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EXISTENCE AND RELAXATION OF SOLUTIONS
OF FUNCTIONAL DIFFERENTIAL INCLUSIONS!

NGUYEN DINH HUY and NGUYEN KHOA SON

Abstract. For a generdl functional differential inclusions of the forms %(t) €
F(t, z¢) in a Banach space, where F' a locally Lipschitzean multifunction of z4,
the set of solutions i3 proved to be non—empty and dense in the set of solutions
of the convenified differential inclusion &(t) € CICoF(t, z1). As an application,
the obtained results are appbed to the class of differential difference inclusions.

1. NOTATIONS AND STATEMENT OF MAIN RESULTS

Throughout this paper X denotes a separable real Banach space
with the norm |-| and X’ denotes the topological dual of X. For a subset
A C X,CoA and ClA denote its convex hull and its closure, respective-
ly. For a number r > 0 we set B(A,7) = {z € X : d(z, A) < r} where
d(z, A) is the distance from z to A : d(z, 4) = inf{||z—a|| : a € A}. We
denote by 7(X) the family of all nonempty closed subsets of X, and by
H the Hausdorff distance in 7(X), i.e. for A,B € 7(X),H(A,B) =
max{sup,c 4 d(z, B),supyc 4 d(y, B)}. Let I be a nonempty compact
interval in the real line R which is assumed throughout to be endowed
with the Lebesgue measure u(dt) = dt. Then, by Cx(I) we mean the
Banach space of all continuous functions ¢(-) from I to X with the norm
of uniform convergence ||p||; = max{|p(t)| : t € I}, and by L% (I) we
denote the Banach space of (equivalent classes of) Bochner integrable
functions f(-) from I to X with the norm

17l = /, o

A multifunction I : I — 2% is said to be measurable if it takes values
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in 7(X) and, for every U open in X, theset {t € I : T(t) N U # 0} is
measurable. A single-valued function g : I — X such that g(t) € I'(¢)
for every t € I is called a selection of I'. We denote by Sr the set of all
measurable selections of I'. It is well-known that for any measurable
multifunction I : I — F(X), Sr # @. Moreover, St contains a sequence
{f*}e2, such that CI{f*(t)} = I'(¢) for every t € I. Such a sequence
of selections {f'} is called a Castaing representation of I'. It is well-
known that T is measurable iff it admits a Castaing representation;
see (3] for details. We say that T' is integrable if it is measurable and
St := SrnNLL(I) # 0. It is worth noticing that all the above notions can
be similarly introduced for a multifunction from a general measurable
space (2, A, 1) into a Polish space (i.e. a complete separable metric
space). Moreover, some of the auxiliary results proved in the Section 2
remain valid under such general assumptions. However, for the purpose
of this paper, we restrict ourselves to the case of bounded Lebesgue

measurable space (I, dt) with I being a nonempty compact interval in
R.

Now we are going to formulate the main results of this paper. Let
us fix to € R,h >0,T > 0. Set I = [to,t0+T],C = Cx([—h,0)), ||| =
| - ll{=n,0}- For each z(-) € Cx([to — h,to + T]) and t € I denote by
z; the function in C' defined by z:(0) = z(t + 0),—h < 0 < 0. We
note that the function ¢ — z; mapping I into C is continuous and
maXe(ty, to+Ty] ||Ztl] = MaXec(ty—n, to+11) [Z(t)] for any Ty € (0,T)]. Let
be given an open set D in C, a function ¢ € D and a multifunction
F:Ix D — ¥(X). Consider the following Cauchy problem

i(t) € F(t,z¢),t €1, (1.1)
Ty, = Q. (12)
A continuous function z : [to — h,t9 +T] — X satisfying (1.2) is called a
solution of the above Cauchy problem on the interval I = [to,t0 + T if
it is absolutely continuous on I and satisfies (1.1) almost everywhere on

this interval. We also consider the Cauchy problem for the convexified
differential inclusion

z(t) € CICoF(t,z;),t € I, (1.3)

T

Il
'§:

