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TIKHONOV REGULARIZATION FOR A CLASS
OF ILL-POSED VARIATIONAL INEQUALITIES!

NGUYEN BUONG

Abstract. The aim of this paper is to investigate a problem of variational in-
equalities with a constraint in the form of ill-posed nonlinear operator equation
involving monotone operators under monatone perturbations. A result on conver-
gence rate for the Tikhonov regularization is established. Then, this result unll be
considered in combination with finite—dimensional approrimations of the space.
For sllustration, an ezample in the theory of linear integral equations in Ly -space
18 given.

1. INTRODUCTION

Many problems arising in mathematical physics and mechanics (see
e.g. [4, 5, 7, 20, 23]) have been formulated in the following abstract
form: find an element zo € Sp such that

p(zo) = min p(z), (1)

where ¢ is a weakly lower semicontinuous and properly convex func-
tional on the real reflexive Banach space X with the norm denoted by
|| - ||, and So is a convex and closed subset of X. If we denote by A(z)
the subdifferential of the functional ¢ at the point z, then this problem
is equivalent to the variational inequality (see [23])

(A(Zo), T = .’Eo) >0, Vz € Sy, zg € So, (2)

where the symbol (z*, z) denotes the value of the linear continuous
functional z* € X* at the point £ € X and X* is the adjoint space of
X. For the sake of simplicity, the norm of X* will be also denoted by
the symbol || - ||.

1Supported by the National Basic Research Program in Natural Sciences.



254 Nguyen Buong

Up to now, there have been a lot of works dealing not only with
theoretical aspects but also numerical methods and applications of this
problem (see [3, 9, 10, 11, 14, 18-20, 25, 26]). Moreover, some results
have been generalized for locally Lipschitzean functional ¢ (see [6]) and
recently for invex functional (see [13]).

In [15, 22, 23] one considered an interesting case, when ¢ is convex,
and S is the set of all solutions of the other operator equation

F(:B)———fo, fOEX*a (3)

where F is a monotone operator from X into X*. It is well known (see
[1]) that, without additional conditions on the structure of F such as
strong or uniform monotonicity, equation (3) is, in general, an ill-posed
problem (see [24]). By this we mean that solutions of (3) do not depend
continuously on the data F, fo. Therefore, the problem (2) in this case
is ill-posed, too. To solve it we have to use stable methods. A widely
used method of this kind is the Tikhonov regularization in the form of
operator equation

Fr(z) + aA(z) = fs, (4)

where F}, and fs are respectively the approximations for F and fo,
|F(z) — Fr(z)|| < hllzl|, Vz € X, ||fs — foll < 6, h, 6 =0,

and « is the parameter of regularization. If F, are monotone and
hemicontinuous, and A is uniform monotone, then the existence and
uniqueness of the solution of (4) were proved in [5, 22, 23]. There one
has also showed that if §/a and h/a — 0 this solution converges to
Zg and it can be approximated by solutions of the sequence of finite-
dimensional problems (see [21})

Fpn(z) + ¢An(z) = fon, (5)
where Fy, = PyFyP,, A, = P;AP,, fs, = P}fs and P, denotes the
linear projection from X onto its subspace X,, satisfying the condition

X, C Xpy1y Prz— 2z, n > 400, Vz € X,
and P} is the adjoint of P,, ||Py.|| < ¢, where ¢ is a positive constant.
Until now, it is still open the question whether lima,h,s~o szm =

n— + oo

o, where {z} .}, is the squence of solutions of (5) and also the question
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about its convergence rate, as well as about the convergence rate for
{z{ .}, the solution of (4).

Obviously, the answer for these questions depend on the relation
between h, a and n. In this paper, applying the ideas of Engl and
Groetsch in [8, 12| we shall answer these questions, under the assump-
tion that A is an uniformly monotone operator, i.e.

(A(z) - Aly), z—y) Zmallz —y[* 1 < s < too, (6)

where m4 is a positive constant. Without loss of generality, we shall
assume m, = 1.

Below the symbols — and — denote the strong and weak conver-
gence for any sequence, respectively.

