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S—SERIES IN THE WONG -ZAKAI APPROXIMATION
FOR STOCHASTIC DIFFERENTIAL EQUATION

YOSHIHIRO SAITO(!) and TAKETOMO MITSUI(2)

Abstract. We consider numerical solutions for a scalar stochastic differential
equation (SDE) dX = a(X)ds + b(X)dW (s). Riimelin proposed the general
Runge — Kutta schemes for SDEs. These schemes closely relate to the Wong-
Zakas ordinary differential equation (ODE) appromimating the SDE. Defining

" order of an RK scheme as those of its convergence to the Wong—Zakas ODE, we
derive the order condstions of general RK schemes. The analysis can be carried
out by introducing rooted trees and elementary differentials along with the special
ODE. The process is simslar to Hairer’s P-series.

1. INTRODUCTION

We consider the stochastic initial value problem (SIVP) for the
scalar autonomous Ito stochastic differential equation (SDE) given by
{ dX(s) = a(X)ds+b(X)dW(s), s€(0,T], (11)

X(0) = zo,
whe;e W (s) represents the standard Wiener process and the initial value

z is fixed. SIVP (1.1) is equivalent to the following stochastic integral
equation (SIE) for all s in some interval [O, T}:

X(s) = X(0) +/

0

a8 8

a(X(r))dr + / b(X(r))dW (r) . (1.2)

0 g
Here, the second integral, called a stochastic integral, is interpreted in

the sense of Ito. The Stratonovich SDE corresponding to the Ito SDE
(1.1) is

dX = a(X)ds + b(X) o dW (s) , (1.3)
where a(X) is a shift from a(X) by

X g %b’b (1.4)
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and the stochastic integral should be interpreted in the sense of
Stratonovich.

Wong and Zakai [12] showed that if we replace the Wiener process
W (s) in (1.1) by its polygonal approximation on the partition so y =
0<81’N <:--<SN,N =3

§— S8
WO =W (se,n + (W (skt1,5) — W (sk,n)) A,
Sk+1,N — Sk,N

Sk,N <8 < Sk41,N (1.5)

then the solution X(N)(s) of the corresponding initial value problem
for the ordinary differential equation (ODE)

{ dXWN)(s) = a(XM)ds + b(XM)dawWN)(s), s €[0,T], (1.6)
X(N) (0) = xo, i
converges to the solution of the following Stratonovich SDE

dX = a(X)ds + b(X) o dW (s) (1.7)

w.p.1 as the partition becomes infinitely fine.

Riimelin [9] proposed general explicit Runge- Kutta schemes, in-
vestigated their order of convergence and suggested a relationship be-
tween Runge-Kutta (RK) schemes and the Wong-Zakai (WZ) ap-
proximation. However Clark and Cameron [3] showed that the WZ
approximation (1.6) can converge to the solution X(T') of (1.7) in the
mean-square sense, no faster than O((As)3). Here As means the max-
imum length of the interval in the partition for (1.5). Thus general RK
schemes have a barrier with respect to the order of convergence.

However, when we observe how the solution of an PK scheme con-
verges to the WZ approximation, we can exploit another viewpoint of
order of convergence. Since the Stratonovich SDE possesses its own
significance especially in engineering, such viewpoint may attract at-
tention in the case of the Stratonovich. Furthermore, as seen later in
the present paper, analysis of order conditions of the RK schemes using
the rooted tree has many interesting points as a typical one for discrete
approximations of SDE, and give an insight of algebraic structure for
them.

In this paper we will define the order of convergence for general RK
schemes to the WZ ODE and call it RK-order. Then we will derive the
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conditions of RK - order using rooted trees proposed by Butcher [2] or
Hairer [6]. This notion is similarly derived as in the P-series proposed
by Hairer [5]. Note that the mode of convergence is similar to that of
the pathwise approximation [8] for the Stratonovich SDE (1.7).

