and quasi-concave in z.

On the ot};ér hand, from the fully monotonicity of f we deduce

mmin{ f(ue), £ ag)} < fla + (1 - @)uy)
< max{f(usz), f(uy)},Va € (0, 1).

So, f(g(.)) is also almost-convex in z. This completes the proof of
Theorem 4.

There are several classes of almost-convex and quasi-concave func-
tions. Here we note some:

(a, z) +b

Al iy = — {(a,z)
<c,z>+d, y € b

y={(a,z), y=

y = /(a, z)({a, z) > 0), y = In{a, z)({e, ) > 0),...

3. ALMOST-CONVEX AND QUASI-CONCAVE PROGRAMS
OVER LINEAR CONSTRAINT SETS

3.1. Problem setting

In this section we will be concerned with the following programming

problem:
f(z) — min, ’
P 3 8
(P) {(a’,z>+bj§0, 1w d 2% pan (&)

Where f is a continuous, almost-convex and quasi-concave function
(not necessary differentiable) in R", o’ € R®,m > n. Let assume that
(8) is a convex polyhedron. We show that the linear structure of the
constraint set of problem (P) may be exploited to develop an efficient
finite algorithm for solving it, based on the outer-approximation scheme
(see [3], [4], [6], [7],...). By its linear nature, this algorithm is somehow
similar to the dual simplex method. At each iteration we construct
some linear outer cone with the vertice being the minimizer for f over
the given cone. This cone and the associated objective function value
will be updated in subsequent steps until a solution to problem (P) is
found (or it will reveals that (P) has empty feasible solution set).
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3.2. Theoretical background

Definition 4. A polyhedral cone M with the vertice zM is called a
min-cone for f if
f(z™) < f(z),Vz e M.

If, in addition, f is the objective function of problem (P), then M is
called a min-cone of problem (P).

Let M be defined by
M:={z € R":(a', z) + b; <0, 1€ I},

where I C {1,2,...,m},| I |= n and a' are linearly independent. M
is then a simplicial cone with the vertice zM being the solution to the
following system:

(@', z)+b;=0, Vie T, (9)

and has exactly n edges 2*, i € I, defined by

{<a', #)=0, Vrelr#i, e

(a*, 2*) = ~1
Now, assume that M is a min-cone for (P), and consider the set
J*t(zM) = {j € {1,...,m} : (a?, =M) +b; > 0}.

It is clear that if J*(z™) = @ then z™ must be a feasible point for
problem (P) and therefore it must also be a solution to (P). So, we
assume that J*(z™) # 0. For each s € J*(zM), we define the following
sets:

I':={iel: (a*, 2*) # 0},
I={ieI: (a% 2') = 0}.

For every i € I°, the line z = z™+t.2* will intersect with the hyperplane
(a®, z) + b, = 0 at the point

' =M + a;.2°, (115
where
(a®, zM) + b,

== (aa, z")

(12)
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Let denote by I the set

e g 2

Theorem 5. If I = 0, then the feasible set of the problem (P) ts
emply.

Proof. We proceed by contradiction. Assume that z° is a feasible
point of (8). It’s clear that z° must belong to the cone M and may be
represented as

2 =zM+ Z a2t a; >0, Viel. (13)
el

Since I = @ it implies that
(a®,2") >0, VieI* = (a®,2") >0,Viel. (14)

Substituting (13) into the left hand side of s — th constraint from (8)
gives
(a®, z°) + b, = (a*, 2™ + Za,-.zi) + b,
el
= (a®, 2M) + b, + > _ ai{a®, 2°). (15)
el

From (13), (14) and the fact that s € J*(z), we can deduce that the
right hand side of (15) is positive. It means that (a°, z°) + b, > O.

It contradicts the assumption imposed on z°. The theorem is
proved.

So, if (8) has a feasible point then the set I{ must be non-empty.
For r € I, let us consider the set of all point z satisfying following
inequalities .

{ (a,z) +b; <OVi€l,i #r,

(a®,z) + b, < 0.

This set determines a new cone (denoted by M(r, s)) with the vertice
M) = g7 = M 4 o 27 (16)

where o, comes from (12).
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The vertice z” satisfies (9) with the new index set I(r, s) = (T U
{s}) \ {r}. Thus, the new index set I(r, s) may be obtained from the
old index set I by just replacing one index (index s) by a new one
(index r). The direction vectors 2*, ¢ € I(r, s), of the new cone M (r, s)
can be determined by solving (10) with the new index set I(r, s), or
they may be obtained using following simple formulas which are direct
consequences of (10) and (11):

2t if 119,
; zt —x" it teli,i#r, an
ST - i e\ {ILuryy,

2" if 1=s.

