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TIKHONOV REGULARIZATION FOR A CLASS

OF ILL_POSED VARIATIONAL INEQUALITIES1

NGUYEN BUONG

Abstract. The aim ol thic pp,r is to inleatigate a prcblem ol uariationd irv

eqnlities uith a corxtmhrt in the form ol illpsd nonlinear op,rctor eqtation

inoohing mondonc oprdors under mondone p.rturhioru. A rcsult on conaer-

gence rvte lor the Tilchonou tz.gulaizdion is estahliEhed. Then, this rcsult uill h

coruidercd in combination with finite4imzwiorul apprcdm,atbru ol the spce.

For illustmtion, an er,ample inthe theory of linear integwl eqtodio'4tr in Lo-spce

ie glhsen.

1. INTRODUCTION

Many problems arising in mathematical physics and mechanics (see

e. g. 14, 5, 7, 20, ?3l) have been formulated in the following abstract

form: find an element 06 € ^96 such that

e@o):  ;2 i*  P(r) ,  (1)

where gr is a weakly lower semicontinuous and properly convex func-

tional on the real reflexive Banach space X with the norm denoted by

ll . ll, and So is a convex and closed subset of X. If we denote by A(c)

ihe subdifferential of the functional rp at the point z, then this problem

is equivalent to the variational inequality (see [23])

(,4("0), ,  - ,o) ) 0, Vr € So, to € ,So, Q)

where the symbol ("*, r) denotes the value of the linear continuous

functional r* € X* at the point r € X and X* is the adjoint space of

x. For the sake of simplicity, the norm of X* will be also denoted by

the symbot ll . ll.
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Up to now, there have been a lot of works dealing not only with
theoretical aspects but also numerical methods and applications of this
problem (see [3,9, 10, 11, 14, 18-20, 2s,26l). Moreover, some results
have been generalized for locally Lipschitzean functional p (see [6]) and
recently for invex functional (see [tS]).

In [tS, 22,23] one considered an interesting case, when gr is convex,
and 5s is the set of all solutions of the other operator equation

F(c) : fo, Io € X* , (3)

where F is a monotone operator from X into X*. It is well known (see
[t]) that, without additional conditions on the structure of .t' such as
strong or uniform monotonicity, equation (3) is, in general, an ill-posed
problem (see [Za]). By this we mean that solutions of (3) do not depend
continuously on the data F, fo. Therefore, the problem (2) in this case
is ill-posed, too. To solve it we have to use stable methods. A widely
used method of this kind is the Tikhonov regularization in the form of
operator equation

Fn( r )  +  aA(x ) :  76 ,  (4 )

where F1, and /6 are respectively the approximations for F and /6,

l l r ( " )  -  Fn(") l l  S l r l l " l l  ,  Vr  € x,  l l lu  -  /o l l  16,  h,6 - -+ 0,

and a is the parameter of regularization. If Fn are monotone and
hemicontinuous, and .4 is uniform monotone, then the existence and
uniqueness of the solution of (+) were proved in [5, 22, Zgl. There one
has also showed that if 6f a and, hf a -- 0 this solution converges to
re and it can be approximated by solutions of the sequence of finite-
dimensional problems (see [Zt])

F n " ( r ) * a A n ( r ) =  I n , (5)

where Fhn: P|F;P", An: P;AP", f6n: P)f6 and, P,, denotes the
linear projection from X onto its subspace X," satisfying the condition

Xn C Xn+1, Por --+ t, n --+ *oor Vr € X,

and Pj is the adjoint of Pn, llP"ll < c, where c is a positive constant.

Until now, it is still open the question whether lim.,r,,a*o n6n.,n :

16, where {ruo.,^}, is the squence of solutions of (5) and also the question
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about its convergence rate, as well as about the convergence rate for

{ru^.}, the solution of (a).

Obviously, the answer for these questions depend on the relation
between h, a and n. In this paper, applying the ideas of Engl and
Groetsch in [8, 12] we shall answer these questions, under the assump-
tion that A is an uniformly monotone operator, i. e.

