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A SUFFICIENT CONDITION FOR
HAMILTONIAN CYCLES IN TOUGH GRAPHS

VU DINH HOA

Abstract. We prove in this paper a conjecture of Bauer and Schmeichel [5]
that every 1-tough graph G onn > 3 vertices with s (G) > n+x—2 is Hamil-
tonsan, where 03(G) = min {d(z)+d(y) +d(z) : {z,y, 2} is an independent
set of three vertices} and k s the connectivity number of G.

1. INTRODUCTION

In this paper we consider only finite undirected graphs without
loops or multiple edges. For undefined terms we refer to [3]. Herein
V(G), k(G), a(G) and w(G) denote respectively the vertex set, vertex
connectivity number, independence number and the number of the com-
ponents of a graph G. We let n = |V (G)| throughout the paper. Follow-
ing Chvital [7] we define a graph G to be 1-tough if w(G — S) < |S| for
every subset S of V(G) with w(G—S) > 1. If v € V(G) and H C V(G)
then G[H] is the spanning graph of H in G and Ny(v) is the set of
all vertices in H adjacent to v. We denote [Ny (v)| by dg(v). We let

k
0k (G) = min { > d(v;) : {v1,v2,...,vx}isanindependent set ofvertices}
l 1

if £ < o, and 0x(G) = oo if k > a. For o, we use the more common

notation 6. If no ambiguity can arise we write sometime «, a... instead
of k(G), a(G), etc...

We begin with a result of Haggkvist and Nicoghossian [6].

Theorem 1. Let G be a 2-connected graph with minimum degree § >
n-+kK

3

- Then G s Hamultonian.

The following Theorem of Bauer, Broersma, Veldman and Rao
[4] generalizes Theorem 1.



58 Vu Dinh Hoa

Theorem 2. Let G be a 2-connected graph on n > 3 vertices with
o3 > n+ k. The G is Hamailtonian.

Clearly all 1-tough graphs on three or more vertices are 2-con-
nected. Hence a natural question is whether the degree condition in
Theorem 1 can be improved if G is assumed to be 1-tough. This is the
content of a result of Bauer and Schmeichel [5)].

. -2
Theorem 3. Let G be a 1-tough graph with 6 > ﬁ:— Then G

ts Hamiltonian.

In this paper we prove a conjecture of Bauer and Schmeichel [5].

Theorem 4. Let G be a 1-tough graph with oz > n+ k — 2. Then G
ts Hamiltonian.

The following class of graphs, originally given in [1], shows that
our result is best possible if « = 2. For n = 3r +1 > 7, let us construct
the graph H, from 3K, + K; by choosing one vertex from each copy
of K,, say u, v and w, and by adding the edges uv, uw and vw. The
H, is a 1-tough nonhamiltonian graph on n = 3r 4 1 vertices. Clearly,
k(H,) =2and 03 =3r=n+x—3.

The proof of Theorem 4 relies on the following Theorem, conjec-
tured by Jung and weibing.

Theorem 5 (Theorem 2.12in [9]). Let G be a 1-tough graph onn > 3
vertices with o3 > max(n,3a — 5). Then G 1s Hamiltonian.

A part of our argument is facilited by a recent result of Ainouche
and Christofides [2]. For nonadjacent vertices v and v in a graph G,
we denote by ayy(G) the cardinality of a largest set of independent
vertices in G containing u and v. Let £,,(G) = |N(u) N N(v)|.

Theorem 6. Let u and v be nonadjacent vertices of a graph G. Sup-
pose 0y, (G) < £4y(G). Then G ss Hamiltonian if and only if G + uv
ts Hamiltonian.
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2. PRELIMINARIES

Let C be a cycle or a path in G with an assigned orientation. If
z and y are two vertices of C then T g y denotes the path on C from z
to y, inclusively both z and y, following the assigned orientation. The
same vertices in reverse order are given by y < Z- We will consider TSy
and y 5z both as a path and as a vertex set. If ¢ is a vertex on C,
then ¢* and ¢~ are its sucsessor and predecessor on C, respectively,
according to the assigned orientation. If X is a set of vertices on C
then X* := {z+ : £ € X}. If G is a nonhamiltonian graph, we set
#(C) = max{d(v) : v € V(G) —~ V(C)} and #(G) := max{u(C) :
C is a longest cycle in G}.

The following lemmas are proved in [3].