2. GENERAL RUNGE -KUTTA SCHEMES

We will briefly review the general Runge— Kutta schemes proposed
by Riimelin. For notational simplicity, we will denote by X, the nu-
merical solution for the exact solution X(s, n) and take equidistant
time step, s, N — Sp—1,v = As,n=0,1,...,N, N = T/As. Then the
general m-stage explicit Runge—Kutta scheme (RK scheme) has the
following form:

m m
yn = Yn—l + ZP{AiAS + Z ¢: B;AW,, , (2.1)
=1 1=1

where Xo = zo and AW, = W{(sp,n) — W(sp—1,n) and intermediate
values are given by

A1 = G(Yn 1)

B, = b(yn l)

Az = a(._X'_ 1+ ,321/1 As +’72131AW )

By = b(Xn_1 + B2141A8 + 721 B1AW,),
m—1 m—1

Am = a(Xn—l + Z ﬂmjAjAs + Z '7ijjAWn) ’
=1 =1
m—1 m—1

B =bXno1+ Y BmjAjAs+ Y Ym; B AW )
=1 =1

and

m m
Pap Ly (2.2)
i=1 i=1

We shall remark some features of the RK scheme (2.1).



306 Yoshihiro Saito and Taketomo Mitsui

The numerical solution X, defined by the m-stage RK scheme
converges in mean-square sense to the solution of the following Ito
equation.

dX = [+ Ab'b|(X)dS + b(X)dW (s) .

Here the correction factor A is equal to O for m = 1, whereas the identity
m 1—1

A=) 6D % (2:3)
1=2 =1

holds for m > 2. However an RK scheme of high order necessarily
yields the equation A = 1/2 {9, 10]. Thus an RK scheme with order
greater than 1 converges to the solution of Stratonovich SDE (1.7).

Second, Riimelin [9] showed that any RK scheme cannot attain
order 3 in mean-square sense for scalar Stratonovich SDE (1.7). This
order—barrier is because the Ito’s Taylor expansion of the solution of

(1.7) contains terms like as [ W (s)ds and [ sdW (s) that depend on the
whole path of W (s), not only on samples of W ().

To detour this order-barrier and to proceed the analysis of the
structure of RK schemes for SDE, we introduce a new definition of
order. Considering the difference between the solution X (¥)(s) of (1.6)
and the numerical solution X, of (2.1), we say X, is of RK-order p if
the estimation

| Xn — XM (nAs)| = o((As)?)  as As |0

holds for any positive integer n and the Wiener process W (s). Here the
exponent p can be an integer multiple of 1/2. For the analysis of this
order concept, rooted trees are much helpful like as those in partitioned
ODE by Hairer [5].

3. S-TREES

Let us consider the WZ approximation (1.6) for SDE. For notational
simplicity, hereafter we omit the superscript (N). When we treat with
the Taylor series expansion of the exact solution of (1.6), we have to
compute higher derivatives of the solution X(s) with respect to sample
path z(s). Here we define differential operators associated with the
function a or b:

d

d
LGZG«E and Lb—b@
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We demonstrate this in the following way:

z(0) = zo
z(0) = a(zo)
Lyz(0) = b(zo)
L2z(0) = Laa(zo) = g:% a(zo)
LaLy3(0) = Lab(zo) = % alzn)
a0 (3.1)
LbLaz(O) = Lba(zg) = d— b(zo)
LyLi2(0) = Lb(zo) = 52 b(zo)
L3z(0) = L2a(z0) = di (%)a(zo)
d’a , da

= gz ® (@) + (d ) a(zo)

For a graphical representation of these formulas we need two different
kinds of vertices, that is vertices of the bullet “ ¢ ” and of the small
circle “ o ” which will correspond to a and b, respectively. Formulas
(3.1) can then be represented as shown in Figure 1.