(e@) -  A(a) ,  r  -  a)  >  m| l "  -  y l l " ,  1  < s  (  *oo,  (6)

where ma \s a positive constant. Without loss of generality, we shall

aSSUme f f iA :  I .

Below the symbols -- and - denote the strong and weak conver-
gence for any sequence, respectively.

2. MAIN RESULTS

First we prove a result about convergence rate for the sequence

{"un")

Theorem L. Suppose that the following conditions hold:

(i) fr, is Frichet differentiable in sorne neighbourhood' o/,96 s - 1-
times if s : lsl; the integer part of s, and ls]-times il s I lsl;

(ii) The deriuatire F[k) satisf'es the cond'ition

l l r jn ) ( " )  -  r f ) fu ) l l  <  r l l ' - y l l , vz€ ,s6 ,  u€11o,  t r ) ,9 ,

where llo is a neighbourhood of 56 andk : s- | if s : ls], andk : ["]
i f  

"# ls l .  
Moreouer ,  i f  [ " ]  >  g ,  FI ' )@o):  " ' :  F ik) ( "o ;  :9 ;

(iii) There erist elements z1 of X such that

F!,. (rs)zh : A(ro)

a n d  L l l z l  l l  S  t t  f  s :  [ s ] .
Then, if a is chosen such that o - (h + 6)t, O < 0 I l, we haue

l l " u n . -  " o l l  
:  o ( ( h + 6 ) o ) ,  p :  m i n  { ( t  -  0 ) l G - L ) ,  0 l s } .
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Proof. From (3) and (4) it follows

Nguyan Buong

a(A(a6o) - A("0), ,6ao- rol S (fo - fo, fno- 
"o)*

+ (r(26) - Fn(ro), ,6no - 
"o) 

* a(A(as), so - r6n.l.

Combining this inequality, (6) and condition (iii) gives

"l l"6n,- "oll" s (6 + hllcsll) l l" i. - 
"oll

* a(26, .Fl(r6)(ca -  
"6h.)r .  

(7)

In the case s : [s], since

F!,(ns)(ns - 
"6h): 

Fr,(so) - pn("6n,) + rL

with ^ r .
l l 'Lll < frll"i, -'oll"

(see [20]) from (7) it follows that

ollt6n,- roll' S (6 + hllrsll)llri, - 
"oll * "tAll"nllllrto,- "oll'

I  a(26, Fn(ro) - f i ,("[ .)).

We can estimate the last term in the following way

(zh, Fh(ns) - Fo@un)l : (zh, Fh(rd - F'("0) * /o - ld + aA(r6u)7

S llrall(o + hllcsll + all.e(fif l");;1,

that is equivalent to - 6 +h+ a because s6no - ss and the hemi-
continuous monotone operator A is locally bounded (see [ZS]). Thus,
the inequality (7) can be written in the form

(t - *l lzall) l l" i, 
* 'oll" s ry{l l" i, 

- 'oll + o(h+6 + a). (8)

Using the implication in [t7]:
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a ,  b ) 0 ,  p  )  g  >  0  a n d  t p  S a t q * b +  f  :  g ( 6 n / ( r - e )  1 6 )

we set 

llruo, -roll : o((h + 6)p).

lf st' [s], the left-hand sideof the inequality (8) will be replaced by

(t - (-;Ifu ll"llll'oo,- "ollrol+r-s;ll"i* 
- 

"oll"'
As [s] + 1- s ) 0 and l lcf l ,  - 

"ol l  
--+ 0, the requirement Ll lz; l l  (  s! is

not necessary. Q.E.D.

The following theorem is the answer for the question about the

convergence of {z[,o].

Theorem 2. If the cond,itions (i) and (ii) o/ Theorem t hold. Moreouer,
Euppose additionally that

(iv) There enists a: a(n) ---+ O such that

(7n*(") + l l (1 - P*)" l l [" ])o-1 + 0, Vc € So,

as h, 6 -+ O and,n -+ *oo, where in"(") is defined by

in"@) : llni,@)(I - P")zll.