Denote
vmin = {ye I f(z¥) = irg}l}{f(z’)}}

Theorem 6. For each r € V™8, the cone M(r, s) is the min-cone of
problem (P).

Proof. Since M is a min-cone of the problem (P) we have
f(zM) < f(e™ + o;.2%), Vi e I.

In particular, f(zM) < f(z™ + @,.2") = f(z"). By applying Theorem
2withz=2M, y==2", 2 = q;.2°, 1 € I° and 7 = s we obtain

f(z") < f(z™ + &,-.z*'), Viel’, i=s. (18)
On the other hand, since r € V™i®  we have
f(z") < f(zY), Vie I,
Therefore, from Theorem 1 we get
f(z) < f(z* + az* = 27), Va> 0,Vi€ I%,i# 1. (19)

Taking into acount that a; < 0 for every ¢ € {I'\ (I U I°)}, we deduce
from Theorem 2 that

f(z*) = f(2™ + a.2") < f(z™), Vie {I\ (I3 U I°)}.
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But f(z™) < f(z") = f(2') < f(z7), for all £ € {1\ (I3 U I°)}.
Therefore, from Theorem 1, we have

f(z') < f(z' + a(z" — 2Y), Ya >0, Vi € {I\(ILuI%}.
Applying Theorem 2 again gives
f(z") < f(z" + a(z" — 2%)), Ya >0, Vie {I\ (I3uI®}. (20

A combination of (17), (18), (19) and (20) show that f is non-decreasing
along the directions 2* for all i € I(r, s). It means that M (r, s) is indeed
a min-cone of the problem (P). The proof is complete.

In several optimization problems such a simplicial min-cone may
be easily identified from the problem setting. If it is not the case, we
can proceed as follows. Since the constraint set of (P) is a polyhedron,
we cover it by a sufficiently large simplex and choose a vertice of that
simplex where f reaches its minimum. The chosen vertice and the edges
of the simplex, adjacent to it, determine then a min-cone of (P).

In the next subsection we will develop a simple algorithm, based
on Theorems 5 and 6, for solving problem (P).

3.3. ALGORITHM 1.

Initialization. We start with an initial min-cone My of the given
problem (P). Its vertice z° and the direction vectors z'° are determined
respectively by (9) and (10).

Iteration k(k = 1,2,...). Assume that a min-cone of (P), denoted by
My, has been found. Its index set, vertice and direction vectors are
respectively Iy, z*, and 2**.

Calculate J* ().

a) If J*+(z*) = @ then stop, z* is a solution to (P).

b) If J*(z*) # @ then compute sz = min{j : j € J*(z*)} and
determine I7*.

b.1) If I3* = @ then stop, (8) has no feasible point.

b.2) If I}* # @ then intersection points of the hyperplane (a®*,z) +
bs, = 0 with all edges of M} will be calculated using (11):

'* = gk 4 oF 2k,
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Next, calculate

ViEin = {v € I : f(z*%) = min {f(=*)}}

i€Ik

and :
r, = min{v : v € V'?}.

Then we construct My, = Mi(re,sk); Iet1 = Ii(re,sx) =
(Ix U {sk}) \ {rx}; zFt* = Me(ree) = g7 (from (16)), and new
direction vectors z*:**+! (using (17)).

Return to iteration k with k «— k + 1.

Notes.

1) From Theorem 6 it is easy to see that the newly constructed
cone M, is still a min-cone of the problem (P).

2) The choice of ry = min{v : v € V;®®} and s = min{j : j €
J*(z*)} prevents our algorithm from cycling. So, it can solve problem
(P) in a finite time.

Theorem 7. Algorithm 1 terminates after a finite number of sterations,
etther indicating that the feasible set (8) is empty or yielding an optimal
solution to problem (P).

Proof. We will show that the selection rule for r; (the index going
out of index set Ii) and sk ( the index entering into Ii) prevents our
algorithm from cycling and, therefore, guarantees its finiteness.

Indeed, let assume the contrary that some cycling occurs. Since
the number of different n-elements subsets I of {1,2,...,m} could not
excess C7, some of indexes must be entered into and taken out of Ix
infinitely many times. Let denote by V the set of all such indexes. We
notice that if some y ¢ V then either j € Ii for all k or 7 never enter
I.