¢

|

o1

L%
N\

VAV SQVAVEE:

Figure 1

2

Such interpretation of the higher derivatives by rooted trees can be
exploited in the following axiomatic way.
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Definition 1 (Labelled S—tree). Let A be the ordered chain of indices
such as A = {1, 2, 3,...} and denote by A, the subset consisting of
the first ¢ indices. Let ¢ be the order of A,. A labelled S—tree (¢,t') of
order q is a mapping

-{1} - 4,
together with mapping
t’:ﬂ _}{“.”,“0”}.

We denote by LTS; the set of those labelled S—trees of order g, whose
root is a bullet (i.e. t'(1) = “e”). Similarly, LTSS is the set of g-th
order labelled S-trees with a circle root. Let LTS, = LTS; U LTS,’;.

The symbol S intends to stand for “stochastic”. In Figure 2 we
present some elements of labelled S—trees for illustration.

T

v el =t % GLlr]] o, vl =t,

Figure 2

Definition 2 (Equivalence of S-trees). Two labelled S—trees (¢,t') and
(u,u’) are equivalent, if they have the same order, say ¢, and if there
exists a bijection o : A; — A4 such that o(1) = 1 and the following
diagram commutes:

Ayt L g
la Jla\ 2o p®

For example, 2 3 2

NVERV:

Aq —{1}——’ q
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Definition 3. An equivalence class of labelled S—trees of order ¢ with
respect to the equivalence relation in the above is called an S—tree of
order gq. The set of all S—trees of order g with a bullet root is denoted by
TSy, that with a circle root by TSS. For an S—tree t we denote by p(t)
the order of ¢t and by «(t) the number of elements in the equivalence
class t. Let TSq =TS; UTSS.

Definition 4 (Composition of S-tree). Let t1,...,t, be S—trees. We
then denote by

t= a[tl',...,tm]

the unique S—tree ¢t composed by t;,:..,tm» in such a way that the new
root is a bullet and the S—trees t;,...,%,, remain as they were if the
root and the adjacent branches are chopped off. Similarly, we denote by
blt1,...,tm] the S—tree whose new root is a circle. We further denote
by 7 and v S-trees of order one, i.e. nothing but only the bullet and
the circle, respectively.

These notations for simple S—trees are shown in Figure 2.
We use the notation

o)) = {

a(z) if the root of ¢ is a bullet,

b(z) if the root of t is a circle.

Definition 5 (Elementary differentials). The elementary differentials,
corresponding to (1.6) are defined recursively by

F(v)(z) = b(z
4 roE = T (p ), P @)
fort = g[t1,...,tm] O t = p[t1,.. ., tm]-

We give some examples of elementary differentials. The elementary
differentials corresponding to the S-trees of Figure 2 are.

F(t)(e) = 52 b(a),
Fl(ts)(z) = gz—’; - (% -b(), b(z)) -
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Theorem 1. For ordered g-tuple (i4,...,14), i; € {a, b} the following
tdentity holds

Y. Li...Liz= ) F@)(z)= ) et)F(t)(c).

i;€{a, b} teELTS, teETS,
p(t)=q p(t)=q

Proof. The second equality is an immediate consequence of the defini-
tion of a(t). The first can be proved by induction on q. We only have
to observe that for (¢, t') € LTS with p(t) = q we obtain

LoF(t)(X(s)) + LeF(t)(X(s) = ) F(u)(X(s)),

where the sum is taken over all (v, u') € LTS of order ¢ + 1 with
ul(s,..qp =t and w'|(1,. . q) =1t'. o

4. S-SERIES OF THE WONG -ZAKAI APPROXIMATION
It is convenient to introduce a new S-tree of order 0, namely ¢.
The corresponding elementary differential is F(¢) = «.
We further set

TS = {$}UTS,UTS,U--.,
LTS = {¢}ULTSI_ULTSZU--- !

The sets TS®, LTS®, TS® and LTS are defined similarly.