Then the sequence {"un.,) conaerges to r,6.

Proof. From (s) it follows

Fh'@6h-) - Fnn(",") + a(A,(r61.) - A"(r"))

:  I6n -  Fnn(r" )  -  aA^(rn) ,  rn :  Pnr ,  Vx € So.

- Multiplying the two parts of this equality by ,uo.,,- - nns and using the
projective property of Pn : Pj : P;P; and the monotone property of

Fn,n and A, we obtain

a(A(n6o,) - A(rn), ,6n..o - r^) 3 (o + h.llrl l)l lruo.^ - ,^ll

+ (Fn(") - Fn(rn), ,'n.,n - n,-) I a(A(x*), rn - r6n.,,"). (9)

In the case s : [s] we can write

Fn(r^) :  Fn(r) + Fi,@)(rn - r) + 16'-
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with
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(10)

T.

l l "o" l l  < ; l l ( /  
-  P")"11".

Therefore, from (6) and (9) we get

ollr6n,^- 
",11" S

s (o + nllol l  + if f  fr - p,),11" + l lr i(z)(r - e)"l l) l l ,uo,*-,,11
+ a \A( r * ) ,  t rn  -  r6hr* ) .

Because of s ) l, this inequality gives us the boundedness of the se-
quence {"uo.,,J. Without loss of generality, suppose that r6n.,n - ol €
X, as rz--+ *oo and,h, a, 6 -+ 0. Weshallprovethat c1 € So.

First, since F,, :: PiFPn is monotone, we have

(F^(r*) - Fn(r6no), xo - fh,,*l ) o, xn: Pnn, Vr € X.

Since P;P; : P;, this inequality can be written in the form

(F("") - Fn(r6n.o), ,n - ,6h.*) > o.

Together with (5), it gives

(F("") - Ioo * aA^(r61,.,,.), rn - r6h.,^)
-l (Fn.("to.^) - Fo(r6non), rn - ,6h.^,

that is equivalent to

(tr '  ("") - fa, rn - r6h.,n) + a(A(r.), rn - r6h.,^)

+ (F6(r61rr*) - F("unrn), rn - ,6n..,,) > o.

Thus we have

nllrur..ll ll", - "6h,^ll + (r(c,) - f6, rn - r6h.,^)

+ a(A(r , ) ,  rn  -  ,6h* , )

Letting z --+ too and h, 6, a -+ 0 we obtain

( f ' ( r )  - f o , r - r r )  )  0 , V c € X .
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By virtue of Minty's lemma, o1 € 56. Replacing rn in (fO) Uy nrn :

Pnrl and letting tz --+ +oo and h, 6, a --+ 0, we can see that rf;.,,. , rr

and

( A ( " ) ,  n - n i  2  0 ,  V o € S o .

On the other hand, this variational inequality is equivalent to

(A ( " t ) , ,  -  r r l  )  0 ,  V r  €  So .

Therefore, c1 is a solution of the problem (1) (see [ze]). Since A is uni-

formly monotone, the last variational inequality has an unique solution
u6. Thus, cL: fro and the entire sequence {roor) converges to c6.

For the case s I [r], the term * tttl- P")rll" in (to) will be replaced

tv A;#Of ll(/- P")"ll[e]+t un6 the process of proof of the theorem will

be entirely repeated. Q.E.D.

It is not difficult to verify that all results in Theorems I and 2 are
still true, if all conditions on F; are stated in the similar way only for
F, i. e. the index h in Theorems 1 and 2 for F1r, its derivatives, z6 and

\1rn can be obmitted. Indeed, for instance, in the proof of Theorem 2
the inequalities (9) and (10) will be replaced by

a(A(r6o,,) - A(r*), ,6n.,n - r*l 3 (a + allu ll)ll"uo.^ - ,"ll

+ ( r ( r )  -  F( rn) ,  ,6n,n-  rn)  *  a(A(r , ) , t  rn-  r6n.n) .  (9 ' )

ollrL,* - ""11" S
r.