Let denote by

p=max{j:j€V}. (21)

Assume that at iteration k; index p is chosen to enter I;,. From (21)
and selection rule for entering index we have

{ (q,P,:l:k1> -|-bp >0, (22)

(a7, k1) 10, <@, VI<p.
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For p € V, it will be taken out of index set I); some iteration later, say
k.

We denote by sk, the index that replaces p, and by I, the index
set obtained at this iteration.

We note that sx, € V and p € Ii,.
For every i € I}, and ¢ ¢ V we have

(a% ") + b =0, (23)
(a2, z**2) =0, (24)

For those 1 € Iy, NV we can get from (22) that
<a’i1 xk1> e bi <0,
(a®, ") +b, >0.
Thus, for all ¢ € I, we have

(@', 2") +5;<0,Viel, (i #p), (25)
(a®, zF1) +b, > 0. (26)

On the other hand, for p is leaving the index set I k, at iteration ko, we
must have

k
a’f’z = _(askz, T 2>+ bskz <0
T <ask2 [ zzk;) =
for all ¢ € Iy, and ¢ € V. It implies
(a2, 2*2) > 0. (27)

For 1 in Iy, and not belonging to V, we get from (24) that
(a3, 2'k2) =0, (28)
Combining (27) and (28) gives
(a®*2, z*¥2) > 0,Vi € I, (s # p). (29)
Now, let us consider the following linear system of inequalities in y

{ (@', y) +b: <0, Vi€ I, (i # p)

{a®, y) +b, = 0. ()
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It is easy to see that for every solution y of (30) we always have
(a2, y) +bs,, >0.

Indeed, in this case y may be written as

y=2z"+ Y B, 5 >0.

t€ 1k, (#p)
From (29), it implies that

(askz, y)+bsk — <a8k2 zk’)+bsk
+ Y Bife®s, 2 >0,

telkz (1'7513)

So, (31) holds.

69

(31)

Since p is the index to be eliminated from Iy, at iteration ko, we

have

(a’i’ $k2> +b;=0, Vie Ikz (1’ # P) s
(a2, zF2) + b, =0,
(a?, zF2) +b, <0.
By using (25), (26) and (32), (34) we can find
y* =2+ (1-4,).2®, A eo, 1],
so that ; ’ )
{ (a"a y*) +b6:< 0, Vie Ikz(z # P),
(aP, y*) + by =
From (30) and (31) we have

(a2, y*) +b,, >0.
Together with (33) and (35) it implies that

(a®k2, zk‘) + bs,, > 0.

(36)
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On the other hand, since sx, < p, we can deduce from (22) that

(a2, zF1) + by, < 0.

This contradiction proves that the cycling can not occur and algorithm
1 is finite.

We note here some interesting features of the above algorithm: It
may be used to solve (P) without knowing weather its feasible set is
empty or not; or it is quite convenient for solving problems with re-op-
timization required. When applying to linear programs, our algorithm

. behaves exactly like the well known dual simplex algorithm.

4. ALMOST-CONVEX AND QUASI-CONCAVE PROGRAMS
OVER COMPACT CONVEX CONSTRAINT SETS

In this section we will be concerned with the following problem

(@)  min{f(c):z € D},

where f is as in previous section and D is a compact convex set in R™,

defined by
D:={z€ R":¢i(z) <0, :=1,2,..,m}, (37)

gi(f = 1,...,m) are convex functions in R™.

For solving (Q) we can use algorithm 1 and the outer-approximation
scheme (see [3], [4], (6], [7],...). Combining these two techniques lead to
following.

ALGORITHM 2.

Initialization. Cover D by following simplex
Do := {z € R" : hj(z) = (, z) +b6; <0, 5=1,2,..,n+1}.

Set z° = argmin {f(z) : z € V (Do)}, where V(Do) denotes the set of
all vertices of Do.
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Iteration k (k=1,2,...). Solve the subproblem
min{f(z) : z € Dy}

using algorithm 1 with an initial feasible point z*—1 being the solution
of the subproblem encountered at previous iteration k — 1. Let denote
by z* the obtained solution.

If z* satisfies gi(z*¥) < 0for all ¢ = 1,2,...m then stop; z* is the
solution to problem (Q).

Else: Select some index ¢f such that g;, (z¥) > 0. Let a'* (z*) be a
subgradient vector of g;, (z) at z*, we define Dy as follows

Dyyy =D n{z: honiks1(z) = (a"" (zk), z— :z:k) + g, (zk) < 0}.