Definition 6 (S—series). Let ¢ be a certain real-valued function upon
TS. Then an S-series of the WZ approximation (1.6) is defined by the
following formal power series of the variable ¢:

S(c’zsf): Z gp_(t){AW}n(t)C

!
terrs P (B As

where n(t) is the number of small circle vertices in a tree t and AW =
W(so + As) — W(so). The variable ¢ can be substituted by As.

F(t)(z),

For instance, the Taylor series expansion for the solution X(s) of
(1.6) can be expressed as

X(so + As) = S(1, X (s0), As),



S-series in the Wong — Zakai approximation 311

where the function 1 means
1(t) =1 for all S—trees t.

Let S(¢) stand for S(c,z, £) for a certain pair (z, {) in case of no
fear of confusion. '

Remark (S-series representation).

Let S : (—&o, &) — R be arbitrarily often differentiable and & > 0.
S can be represented as an S-series at £ with respect to a and b if
and only if there exists a map ¢ : TS — R such that for all : > 0 the
identities

gli) — Z c(t)a(t)F(t)(z)(%)n(t),

tETS .
p(t)=1

S(As) = S(c,z,As)
hold.

Theorem 2. Let ¢ : T'S — R be a function such that ¢(¢) = 1. Then
the following sdentity holds

a(S(c,z,As))As + b(S(c,z,As))AW = S(¢,z,As).
Here the new function ¢ satisfies the following conditions
c(¢)=0
é(r)=¢(v)=1
é(t) = p(t)e(t1) -+ - c(tm)
if t=qlts, . ortm] O t =4 [t1,.. ,tm].

That ts, in each case, we have the equations as follows
(1) a(S(c,z,A8))As = S(é,z,As), where
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(2) b(S(c,z,As))AW = S(¢,z,As), where

é(¢) =0,

é(r) =¢é(v) =1,

é(t) = p(t)e(t) - - c(tm)

'f t=p [tl"' * ,tm] .
Proof of Theorem 2. We will prove only the first case. The conditions
on ¢ imply that S(¢) = z+ O(&). Thus the function
€a(S(£)) = 2(¢)

is defined in a neighbourhood of 0. By the Leibniz - rule we have

®()(0) =i (a0 8)(-1(0). (4.1)

Consider now the set

U = {(u,v’) € LTS*|card(v™'(5)) < 1
for i > 2 and v'(s) = u'(1) f i g u™1(1)}.

U consists of those monotonically labeled S—trees, whose only possi-
ble ramifications are at the root, with the bullet as their root. For
(u,u’) € U, the corresponding equivalence class can be expressed as
u = gluy,---,ug]. Using we define

ka : .
cw(e) = T2 Geoge, .. g@(g).

We obtain by induction on

(@o8)D() = ) Gu)(e).

(uvul)eu
p(u)=i

Putting £ = 0 and using the fact that S(£) is an S-series with function
c(t) we get
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(a0 8)¢~1(0) = Z M (g¢)(0),--- ,g(*)(0))

dzk

(u,u!)eT

p(u)=i
=Y X Y etr)elta)x

(v,u/)eU t) ELTS tR ELTS

P("')=i P(tl)=i1 p(tk)=ik

d*a(z) AW n(t2)+-+n(te)
x _d—;l;— (F(tl)(z),"' ’F(tk)(z))(z-)
_ é(t) AW\ n(t)
M HUCIC

tELTS®

p(t)=i

Inserting the above formula into (4.1) we obtain

80(0)= Y a0Fe)E) (o)
e

-y a(t)a(t)F(t)(z)(%)"m,

tE‘l’S""
p(t)=1

which is the desired result. O

5. RUNGE-KUTTA SCHEMES FOR STOCHASTIC ODE

The s-stage Runge - Kutta scheme for the WZ approximation (1.6)
are generally rewritten by the following formulas:

A; = a(Yi)As,

8 8
Yi=Xn-1+ ) BijA; + Z’Yiij ; (5.1)
j=1 =14y

) 8
Xn=Xn-1+)_pidi+ Y 4B;.
=1 =1
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For the derivation of the order conditions we assume that A; + B; can
be represented as an S-series at zg:

A;+ B; ~ S((I’,',.’Do, As) ; (5.2)

This is trivial if the schemes are explicit and can be verified by the
implicit function theorem in the general case.