+ a(A(r") ,nn -  roh,,n). (10')

respectively, and the process of proof of the theorem is completely re-
peated. We will do this in detail in answering the question about con-
vergence rate for the sequence {r65.n}.

Theorem 3. Let the conditions (i)- (iii) of Theorern I hold for F.

Moreouer, let

(") There exists a positiue constant d' and a neighbourhood Og of 16
such that

l l a ( " )  -A( "0) l l  S  d l l " - "o l l ! ,  3  )  0 ,  vc  € Io i

(vi) a is chosen such that o - (h + 6 + 1n)r/2, where
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'yn : rn&X tl l(/- p"1"oll, l l(/. - Pil loll, l l(/ - P"\rl l .

Then

l l"u^,* - 
"oll 

: o((h * 6)L/za + ri,), ! ' : min {lf 2s, i}.

Proof. From the condition (v) of this theorem, for sufficiently large z,
we have

(A(ro*), xn - n6n..n) 1 ali ll"t^,^ - ,^ll

+ (A(rs), no - rsn.,nl, nn € X,".

Thus, in the case s : ["], the inequality (10') with r,, : r,on has the
form

o]llr6n,*- co,,ll" S 0(6 + hllcsll * ?," + 1"^ + o,d1.,i)ll"uo,,*- co,ll
+ a(A(as)t non - r6h.,nl. (11)

It is easy to see that in this case of s

(A("o), aon - r6h,^): (,A(re), (P* - /)"0) * (2, F'(no)("o - ,6h,))

S o(h + r,,) * (2, F(as) - Fn(r6n.^)) + z,llzllll"uo,^ - call"/s!,

llru^.^- "oll" S ll"oo,*- co,.ll" + o(1"),

and

(2, F(x,s) - Fn(r6n,)) : (", fo - Idl * a(2, A@6h..)l

* (2, F6(ni") - rn@6n.)l

S 0(6 + a) + (2, rn@6n,) - rn@6n.)1.

(2, F6(af,,) -'Fo("uo,,)) : (2, F1,(n66) - Fn^(r6n,)l

* (2, Flrn(E6hr^) - rn@6nr^)1,

Since
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where

(2, F5*(nl,o,,) - rn@6n.)) : ((a - \2, F{nl,^)l
I 1,nllFn("6n.,*) - r@uo,) + r(r[,,;11 < o(t)

and

(2, F1.@f,.) - Fon("i,,)) : (", fu - aA(a6o.) - fdn + aAn(a6o.))

s 0 ( 6 + a )  + ( " , ( I *  - P , l ) / o )  S  o ( t " * 6 * a ) .

The inequality (11) can be written in the form

o(1 - nllzlllsl)ll"un,*- zo,,ll'

s o(h+ 6 + t* * tx + ad,1i)ll*uo,*- co,ll
t a O ( h + 6 +  a * 1 n ) .

Then

l l" l" - co,,l l" < o((h+ 6 + t,-)rlz + 1!2+ ̂ ri) l lr l , - 
"o,l l

+ o ( ( h + 6 +  a * t n ) .

Applying again the relation in [f7] to the last inequality we obtain

ll"o'* - 
"o*ll

Therefore

l l '3'  - 
"ol l

The case s I [s] is proved in the similar way as in the proof of

Theorem 1. Q.E.D.

3. AN EXAMPLE

Consider the following problem: find a norm-minimal solution of

the linear integral equation

(rr)(t) = Kf K*r(r) : /o(r), ,  € o, (12)



Nguyen Buo4g

for a given Io(") e Ln(fl), | < q ( *m. Here the operator K is defined
by

( x x ) ( t ) :  I  r | , s ) c ( s ) d s ,  r € o ,
J O

where the kernel function fr(t, s) is a measurable on O x O such that
the null space N(K) * {0} and O is a closed set in R'. The function
f (t), t € Rl, is a real and non-decreasing function.