Then return to iteration k with k — k + 1.

Algorithm 2 may either be finite or infinite. In the first case, like
algorithm 1, it provides us with an exact solution of (Q). If it is infi-
nite then the following result may be established using Theorem 7 and
results given in [4].

Theorem 8. If algorithm 2 is infinite then every accumulation posnt
of the sequence {z*} is an optimal solution to problem (Q).

5. COMPUTATIONAL EXPERIMENT

Let function f from R? into R, be given as follows

3(..“:1 - .'.':2) + 23%.??.(1'.‘1 = -’52) +1 with I — 9 < 0,
f(z) = 2(z1 — 23)V/2 4 sin(z; — 22)V/2 +1 with 0 < zy—-z,< 1,
2(2‘.‘1 = .‘1:3) =f- sin(zl == $2) il | with z; — e > 1.

We consider the problem

( f(z) - min
3z, +4z,-12 < 0
—4z1+z24+2 <O

{ —z1+4z,—-2 < 0
-] —Z2+2 <0
-z <0

\ —Ig < 0.
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First, we cover the constraint set of above problem by the following
simplex

z; 2 0,z > 0,3z; +422,-12< 0,
with vertices (0,0), (0,3), (4,0). We choose point (0,3) as the vertice of
the initial min-cone for f. It is determined by the constraints

—I 5‘ 0;3zy +4z,—12< 0.

Initialization. Set z° = (0,3), Iy = {1,5} and direction vectors
219 and 250 of the edges of M, are obtained from (10) as: 210 =
(0,—3); 250 = (4,-3). j

So, J*(z°%) = {2,3},s0 = 2. Using (12) we get

O <a21 zO) = b2
1= )

<a2’ 3:0) =+ b2

== O g
=5/3, ag = (0%, 250

o =5/19.

Hence, I2 = {1,5}.
Next, we use (11) to determine
z'% = 2% + a?.2'% = (0, -2), 2% = 2° + a2.2°° = (20/19, 42/19).
After substituting them into the objective function and comparing ob-
tained results we obtain the point z5° = (20/19,42/19) which will be
the vertice of the newly constructed min-cone M; with new index set

I, = {1,2} (ro = 5, and 3¢ = 2). Direction vectors of M; are calculated
using (17):

2' = 2% — 2%0 = (-20/19,-80/19), 2%! = 2% = (4,-3).

Now, we are in a position to start iteration 1.

Iteration 1. Putting z! = z°° into the constraint system and com-
paring obtained results gives

Jt(z!) = {3} = s; =3.
Using (12) and (11) we get

o =11/30,a) = 11/8,= I3 = {1,2},
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and

z'! = (2/3,2/3),2% = (5/2, 9/8).
New min-cone M> then has the vertice at z!! and index set I, = {2, 3}
(ri =1, and s; = 3).

2?2 = 22 — 211 = (11/6,11/24), 2°2 = 211 = (—20/19, —80/19).

Iteration 2. 22 = £!1 = (2/3,2/3); J} = {4} = s, = 4.
af = 16/55, 03 = —19/55,= I* = {2},
z?? = (6/5, 4/5), 2% = (34/33, 70/33).
Min-cone M3 has its vertice at 2?2; I3 = {3, 4} (r; = 2 and s, = 4),

2% = 2% = (-20/19,-80/19), 2% = £7% — £ — (28165, —218/165)..

Iteration 8. z® = 2?2 = (6/5, 4/5) = J*(23) = 0, we stop. The
optimal solution is
Topt = z° = (6/5, 4/5).

Results obtained using an IBM PC show that Algorithm 1 is quite effi-

cient. Calculating time of some experiments are given in the following
table.

The calculating time table

Dimention | Number The time take The time take

of of by computer 286 |by computer 486
problem |constraints | (RAM 2 MB) (RAM 4 MB)

(n) (m)
17 35 0’ 54” 48 0’ 02” 91
20 32 0’ 19” 45 0’ 00” 99
20 38 0’ 33” 23 0’ 01” 75
20 41 0’ 32” 60 0’ 05” 06
25 51 0” 49” 32 0’ 06” 16
25 46 0’ 42” 67 0’ 01” 63
30 50 - 0’ 47" 61 0’ 02” 12
30 56 1’ 02” 56 0’ 07” 03
30 58 2’ 45” 00 0’ 09” 34
30 61 3’07 35 0’ 14” 42
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