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A Short Communication

A REMARK ON RIEMANN HOLOMORPHIC
EXTENSION PROPERTY!

LE MAU HAI

It is well-known [1] that every holomorphic function on a normal
complex space can be holomorphically extended through analytic sets
of codimension > 2. In general case this result is not true. In this note
we shall investigate the Riemann holomorphic extendability of complex
Lie groups.

We say that a complex space X has the Riemann holomorphic
extension property in the dimension n if every holomorphic map from
Z \ S, where Z is a normal complex space of dimension n and S is
an analytic set in Z of codimension > 2, to X can be holomorphically
extended on Z.

We shall prove the following:

Theorem. Let G be a complex Lie group of dimension 2. Then G has
the Riemann holomorphic extension property in the dimension 2 if and
only if G does not contain a compact curve.

Proof. (i) Assume that G does not contain a proper compact analytic
set of positive dimension. Given f : Z\ S — G a holomorphic map,
where Z is a normal complex space with dimZ = dimG and S is an
analytic set of codimension > 2. Take a plurisubharmonic exhaustion
@ on G. Such a function exists by [4]. Then ¢ is plurisubharmonic on
Z [2]. By [6] we can find a holomorphic bundle map 8 : G — T with the
fibers that are Stein manifolds, where T is a complex torus. Since T is a
compact Kahler manifold, by [5] f can be extended to a meromorphic
map g : Z — T.. Hence if v : 7 7Zis t}le Hironaka singular resolution
of Z, then h = g+ is holomorphic on Z. For each 20 € y~!(S) take
two neighbourhoods U and V of 2° and h(z°) respectively such that
h(U) € V and §~(V) is a Stein manifold. Then f4(U \ v~1(S)) C
9—'(V). By the upper semicontinuity of o fy on Z and since © is an
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exhaustion function on G, it follows that f'7|U\,y_1 (5) can be extended

holomorphlcally on Z. Hence f can be extended to a meromorphic map
f:z-a. Put I(f \={z€Z: f(2) = G} C I(f).

By the hypothes1s dim Z = dimG. Therefore, by the density of
T(f)\ o Y(1(f)) in T(f) and the properness of the projection of

r(f) — Z it follows that I(f) = 0. Thus f(2) is a proper analytic
compact set in G for every z € I( f ). By the hypothesis, dim f (z) =
for every z € I( f ). This implies, from the normality of Z, the holomor-
phicity of f ]

Now assume that G has the Riemann holomorphic extension prop-
erty in the dimension 2. Let G contains a proper compact analytic
set X of positive dimension. Since dim X = 1, it follows that X is
projective. Thus there exists a normal cone X over X. Obviously the
canonical map X \ {0} — X cannot be extended holomorphically at 0.

Problem. Let G be a complex Lie group of any dimension. Prove that
G has the Riemann holomorphic extension property in its dimension if
and only if G does not contain a compact curve.

We would like to thank Prof. N. V. Khue for suggestions that led
to improvements in the presentation of this note.
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