Lemma 1 (Theorem 5 in [3]). Let G be a 1-tough graph on n >3
vertices with o3 > n. Then every longest cycle in G is a dominating
cycle.

Lemma 2 (Lemma 8 [3]). Let G be a 1-tough graph on n > 3 vertices
with 03 > n. Suppose C s a longest cycle in G. If vo € V(G)-V(C)
and A = N(vo), then (V(G) — V(C)) U A* is an independent set of
vertices.

The next lemma is proved in [8].

Lemma 3 (Lemma 9 in [8]). Let G be a I-tough graph on n > 3
vertices with o3 > n. If G 1s nonhamiltonian then G has a longest cycle
C such that C avoids a vertez vo € V(G) — V(C) with d(vy) = u(G)
and |[N(vo)* N N(vo)~| > 03 —n+4.

The next lemma can easily be proved with arguments similar to
those used in the proof of Case 2 of Theorem 2 in [5]. Therefore, its
proof is ommited.

Lemma 4. Let G be a 1-tough graph with o5 > n + k — 2. If there
extsts a cut set S of k vertices and an independent set T of a vertices

-2
such that d(t) = i foranyt €T and T ~ (SUV(G;)) # 0 for
any component G; of G — S. Then G ts Hamiltonian.
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In what follows we assume that C is a longest cycle in a 1-tough
graph nonhamiltonian graph G on n > 3 vertices with 03 > n, vo €
V(G) — V(C) with d(vo) = u(G), v1,v2,...,vk the vertives of N(vo)
on consecutive order, u; = v; and w; = v;_, (indices modulo k). We
denote, for convenience, # = {i : there exists j # ¢ such that u,w; €

E(G)}.

Lemma 5 (Lemma 4 in [8]). If u; = w; then N(u;) C V(C) and
(V(G) — V(C)) UN(vo)* UN(u;)t ts an independent set of vertices.

Lemma 6 (Lemma 5 in [8]). If a = |(V(G) — V(C)) U N(vo)*| then
F#0.

Lemma 7 (Lemma 6 in [8]). Suppose u; = w; and N(u;) = N(vo).
Moreover, suppose ¥ # 0. Let igc = max¥ and jo # to such that
ui,wj, € E(G). Then d(uj,) + 2d(vo) < ¢(C) + z, where z 15 the
number of the vertices u; = w; such that |[N(u;) N N(vo)| < d(vo) — 2.

Lemma 8. Let G = (A, B,E) be a bipartite graph with A = {a,, a3,
cevs@n_1}, B = {b1,b2,...,bp} (n > 3) and S = {by,bg,...,bx} for
some 2 < k < n such that

1) bia; € E(G) foranyt >k and j <n—1;

2) d(b;) > k—1 for any i < k;

3) IN(S)]| > k.

Then G contains a Hamiltonsan path joining two different vertices of S
in G.

Proof. The proof is by induction on k. The statement is trivially true
for k = 2. Now, let k¥ > 2 and G is a graph satisfying the hypotheses
of the lemma. We distinguish two cases:

Case 1: There exists a subset S’ of k — 1 elements of S such that
IN(S')| =k — 1.

We assume, without loss of generality, that 8' = {by,bz,...,bk—1}
and N(8') = {a1,a3,...,ax—1}. By 2), the spanning graph of S'u
N(S') is a complete bipartite graph on 2(k — 1) vertices. By 3),
there exists a vertex of A — N(S'), say ak, adjacent to bg. Now,
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bxarbrr18ky1 ... @n_1bparbiashs ... ax_1bx_; is a Hamiltonian path
joining two vertices of S.

Case 2: For any subset S' C S with |§'| = k — 1 we have
IN(S')| > k — 1.

To prove that G contains a Hamiltonian path joining two vertices
of S we assume the contrary and show that this assumption leads to a
contradiction. A path W joining two vertices of S such that S C V(W)
is called an O-path. We claim that G contains no 0-path. Suppose, to
the contrary, that G contains an 0-path W. Without loss od generality
we may assume that £(W) > £(W’) for any O-path W'. We give a
direction on W and assume, without loss of generality, that b;;; €
b; wbit2 for any ¢ < k — 1. Since G contains no Hamiltonian path
joining two vertices of S, B — V(W) # @ and A — V(W) # 0. Let
b* € B—- V(W) and a* € A — V(W). By the maximality of ¢(W),
b+ = b;,,. Otherwise, b;H' ¢ S for some b; € S N V(W) and therefore
by wbi b+b* *b++ w bk is a longer O-path than W, a contradiction. For
convenience we may assume that a; = b;-*' for any 1 < k — 1. we claim
that N(b;) = {a1,a2,...,ak_1}. Otherwise, there exists some @;, ¢
{a1,a2,...,a5_1} adjacent to b; and therefore b; a;, b*a, w b is a longer
O-path than W, a contradiction. Similarly, N(bx) = {a1,a2,...,ak-1}.
By 3) there exists some b;, € S and some a; ¢ V(W) such that

b; € E and therefore b, a’ b*b" wbi b;-; w Ok is a longer O-path than

Jo : Jo C1
W, a contradiction. Thus, G contams no O-path.