2. MAIN RESULTS

First we prove a result about convergence rate for the sequence
{Zha}
Theorem 1. Suppose that the following conditions hold:

(i) Fn is Fréchet differentiable in some neighbourhood of So s — 1-
times if s = [s]; the integer part of s, and [s|-times if s # [s];

(ii) The derivative F,Ek) satisfies the condition

IF® (z) — F®(y)|| < Ll|z - yl|, Yz € So, y € Uo, L >0,

where Uo ts a neighbourhood of So and k = s—1 tf s = [s], and k = [s]
if s # [s]. Moreover, if [s] > 3, F,Sz)(xo) = — F,Ek)(zo) =0;
(iii) There exist elements zp of X such that
Fy (zo)zn = A(zo)
and L||zy|| < 8! if s = [s].
Then, if o is chosen such that o ~ (h +6)%, 0 < 8 < 1, we have

I£ha — zoll = O((h +6)*), p=min {(1-6)/(s - 1), 8/s}.
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Proof. From (3) and (4) it follows
a(A(2ha) = AlZ0), Tha = 20) < (fs = fo, Zhe — Zo)+
+ (F(z0) — Fr(zo), zi.a —zo) + a(A(zo), To — z';s,a)-

Combining this inequality, (6) and condition (iii) gives

allzh, — zo|® < (6 + hl|zo||)||zhe — Zoll
+ o(zn, Fy(zo)(zo — z34)) - (7)

In the case s = [s], since
Fllz(zo)(zo - szz) = Fh(zo) - Fh(xlﬁza) + r;s:.a

with

L
Irfall < Slata - 2ol

(see [26]) from (7) it follows that
) 8 6 L é 8
of[zha = 2ol® < (6 + hl|zol)|2ha — 2oll + all2a ]|l Zha — 2ol

+ a(zn, Fa(zo) — Fu(zh,))-

We can estimate the last term in the following way

(2hy Fn(zo) — Fu(zha)) = (2n, Fa(zo) — F(zo) + fo — fs + aA(z},))
< |lznll(6 + Rllzoll + el Alzha)l]),

that is equivalent to ~ 6 + h + o because a:,‘sm — zg and the hemi-
continuous monotone operator A is locally bounded (see [25]). Thus,
the inequality (7) can be written in the form

h )
—%”zﬁa —zol| + O(h + 6 + 2). (8)

L 3
(1= Zlenl) o — 2ol <

Using the implication in [17]:
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a, b>0, p>q>0‘andt”Satq+b:>t”=0(ap/(p_‘”+b)

“we get
Izha — ol = O((h + 6)°).
If s # [s], the left-hand side of the inequality (8) will be replaced by

Izl fleha = zoll*1+172) |25 — o|°.

L
N PEEY

As [s] +1— s> 0and |z, — zo|| = O, the requirement L||z,| < s! is
not necessary. Q.E.D.

The following theorem is the answer for the question about the
convergence of {z3_.}.

Theorem 2. If the conditions (i) and (ii) of Theorem 1 hold. Moreover,
suppose additionally that

(iv) There ezists a = a(n) — O such that
(Frn(z) + |(I = P)z|[)at — 0, Vz € S,
as h, 6 = 0 and n — +00, where Ypn(z) 15 defined by
Ahn(2) = | Fr(z)(I — Po)z|.
Then the sequence {zfmn} converges to zg.
Proof. From (5) it follows

th(zlazan) — Frp(zn) + a(An(:z:,'Smn) — An(zn))
= f&n - th(xn) - aAn(xn), Iy, = Pn.'l?, Vz - So.

Multiplying the two parts of this equality by z,’smn — Ty, and using the

projective property of P, : P, = P, P, and the monotone property of
Fp,, and A, we obtain

a<A($i.an) = A(xn)’ x}ﬁwzn T $n> < (ﬁ 3 h”xH)“Iian 23 In“
+ (Fn(z) — Fr(zn), szzn — Zp) + a{A(zn), Tn — zfl,an>' (9)

In the case s = [s| we can write

Fr(zyn) = Fa(z) + F(z)(zn — 2) + Thn
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with L
Iranll < ST = Pr)=l°.

Therefore, from (6) and (9) we get

of|zhan — 2al® <
L _
< (8+ Azl + ST = Pa)zll* + [ Fa(2)(I — Pu)zl)l|zhan — 2al

+ &(A(2n), Tn = Than)- (10)

Because of s > 1, this inequality gives us the boundedness of the se-
quence {:c,&mn}. Without loss of generality, suppose that :cfwm — 1z €
X,as n — +oo and h, o, § — 0. We shall prove that z; € S,.

First, since F,, := P, F P, is monotone, we have

(Fn(zn) i Fn(xian)? In — szzn) > 0, z, = P,z, Vz € X.

Since P, P, = P, this inequality can be written in the form
<F($n) i Fn(zian)’ Z2niv szzn) 2 0.

Together with (5), it gives

<F(.’En) - f5n + aAn(.’Eian), In — xian)
ot (th(xz.an) - Fn(xfl.an)7 Tn — xlawm.) > 0,

that is equivalent to

<F(zn) i f67 Tn — zian) + a<A(z7l)’ Tn — xian)
+ (Fh(ziazan) ¥ F(zian)’ Tn — zian) —>- 0.