0

The main results of this paper read as follows.
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Theorem 1.1. Let I = [to,to + T|,h > 0 and D be an open subset
in Cx([—h,0]). Let F: I x D — F(X) be a multifunction with closed
images satisfying:
(i) for each p € D the multifunction F(-,p) ts measurable and in-
tegrable on I,
(ii) F(t,-) 1s locally Lipschitz on D, t.e. for each p € D there ez-
zst 6o, > 0 and l, € L'(I) such that H(F(t,0'), F(t, %)) <
()Hgo — 2| onIfor all o1, in B(p, 6,).
Then for any @ € D and Ty € (0, T] the set of solutions of the Cauchy
problem (1.1)-(1.2) on [to,to + T1| is dense for the topology of uni-
form convergence in the set of solutions of the Cauchy problem for the
converified differential inclusion (1.3)—(1.4).

Theorem 1.2. Assume I, h, D are given as tn Theorem 1, g € D and
the multifunction F : I x D — F(X) satisfies:

(i) for each ¢ € D the multifunction F(-,p) is measurable and
F(-,) ts integrable on I,
(ii) F(t,-) is Lipschitz in a neighborhood of 3, i.e. there exists § > 0
and I € LY(I) such that H(F(t,p'), F(t,0%)) < I(t)]le! — &2
on I for every p!,p? in B(p,6).
Then there exists Ty € (0, T| such that the set of solutions of the Cauchy
problem (1.1) - (1.2) on [to,to + T1] ts nonempty.

2. PROOF OF THE THEOREMS

First we state some auxiliary results which are more or less known in
the theory of measurable multifunctions. For the sake of completeness
we sketch out their proofs.

Lemma 2.1. Let T : [ — F(X) be an integrable multifunction and fo :
I — X an integrable single- valued function. Then the distance function

d(fo(t),T'(t)) is integrable. Moreover, for each € > O there exists an
integrable selection g € Sr such that |fo(t) —g(t)]| < (1+¢€)d(fo(t),T(t))
for everyt e I.

Proof. By Theorem 8.2.13 in (2], d(t) := d(fo(t),T'(t)) is measurable.
Since I'(t) is integrable, there exists f(t) € Sr which is integrable.
Therefore, from d(fo,T'(t)) < |fo(t) — F(t)] < |fo(t)] + |f()] it fol-
lows that d(fo(t),T'(t)) is integrable. Further, since the multifunction
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M(t) := fo(t) + B(0, (1 + €)d(t)) is measurable, it follows from the def-
inition of the distance function that the multifunction I'(t) N M (t) has
nonempty images and is measurable. Let g be its measurable selection,
then, clearly, |fo(t) — g(¢t)] < (1 + €)d(t), and hence g is integrable.

Lemma 2.2. Let D be an open set in a Banach space Y and I is a
compact interval in R. Suppose that the multifunction F(t,0) : IxD —
F(Y) is measurable in t and locally Lipschitz in ¢. Then F(t,-) is
globally Lipschitz in a netghborhood of each compact subset K C D.
More precisely, for each compact K in D, there exists p > 0 and | €
L'(I) (both depending of K only) such that K + B(0,p) C D and

H(F(t,0"),F(t,0?) <)’ — 0?|l,Ve € K, Vo', p* € B(so,/())- |
2.1

Proof. Let {B(z;,%) : i = 1,...,m} be a finite covering of K with
z; € K, and F(t,-) satisfies the Lipschitz condition in B(z;, %) with
”Lipschitz constant” I (t). Setting r = inf,cg d(z, X\D) we have
obviously r > 0. Then to complete the proof, it suffices to put [(t) =

max{lz;(t) : 4 =1,...,m} and p = min{r, & : i = 1,...,m}.

For a multifunction I' from I to X, we define the convexified mul-
tifunction CICol by setting (CICol')(t) = CICo(T'(t)) for each t € I.

