VIETNAM JOURNAL OF MATHEMATICS Volume 23, Number 2, 1995

A Short Communication built and deal and the state of the

A REMARK ON RIEMANN HOLOMORPHIC

EXTENSION PROPERTY¹

LE MAU HAI DE LE MAU HAI

It is well-known [1] that every holomorphic function on a normal complex space can be holomorphically extended through analytic sets of codimension ≥ 2 . In general case this result is not true. In this note we shall investigate the Riemann holomorphic extendability of complex Lie groups.

We say that a complex space X has the Riemann holomorphic extension property in the dimension n if every holomorphic map from $Z \setminus S$, where Z is a normal complex space of dimension n and S is an analytic set in Z of codimension ≥ 2 , to X can be holomorphically extended on Z.

We shall prove the following:

Theorem. Let G be a complex Lie group of dimension 2. Then G has the Riemann holomorphic extension property in the dimension 2 if and only if G does not contain a compact curve.

Proof. (i) Assume that G does not contain a proper compact analytic set of positive dimension. Given $f: Z \setminus S \to G$ a holomorphic map, where Z is a normal complex space with dim $Z = \dim G$ and S is an analytic set of codimension ≥ 2 . Take a plurisubharmonic exhaustion φ on G. Such a function exists by [4]. Then φf is plurisubharmonic on Z [2]. By [6] we can find a holomorphic bundle map $\theta: G \to T$ with the fibers that are Stein manifolds, where T is a complex torus. Since T is a compact Kahler manifold, by [5] θf can be extended to a meromorphic map $g: Z \to T$. Hence if $\gamma: \widehat{Z} \to Z$ is the Hironaka singular resolution of Z, then $h = g\gamma$ is holomorphic on \widehat{Z} . For each $z^0 \in \gamma^{-1}(S)$ take two neighbourhoods U and V of z^0 and $h(z^0)$ respectively such that $h(U) \subset V$ and $\theta^{-1}(V)$ is a Stein manifold. Then $f\gamma(U \setminus \gamma^{-1}(S)) \subset$ $\theta^{-1}(V)$. By the upper semicontinuity of $\varphi f\gamma$ on \widetilde{Z} and since φ is an

¹Supported by National Basic Research Program in Natural Sciences.

exhaustion function on G, it follows that $f\gamma|_{U\setminus\gamma^{-1}(S)}$ can be extended holomorphically on \widehat{Z} . Hence f can be extended to a meromorphic map $\widehat{f}: Z \to G$. Put $\widetilde{I}(\widehat{f}) = \{z \in Z : \widehat{f}(z) = G\} \subseteq I(\widehat{f})$.

By the hypothesis, dim $Z = \dim G$. Therefore, by the density of $\Gamma(\hat{f}) \setminus \sigma_{\hat{f}}^{-1}(I(\hat{f}))$ in $\Gamma(\hat{f})$ and the properness of the projection $\sigma_{\hat{f}}$: $\Gamma(\hat{f}) \to Z$ it follows that $\tilde{I}(\hat{f}) = \emptyset$. Thus $\hat{f}(z)$ is a proper analytic compact set in G for every $z \in I(\hat{f})$. By the hypothesis, dim $\hat{f}(z) = 0$ for every $z \in I(\hat{f})$. This implies, from the normality of Z, the holomorphicity of \hat{f} .

Now assume that G has the Riemann holomorphic extension property in the dimension 2. Let G contains a proper compact analytic set X of positive dimension. Since dim X = 1, it follows that X is projective. Thus there exists a normal cone \widetilde{X} over X. Obviously the canonical map $\widetilde{X} \setminus \{0\} \to X$ cannot be extended holomorphically at 0.

Problem. Let G be a complex Lie group of any dimension. Prove that G has the Riemann holomorphic extension property in its dimension if and only if G does not contain a compact curve.

We would like to thank Prof. N. V. Khue for suggestions that led to improvements in the presentation of this note.

REFERENCES

- 1. G. Fischer, Complex analytic geometry, Lecture Notes in Math., Vol. 538, Springer Verlag, 1976.
- 2. A. Hirschowitz, Pseudoconvexité au-dessus d'espaces plus ou moins homogeneous, Inven. Math., (1974), 303-332.
- 3. H. Kazama, $\bar{\partial}$ -cohomology of (H,C) group, Publ. RIMS. Kyoto Univ., 20 (1984), 297-317.
- 4. H. Kazama, On pseudoconvexity of complex Lie groups, Mem. Fac. Sci. Kyushu Univ., 27 (1973), 241-247.
- 5. Y. T. Siu, Extension of meromorphic maps into Kahler manifolds, Ann. Math., 102 (1975), 421-462.
- S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J., 57 (1974), 121-138.

Department of Mathematics, Pedagogic College I of Hanoi,

Tu Liem, Hanoi, Vietnam