Thus we have

hllz}azan” “.’En o ‘rfwzn” * <F(:Bn) I f51 In — Ilazan)
+ a{A(z,), Tn — zfmn) > 0.

Letting n — +o00 and h, 6§, a — 0 we obtain

(F(z) - fo, z—z1) > 0, Vz € X.
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By virtue of Minty’s lemma, z; € Sp. Répla.cing Z, in (10) by z1, =
P, z, and letting n — +oo and h, §, o — 0, we can see that xfmn — I
and

(A(Z), 5= 131) > 0, Vz € Sp.
On the other hand, this variational inequality is equivalent to
(A(z1), = — 1) = 0, Ve € S

Therefore, z; is a solution of the problem (1) (see [23]). Since A is uni-
formly monotone, the last variational inequality has an unique solution
zo. Thus, ; = 7o and the entire sequence {z¢__} converges to zo.

For the case s # [s], the term &||(I— Py)z||® in (10) will be replaced
by ﬂﬂ%ﬁ ||(I = P,)z||ls)+! and the process of proof of the theorem will
be entirely repeated. Q.E.D.

It is not difficult to verify that all results in Theorems 1 and 2 are
still true, if all conditions on F} are stated in the similar way only for
F,i.e. the index h in Theorems 1 and 2 for Fy, its derivatives, 2z, and
Ahn can be obmitted. Indeed, for instance, in the proof of Theorem 2
the inequalities (9) and (10) will be replaced by

a<A(zZan) - A(.’Bn), szan = $n> < (6 it h”z”)llzian - .’En“
+ (F(z) — F(za), zl&mn — ) + a(A(zn), zn — szzn)‘ (9°)

a”xfzan - anS S
L
< (6 + Rzl + Sl = Pa)zl® + | F'(z)(T - Pn)-'?ll)llzian — Z,|
+ a(A(zn), Tn — zian>- (10)

respectively, and the process of proof of the theorem is completely re-
peated. We will do this in detail in answering the question about con-
vergence rate for the sequence {z},}.

Theorem 3. Let the conditions (i) —(iii) of Theorem 1 hold for F.
Moreover, let

(v) There exists a positive constant d and a neighbourhood Oo of zo
such that
1A(z) — A(zo)l| < dllz—zo]|®s 5 > 0, Yz € Oo;

(vi) o is chosen such that o ~ (h + 6 + vn)'/2, where
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Yn = max {||(I — Pn)zoll, [|(I* — Pp)foll, I(I — Pxn)z|.
Then
|Zhan — Zoll = O((h+ 6)%* +13), 5 = min {1/2s, 5}

Proof. From the condition (v) of this theorem, for sufficiently large n,
we have

(A(zOn.)’ Tp — zian) S d’Y: ”xlsmm ra zﬂ-”
+ (A(Z0), Tn — 25,,), Zn € Xp.

Thus, in the case s = [s|, the inequality (10’') with z, = zo, has the
form

a”zian = zonlle < 0(6 + h”zOH + Y + '7181. + ad’Y:)”-"’zan I IBon”
Sl a<A(z0)’ Ion — xian)' (11)

It is easy to see that in this case of s

(A(20), Zon — Zhan) = (A(%0), (Pn = I)zo) + (2, F'(20)(20 — Than))
< O(h + ’Yn) + (Z’ F(Io) - Fh(zian» ats L“z“”z;szan ~ zOHa/S!’

”zlazan - ZO”a < ”zian i zon”s o O(’yn) ’

and
<z’ F(zo) — Fh(zian)) = (z’ fO ! f5> o7 a(‘za A(zia»
+ (z’ Fh(sza) - Fh(z}atan»
< 0(6 + a) + <z’ Fh(zia) o Fh(zian»'
Since

(z, Fh(zia) '_:Fh(zz.an)) = <Z, Fh(zia) - th(?iatan))
+ (Z, Fhﬂ(z}alan) £ Fh(zian))’
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where

(z’ th(xian) T Fh(zian)) 3 ((Pﬂ- 1 I)Z, Fh(z}sr,an))
S '77'-||Fh(zg.an) - F(xian) + F(zian)” S O(’Yﬂ)

and

(Z, Fh(zia) - th(sz‘n)) = (za fs — aA(zfza) — fon + a'A"-(z‘}SLan))
<O(6+a)+(z, (I"=Py)fo) < O +6+a).

The inequality (11) can be written in the form

a(1 - L|zll/sYl1zhan = Zonll’

< O(h+ 6+ 9n + 75 + @d1,)[|2han — Zonl|
+aO0(h+ 6+ a+7n).