Lemma 2.3. Let I = [to,to +T) and T : I — F(X) be an integrable
multifunction. Then for any € > 0 and any integrable selection g of the

convezified multifunction CICol there exists an integrable selection f
of T’ such that

max ‘ /t:[f(s) - g(s)]ds‘ <e.

tel

Proof. This is immediate from the Theorem 1.1 in [4].

The following assertion plays a crucial role in the proof of our main
results. Here, the notations I,T,h,D,X,C,ty, P, p: are of the same
meaning as in the Section 1.

Lemma 2.4. Let Ty € (0,T),0° € Cx([to — h,to + T1]) be such that
0§, = @ and the compact K = {? : t € [to,to + T1|} is contained in
D. Suppose that the multifunction F(-, ) : I — F(X) 1s integrable for
every fized p € D and there exists p = px > 0 and I(-) = Ik () € L1(J)
such that K + B(0,p) C D and (2.1) holds. Further, let r > 0 be such
that
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p > T exp (2/t0+Tl l(t)dt)

to

and let fO be an integrable selection of the multifunction t — F(t, oY)
satisfying

10°(t) — @(0) — fo( )ds| < r, YVt € [to,t0 + Tl,]' (2.2)
Then (1.1) has a solution p on [to,to + T1] satisfying

| 3 to+Th )
e o) - ©°(t)] < 7 exp (2 /t S ma). (29
Proof. First, we note that for any p() € Cx([to — h,to + T1|) such
that ¢ € K + B(0,p) for all t € I, the multifunction F(t,p:) is
measurable. This follows from the facts that the multifunction F(-,-)
is Caratheodory on I x D and the function ¢ — ¢; from I to C is
continuous, see e.g. Theorem 8.2.8 in [2]. Further, it can be shown
that the multifunction t — F(t,©?) is integrable. Indeed, let {t; :
¢t = 1,---,n} be chosen so that t; < ¢; < .-+ < t, = tg + Ty and
K C U™ B(p},p). Defining @y = ¢3,,t € [ti_1,t:),i =1, -, n, we
have clearly ||p? — @¢|| < p for any t € [to,to + T1]. By the hypoth-
esis, F(t,p?) admits an integrable selection ft. Setting f(t) = fi(¢)
fort € [ti—1,t:),i =1, -+ ,n we see that f is an integrable selection of
F(t,4t). Since, by (2. 1)

d(F (8), F(ts00) < H(F(t, 61, F(t,02)) < pl(t)

it follows that d(f i), F (t, ©9)) is integrable. Therefore, as in the proof
of Lemma 2.1, there exists a measurable selection g of F(t,?) such
that |f(t) — g(t)| < (1 + €)d(f(t), F(t,%?)). Thus g(-) is integrable and
so is F(t,p?).

To prove the lemma, we set

l(t): +ft fo ds, if tE[to,t0+T1]
W(t — to), if ¢ S [to e h,to].

(2.4)

It is clear from (2.2) and (2.4) that ||p} —f| < rforallt e [to,to+T].
This yields, in particular, that ¢} € K + B(0, p). Thus F is defined at
(t,}) and by (2.1),

H(F(t,0:), F(t,08)) < (t)lle; — o3 ll < ri(t) (2-5)
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for every t € [to,to + T1]. By Lemma 2.1 the multifunction ¢t —
F(t,p}) admits an integrable selection f! such that |fO(t) — f1(t)| <
2d(f°(t), F(t,})), and therefore, by the definition of Hausdorff dis-
tance and (2.5), we have

|7°(2) — FH()] < 2ri(t)
for every t € [to,to + T1). Assume that we have defined functions
Sooafoa(plvfla"' ,wn’fn,(pn+l
such that for each ¢ € {0,.-- ,n},

e Cx(to-hto+Th)), fe Li(lto,to+ Th)) (2.6)

t
o+t = ]| < 1'(2/ I(s)ds)}, Vt€lto,to+Tal;  (2.7)
to
©; € K + B(0,p), Vt€ [to,to+T1], and o} = @; (2.8)
fi(t) € F(t,p}), ae. on [to,to+ T; (2.9)
( Sl o
. 5(0 ‘(s)ds, if t € [to,t
gty A0S, L) K fe bt t T 1
&(t — to), if ¢ € [to— h,to).
and, for 1 € {1,--- ,n},
. : 2r t i—1
t _ -1 <
70 - 10 < 2 1)!l(t)(2/t0 ls)ds) ",
Vt € [to,to +T1]. (2.11)