An immediate consequence of (5.2) is that
Yi & S(‘I’,‘,Zo, As) ’

h
where it pt) = 0,

e 7

i) = 4 ; Bij®;(t) if teTS?, p(t) 21,

Y 7i;®;(t) if teTS®, p(t) >1.
J=1

1

w |l

By Theorem 2 the right-hand side of scheme (5.1) can be represented as
an S-series, too. Comparing each coefficients we obtain ®;(t) = ¥.(¢),
which yields the following recurrence relations for ®;(t):

Q'l(¢) =0,
o;(r) =9®;(v) =1,
8;(t) =p(t) D Bijy - BisaVigesr Vg i (t1) - Bj (tm),

J1seedm

(5.3)
where t=t1,...,tm] z€ {a,b}
and
t; €TS® for 1<5<k,
t; € TS’ for k+1_<_f13§m.

For the numerical solution we now have
3{—1 ~ S(<I>,-,:v0, As) )

where
1 if p(t) = 0,
W(t) =< S5, p®(t) if teTS®, p(t) >1,
Y, ®i(t) if teTSP, p(t) > 1.
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Since the exact solution of (1.6) can again be expressed in an S-series,
the local truncation error of scheme (5.1) has the form

| B sP(t)—n(t) n(t)
X(so+As) = X1 = ) _ (1= 8(t))a(t)F(t)(zo) e p(t).A =
tcTS .

Henceforth we get the following theorem.

Theorem 3. Scheme (5.1) is accurate of RK-order p if

®(t) =1 for all t €TS with p(t) — E%Q <bp, (5.5)

where ®(t) 1s defined (5.4) via (5.8).

As we mentioned in Sect. 1, the solution for WZ ODE converges to that
of the Stratonovich SDE (1.7) as N becomes to infinity. Therefore the
numerical solution generated by an RK scheme with RK-order greater
than or equal 1 converges to the Stratonovich solution in strong sense
(as for the strong convergence, cf. [4] p.323).

6. AN EXAMPLE

We will derive 2-stage first order (in PK sense) explicit RK scheme.
Due to Theorem 3 order conditions up to first order are given in the
following table:

t o(t)
. P1+ P2
o q +q2

2q2721

o0—-o0

The explicitness of the formula implies v;; = 0 (¢ < j), which have
been taken into account. For these conditions a solution of the formula
parameters follows:

1
rn=1, p2=0, n=0=,, Y21 = 1.
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This means a first order explicit RK scheme as follows

= (Yn 1)
= (fn l) n
=b(Xp-1 + BI)AWn,

Xn=Xpn1+A1+ E[Bl + Bs].

Taking advantge of Theorem 3 it is possible to construct an RK scheme
with any order of accuracy.

7. CONCLUDING REMARKS AND FUTURE ASPECTS

The WZ approximation (1.6) is known to be pathwise convergent
to the Stratonovich SDE (1.7). Thus, an explicit way of the solution
for (1.6) can be interpreted to provide a concrete means of simulation
for qualitative and quantitative analyses of SDE solutions. That is
the significance of the RK scheme (2.1) for the WZ approximation in
numerics of SDE.

Moreover, the rooted tree analysis presented in this paper may give
an essential extension of Hairer’s one [6] to the SDE case. Although the
WZ approximation has a restriction of the order of convergence in the
mean-square sense, our analysis makes a step towards the rooted tree
analysis of RK—type schemes for full SDEs. Actually we are planning to
further consider an extension to WZ approximation for multi-dimen-
sional SDE or to SDE with multi-dimensional noises.
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