Then

128, — Zonll® < O((h + 6 +72) /% + 7% + 1) |28 — Zonll
+O((h+ 6+ a+ ).

Applying again the relation in [17] to the last inequality we obtain
|25 = zonll < O((h+ 8)/%* + 7).

Therefore _
28, — zo|| < O((h+6)'/% +43).

The case s # [s] is proved in the similar way as in the proof of
Theorem 1. Q.E.D.
3. AN EXAMPLE

Consider the following problem: find a norm-minimal solution of
the linear integral equation

(Fz)(t) = KfK*z(t) = fo(t), t € Q, (12)
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for a given fo(z) € Lqe(2), 1 < ¢ < +oo. Here the operator K is defined
by
(K2)(t) = / k(t, s) z(s) ds, teq,

Q

where the kernel function k(t, s) is a measurable on 1 x Q2 such that
the null space N(K) # {O} and Q0 is a closed set in R™. The function
f(t), t € R1,is a real and non—decreasing function.

Suppose

/ |k(z,y)|? < +oo, |f(t)] < bo+b1|t|9™1, bo, by >0, p~l4qg t =1.
QOx

Then the operator K is a linear, bounded operator from X = L,(1)
into X* = L4(Q), and (fz)(t) = f(z(t)) : X* —» X, is a monotone
operator. Therefore, FF = KfK™ is also a monotone operator from X
into X*. If either K or f is compact, then (12) is ill-posed. We are
interested in a solution zo(t) of (12) with minimal norm. In this case,
the operator A is the dual mapping U® of the spaces L,. It satisfies
all necessary conditions (see [2]): If X is a Hilbert space, then U® = I,
8§=2,my =1, 8§=1and d = ¢(R) =1, R = max{||z||, ||zo||}. For
the spaces of Lebesgue’s type I, L,, W}, p > 1 we can construct U®
satisfying condition (6) and the condition (v) of Theorem 3 with

1<p<2:s=2 myu=p—1, c(p) = p22P~lerLP !,

e =max{2P, 2p}, 1 <L <318, §=p—1;

2<p:s=p, my=2"""P/p,

c(p) = 2Pp**{plp — 1 + max{p, L}]}7}, §=1.

In particular, if 1 < p < 2, then s = 2 and we only need to verify
the condition (iii) of Theorem 1 and the condition (iv) of Theorem
2 for each concrete problem and concrete form of finite-dimensional
approximations of L,(f2). We shall see this in the following case, when
1 = [0, 1), p = 2. Then condition (iii) of Theorem 1 is written in the
form

g = Kf,',*(K*:co)K*zh ,

where fj, is the approximations of f. This equation has solution if
To € R(K), the range of K, and there exist ux(t) € R(K*) such that



Tikhonov regularization for a class of ill-posed variational inequalities 263

¢o = fi (yo)un, yo = K zo, Kéo = 2o, (13)
where f}*(yo) is coercive on L,[0, 1].

Indeed, let for example
6 _{el(t—to)—l-d, ift—t5 <0,
)= es(t —to) +d, ift—to>0,

€2>€1>0, deR.

Then we can approximate f(t) by fxr(t) in the following form

f(t), if t & (to — h, to + hl,
fu(t) = { d+ et —to) + p(t — to + h)?
+q(t —to + h)3, if t € (to — h, to + hj.

The coefficients p and ¢q can be calculated by solving the system of two
linear equations

fh(tO +h) = 62h+d,
,’:(to + h) = €3.

It is easy to verify that for sufficiently small h the coefficients p ans ¢
are defined uniquely and the functions f;(t) are monotone and differ-
entiable. Moreover

|Fin(t) — £(t)] < |Fin(to) — F(to)| < ch, ¢ > 0.
On the other hand, we have

€1 Or €9, ift¢(to—h,to+h),
e1+(e—e1){t —to+ h)/4h, if tE[to—h,to+h].

o =

‘-'
Therefore, condition (13) is satisfied, because e; > 0. Now, we approxi-
mate the Hilbert space H = L,[0, 1] by the sequence of linear subspaces
H,, defined by

H, = L{"/)I’ Y25-0 s "pn}a
‘_{1, tE(tj_l,tj],
vi = 0, t&(tj-1,t;]-



264

Nguyen Buong

It is well known that

I( = Pa)yll = O(n™1), Vy € L0, 1],

where

Pi= Zy(tj)d)j (t).

By taking a,, = O(n"/2) and h = § = O(n~2) we can see that almost
all the conditions of Theorems 1-3 are satisfied.
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13.
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