We then define p"t2, fntl as follows. First, since p} € K + B(0,p) C
D, the multifunction F is defined at (¢,%) for ¢ = 0,1,--+ ,n + 1. As
f "( ) € F(t,p}), by virtue of Lemma 2.1 there exists an integrable
selection f™+! of the multifunction t — F(t,p;*!) such that

[FRHH(E) = ()] < 2d(£7(2), F(t, 07 ).
Therefore, by definition of H and (2.1), (2.7) we can write
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| () — f(¢)| < 2H(F(t,07), F(t, 0F)
< 2(t)lpr ™ — ot

S Zl(t);:—'(Z/tt l(s)ds)", Vi € [to,to + Tl] (2 12)

Further, we define p™*? by setting ¢ = n + 1 in the formula (2.10).
Then we have

‘P"+2(t) — n+1(t) { f[fn+l ~ /Tl e [to,to + Tl]’

0 iftE[to—h,to].

Thus, by (2.12),

ft I(s) 2ftf)l(0)d0)"ds, if t € [to,to + T1),
if t € [to — h,to].

n+2 n+1
et 2(t)—p™ 1 (2)] = {0

This yields, for every 8 € [—h,0] and t € [to,t0 + Ti],

t 8
[m3(0) — o (0)] = 2 / )z [ uo)das

= i), e

This shows that (2.7) holds for t = n + 1. Hence we can deduce

n+1 t [
”(pn+2 _ ‘pt” < Z ”(pt-f-l . (P;“ S r exp (2/ l(s)ds> <p,
to

which means tp"+2 C K + B(0,p) for all t € [to, toc + T1}. Summa-
rizing, we have shown that there exists two sequences of functions
{0}, {f*}2, which satisfy (2.6) - (2.11). In particular, from (2.11)
we deduce that {f*} is a Cauchy sequence in L ([to,t0 + T1]), and so
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converges to a function f in L} ([to, to+7T1]), a subsequence converging
pointwisely a. e. It follows from (2.7) that {p!} is a Cauchy sequence in
Cx([to, to + T1]) and so converges uniformly to a ¢ontinuous function
p. It is easily seen that v, = @,6(t) = f(t) for all ¢t € [to,t0 + Ti],
and

to+Th
lo: — 02| < r exp (2/ l(s)ds) <p
to

for all t € [to, to + T1]. Therefore, we can write, for almost all ¢t €
[th tO + Tl]a

d(f(t), F(t,0¢)) < |f(t) — £ ()] + d(f(t), (¢, ©L))
+ H(F(t,ﬂpi), F(t’sot))
<f@E) = £+ ) les — o)

Thus, we derive, by letting ¢ tend to oo,

o(t) = f(t) € F(t,pt) a.e.

so that ©(-) is a solution of the Cauchy problem (1.1) - (1.2). Moreover,
it is clear that ¢ satisfies (2.3). This completes the proof of the lemma.

Proof of Theorem 1.1. Let T be given and let ©° be a solution
of (1.3)~(1.4) on [to, to + T3] and € > 0. By virtue of Lemma 2.2,
the condition (ii) of the theorem implies that there exists p > 0 and
I(-) € L*([to,to + T1]) such that K + B(0,p) C D and (2.1) is fulfilled,
where K = {p? : t € [to,to + T1]} is a compact set in C. As it has
been shown in the proof of Lemma 2.4, the multifunction t — F(t, o)
is integrable. Let r > 0 be such that

to+T)
r exp (2/ l(s)ds) < min{e, p}.
to

Since ¢°%(t) € CICoF(t,p}), according to Lemma 2.3 F(t,p?) admits
an integrable selection f° satisfying

t
O(a) _ 20
tE[tf)I,lt?iTl]l to[f () = @7(s)]ds] <.