Let S’ = {b1,b2,...,bk~1} and choose some a;, € N(bi). We
set G' = G — {bk,a;,}. It is easy to see that the graph G’ satisfies
conditions 1) - 3) for k — 1 and therefore there is in G’ a Hamiltonian
path joining two vertices of S'. A pa.th W'in G’ joining two vertices
of S’ such that S’ C V(W) is called a 1-path. Let W be a 1-path in
G’ such that £(W) < £(W') for any 1-path W’'. We give a direction
on W and assume, without loss of generality, that biy1 € by biyo for
any 1 < k — 1. By the minimality of £(W), N(b;,) N (V(W) — 8't) = 0.
Otherwise, there exists some a* € N(b;) N (V(W) — S't). We set iy =
max{s : b; € by wa* and b; € S’} and the path b, wb1a* & bxk_1 would
be a shorter 1-path than W, a contradiction. Thus, N(b,)nV (W) C §8'*
and therefore |[N(b;) NV (W)| <.k — 2, implying that there exists in G
some a* ¢ V(W) adjacent to b;. Since there is no 0-path in G, ¢* # a;,.
Since |B| — |A| = 1, there exists some b* € B such that b* ¢ SUV (W).
Now the path bra;,b*a*b; o br—1 would be an 0-path, a contradiction.
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The proof is complete.

3. PROOF OF THEOREM 4

The proof is by contradiction. Suppose that G is a 1-tough non-
hamiltonian graph on n > 3 vertices with o3 > n + £ — 2 and suppose
that, additionally, |E(G)| is maximum. Let S be a fixed cut set of «
vertices and suppose that G1,G3,...,G; are the components of G — S
(t > 2). Let T be an independent set of o vertices t1,t3,...,t5 such
that d(t;) > d(t2) > -+ > d(ta).

Claim 1.
l)azn_w_‘!.
3
Bas 0 R T3
= K 3
2 >

3) by, 2 K fort; #t; €T — {ta}.

Proof. Since G is a 1-tough graph, £ > 2 and therefore 03 > n. By

4
Theorem 5, 03 < 3a—6, implying by 03 > n+x—2 that a > M—

3 n
andn+xk-—22> -2-(n+ k—a). Bya< 3 since G is a 1-tough graph

+4
and by a > E;—+—wegeta2n+4. Ift; #t; € T — {to} then

d(t:) +d(t;) > Zos and N(£) U N(t;) € V/(G) = T. Thus,

€s; = |N(8:) 0 N(25)] = d(ts) + dlt;) — [N (8:) U N ()]

> S+ =2~ (n=0)
>nt+r—a)—(n—a)
= 3TN (1)

Claim 2. There exists some i, say ¢+ = 1, such that T — {ta} C
SUV(G).

Proof. Suppose, to the contrary, that there exists ¢ # j, say 1+ = 1 and
j =2, such that (T — {ta}) NV (G1) # 0 and (T - {ta}) NV (G2) # 0.

Choose t;; in (T — {ta}) NV(G;) (j = 1,2). Clearly, N(T3,) N
N(t;,) € S, implying by 3)of Claim 1 that £;;;; = x and all inequalities
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-2
in (1) are in fact equalities. Thus, d(¢;,) = d(t;,) = d(t.) = 2d-Eg
and SN T = @, and therefore T — (S UV (G;)) # @ for any component
Gi of G — S. Since t;, and t,, are arbitrary chosen, d(t) = d(t,) =
n+Kk—2

.3
tion.

for any t € T. By Lemma 4, G is Hamiltonian, a contradic-

Claim 3. t = 2 and G is a complete graph.