Suppose

f

I  l *@,v) lq  < +oo,  l / ( t ) l  s  bo+at  l t ;e  
- t  

,  bo,  br  )  o ,  p- r  *s-1 :  1  .
J  O x O

Then the operator K is a linear, bounded operator from X : Io(O)
into X* : tro(O), and (/z)(t) :  f  ("(t)) :  X* - X, is a monotone
operator. Therefore, F : Kf K* is also a monotone operator from X
into X*. If either K or / is compact, then (fZ) is ill-posed. We are
interested in a solution z6(t) of (12) with minimal norm. In this case,
the operator .4 is the dual mapping U" of the spaces ,Lo. It satisfies
all necessary conditions (see [Z]): If X is a Hilbert space, then U" : /,
s  :  2 ,  rna  -  l ,  . 6  :  I  and  d  :  c (R)  :  L ,  R :  max { l l c l l ,  l l c s l l } .  Fo r
the spaces of Lebesgue's type Ip, Lp, Wln, p ) 1 we can construct Ug
satisfying condition (6) and the condition (v) of Theorem 3 with

|  < p  < 2  :  s . : 2 ,  r n A -  p - L ,  
" ( p )  

-  r 2 2 n - r e P L P - r ,

e : lr ;rax{ZP,2p}, |  < L < 3.18, 3 : p - r i

2  <  p  I  s :  P ,  t r t , l : 2 2 - P  l p ,

c ( p ) : z p p p - 2 { p l p  - -  1 + m a x { p ,  r } ] } - t ,  . 6 : 1 .

In particular, if I < p ( 2, then s : 2 and we only need to verify
the condition (iii) of Theorem 1 and the condition (iv) of Theorem
2 for each concrete problem and concrete form of finite-dimensional
approximations of Lo@). We shall see this in the following case, when
O : [0, L], p :2. Then condition (iii) of Theorem I is written in the
form

ro :  K f i (K*ns )K*zh ,

where fi is the approximations of /. This equation has solution if
co € R(K), the range of. K, and there exist u;,(t) e'R(K-) such that
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€ o - -  f i ( v o ) u n ,  a o : K * c o ,  K € o : E o t

where f i@o) is coercive on .L2[0, 1].

Indeed, let for example

r(t) : {::,1,, _,,:l::,, lll _ l: i l:
e 2 ) e 1 > 0 ,  d e R .

Then we can approximate /(t) bv In(t) in the following form

263

(  13)

I

I
i t t / ( t o - h , t o - r h l ,

to  i  h)2

if t € (ro - h, to + h] .

The coefficients p and g can be calculated by solving the system of two
linear equations

f n \ o + h ) : e z h + d ' ,
f i Q o + h ) : e 2 '

It is easy to verify that for sufficiently small h the coefficients p ans g

are defined uniquely and the functions fi,(t) are monotone and differ-
entiable. Moreover

l rrn(t) - f(t) l  S lrrr,(to) - r(to)l S "h, 
c ) 0.

On the other hand, we have

c , t + \ _ l  e 1  o r e 2 ,  i t t / ( t o - h , t o + h ) ,
r h \ a t  -  

I  , ,  +  ( r -  
" r ) ( t - t o + h ) 1 4 h ,  

i f  t  e [ t s -  h , t o + h ] .

Therefore, condition (fa) is satisfied, bE.urrr" e1 ) 0. Now, we approxi-
mate the Hilbert space H : Lz[0, f] by the sequence of linear subspaces
IJ,n, defined by

H n :

,hi :

L { t r ,  t h z , - .  . , , h n }  ,

[ 1 ,  
t e ( t i - r , t i ] ,

I  o ,  t  /  ( t 14 ,  t 1 ] .
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It is well known that

l l(/ - P")Yll : o(n-L ) , vY e Lz[o, t] ,

where

pna : f a(t)rhi (t) .
j : l

By taking dn : O(n-tlz1 and ft. : 6 : O("-') we can see that almost
all the conditions of Theorems 1- 3 are satisfied.
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