Taking account of the fact that ©°(ty) = @(0), from the last inequality
we have

[°(t) — &(0) - t fo(s)ds| <r
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for all t € [to,to + T1]. Consequently, by Lemma 2.4, the problem
(1.1)-(1.2) has a solution * on [to, tg + T1] satisfying

max £(s) — ©%(s)| = max e a0
8e[to_h,to+mlw (s) — " (s)] telto,tﬁmllwt el
to+Th
<r exp (2/ l(s)ds) <€,
to

completing the proof.

Proof of Theorem 1.2. Set p = 16 and let T € (0, T) be such that

1
3

max{lgb(ﬂl) = @(02” : 01,02 € [—h,O], |01 = 02| < To} < p. (213)

Further, we set
o(t) = { &(0) if t € [to, to + To),
p(t —to) ift € [to— h,to)-
From (2.13) it obviously follows that

llpog — @l = max{|pg(8) — B(8)] : —h < 6 <0} < p, (2.14)

for all t € [to,to + To]- Thus, the compact K = {p{ : t € [to,t0 + To]}
is contained in B(p, p) and hence K + B(0,p) C B(p,p) + B(0,p) C
B(p,8). As in the proof of Theorem 1, since p? € B(p,§), it follows
that there exists an integrable selection f° of the multifunction t —
F(t,09). Setr = 2p exp(—2 fti°+T° I(s)ds). Then r exp(2 fti°+T° I(s)ds)
= 3p < p . Let Ty € (0, To) be such that

to+T) r
[ e <

to
This, in combining with (2.13), yields

t
00 - 2(0) = [ F(s)ds| <r

to
for every t € [to,to + T1]. Moreover, it is clear that

r exp (2 /:hLTl l—(s)ds) < p.

Consequently, according to Lemma 2.4, the Cauchy problem (1.1)-
(1.2) has a solution on [tq, to + T1].
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3. AN APPLICATION

In this section we apply the theorems 1.1, 1.2 to prove the existence
and relaxation of solutions for differential difference inclusions of the
form £(t) € P(t,z(t—A1(t)), -+ , z(t—An(t))). To simplify the notation,
we shall consider only the case n = 2.

Let I = [to, to+T]and P: IxU xU — F(X), where U is an open
set in X. Let @ € C = Cx([—h,0]) such that $([—h,0]) C U. Consider
the following differential difference inclusion

“8(t) € Pt,2(t — \(t)), 2(t — (1), t€ T (3.1)
:z:(s) = (,5(8 = to), CNS [to = h,to], (32)

where A, u : I — [—h,0] are given continuous functions. The inclusion
(3.1) may be reduced to (1.1) by defining a multifunction F: I x C —
F(X) as

F(t,0) = P(t,0(=A(t)), 0(—u(?))) (3.3)
and

D ={p € C:p(~—h,0)) cU}.

In what follows | - |; will denotes any Banach norm in the product
Y = X x X. As an immediate consequence of Theorem 1.1, we have

Theorem 3.1. Suppose that:
(i) for each y = (z1,23) € U x U the multifunction P(-,y) is mea-
surable and admits at least one integrable selection on I,
(ii) for eachy = (z1,22) € U x U there exists 6, > 0 and I, € L'(I)
such that
H(P(t,y'), P(t,y?) < U, (t)|ly! —y?|; a.e. on T

for any y',y% € B(y,$,).
Then, for any Ty € (0, T]the set of solutions of (3.1)-(3.2) on I, =
[to,to + T1] 1s dense for the topology of uniform convergence in the set
of solutions of the convezified tnclusion

£(t) € CICOP(t, z(t - A1), 2(t - u(®))), t€ i,  (3.4)
z(s) = (,5(8 = to), S € [to = h,to].

Similarly, as a corollary of Theorem 1.2, we can also formulate
a theorem on the existence of solutions for the differential difference
inclusion (3.1)-(3.2).
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