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A Short Communication

A REMARK ON RIEMANN HOLOMORPHIC

EXTENSION PROPERTYI

LE MAU HAI

It is well-known [f] ttrat every holomorphic function on a normal
complex space can be holomorphically extended through analytic sets
of codimension ) 2. In general case this result is not true. In this note
we shall investigate the Riemann holomorphic extendability of complex
Lie groups.

We say that a complex space X has the Riemann holomorphic
extension property in the dimension n if eve,ry holomorphic map from
Z \ S, where Z is a normal complex space of dimension z and ,S is
an analytic set in Z of codimension )- 2, to X can be holomorphically
extended on Z.

We shall prove the following:

Theorem. Lct G be a complec Lie group of dimension 2. Then G has
the Riemonn holomorphic ertension propertg in the dimension 2 if ond
only if G does not contain a compoct curve.

Praof. (i) Assume that G does not contain a proper compact analytic
set of positive dimension. Given I, Z \S - G aholomorphic D&P,
where Z is a normal complex space with dim Z : dimG and S is an
analytic set of codimension ) 2. Take a plurisubharmonic exhaustion
p on G. Such a function exists bv [A]. Then pl is plurisubharmonic on
Z l2l.BV [0] we can find a holomorphic bundle map 0: G -+ ? with the
fibers that are Stein manifolds, where ? is a complex torus. Since ? is a
compaet Kahler manifold, UylS] 0f can be extended to a meromorphic

mapg: Z + fl. Hence if 1: Z --+ Z is tle Ilironakasingularresolution

of 2, then h : gl is holomorphic on 2. For each 
"o 

€ 1-t(S) take
two neighbourhoods U and, V of zo and h(zo) respectively such that
h(U) c V and |-L(V) is a Stein manifold. Then /1(U\r-t(S)) c

|-'(V't. By the upper semicontinuity of p|l on Z and. since tp is an
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exhaustion function on G, it follows that /11y1^/-r(s) can be extended

holomorphically Z" ? Hence / ."^r be extended to a meromorphic map
f  : Z - - .  G .  p u t ' 1 6 ) : { z € z , i Q )  - c } q / ( i ) .

. By the hypothesis, dim Z : dimG. Therefore, by the density of
f(f) \ oTrgGD in r(l) and the properness of the projection a; :

r(f) -- Z it follows that 7(i) : g. Thus f(z) is a proper analytic
compact set in G for every z € l(fi. By the hypothesis, dim ik) : O
for every z € I(h. This implies, from the normality of Z,lheholomor-
phicity of f.

Now assume that G has the Riemann holomorphic extension prop-
erty in the dimension 2. Let G contains a proper compact analytic
set X of positive dimension. Since dimX: 1, it follows that X is
projective. Thus there exists a normal .otr" -f over X. Obviously the
canonical -u,p -f \ {O} -- X cannot be extended holomorphically at 0.

Problem. Let G be a complex Lie group of any dimension. Prove that
G has the Riemann holomorphic extension property in its dimension if
and only if G does not contain a compact curve.

We would like to thank Prof. N. V. Khue for suggestions that led
to improvements in the presentation of this note.
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