Proof. Let A =V(G) -V (G,) - S, n1 = [V(G1)| and ny = |A| so that
n = n; + nz + k. It suffices to show that G|A| is complete. Suppose,
to the contrary, that there exist vy, v; € A such that v,v, & E (G).
By Claim 2 and by 2) of Claim 1, [T N V(G;)| > 3. So we can choose
t1 #t2in TN V(Gl) Thenn+xk-2< d(tl) +d(vl)+d(v2) =n;+K—
(a—1)+2(ny + £ —2), implying by n = ny + k + n, that neg > a—k+1.
Similarly, ny > 2a—k— 3 because of n+x—2 < d(t;) +d(tz) +d(vy) <
2(ni+k—a+1)+(ny+x—1). Thus, ny+ny > (a—r+1)+(2a—x~—3)
and therefore 03 > n+ x —2 > 3a — 4, which contradicts 1) of Claim 1.

Claim 4.

1) "‘;“—15d(t,-) <

nt+K

ny+Kk+1

for any t; e TNV (Gy). The
ny+Kk+1
2

equality d(t;) = —1ord(t;) =
one of the vertices in T NV (G)).

holds only for at most

2) TN V(G2) = 0 then d(t) = L’H

t e TNV(G1) and N(w) = SUV(G;) — {w} for any w € V(G,).

) FTNV(G:) #0and TNS # 0 then TNS = {t*} for
some t* € T and d(t) o 8 >a—1foranyt € TNV(G;) and
N(ta) = SUV(G,) - {ta,t*).

4) IfTNV(G) #0and TNS =0 thenn; > 20—k —1 and
d(v) > a —1 for any v € V(G,).

> a—1 for any

Proof. First note that for any t; # t; € TNV (G;) we have:

o = agy; > Ly = d(t:) +d(t;) — [N(t) UN(2;)). (*)

1) Setting IN(t,') U N(tj)l < |S U V(Gl) = T’ <ny+k—a+1lin
(*) we get (a —1) > d(t;) + d(t;) — (n1 + £ — & + 1) and, consequently,
n1+k > d(t;)+d(t;). Moreover, d(t;)+d(t;) > ny+x—1 since n+k—2 <
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d(t;) + d(t;) + d(w) by d(w) < n2+x—1 where w is an arbitrary vertex
of V(G3). Thus, ny + & > d(t;) + d(t;) > ny +« — 1 for any ¢; # t;

1
in TN V(G;). We easily get that -"‘—+2'°—+— > d(t;) > "‘;’“ —1
for any t; € T N V(G1) and that the equality d(t;) = nl;n -1
1
or d(t;) = Eli;—_‘_— holds only for at most one of the vertices in
T NV (Gy).

2) Setting |N(t;) U N(t;)| < n1i +k—a by TNV(G:) = 0,
d(t;) + d(t;) > n+k—2—d(w) and d(w) < nz+r—1in (*) where w is
an arbitrary vertex of Gy, we get a > £;,4. > a—1. Thus, £;,;;, = a—1
and, consequently, d(¢;) > a—1,d(w) =n; +k—1and d(t;) +d(t;) =
(n+k—2)—(na+x—1) = ny+x—1. Using |[TNV(G1)| > 3 we choose
tr € TﬂV(Gl)—{t,', tj}. Similarly, d(t;)-{—d(tk) =] d(t;)-’rd(tj) = d(tj)+

d(tx) = ny + k£ — 1 and therefore d(t;) = d(t;) = d(tx) = ﬂj——;—_—l .
Thus, d(t;) = o o > o —1and N(w) = SUV(Gz2) — {w} for

2

any t; € TNV(G,;) and w € V(G,).

3) Setting |N(t;) UN(¢t;)] Sni+x—a+1by TNV(G:) # 0,
d(t;) +d(t;) > n+r—2=d(ts) and d(ta) > n2+£—|SNT|-1in (*),
we get o > b, > |SNT|+a—2. By SNT #0,in fact, |[SNT| =1
and £;¢; = a—1 and consequently, d(t;) > a— 1, d(ta) =nz + £ — 2
and d(t;) + d(t;) = (n + £ — 2) — (n2 + £ — 2) = ny + . Similarly as in
2), we get d(ts) = 1% > o — 1 and N(ta) = S UV (G2) — {ta,t*}-

4)ByTnS =0,a= w(G-(V(G1)uS§-T)) < V(G1)uS-T| =
n,+k—a+1since G is a 1-tough graph, and therefore n, > 2a -« — 1.

Now, suppose, to the contrary, that d(v) < o — 2 for some v €
V(G1). Then d(v) < R Aetl by n; > 2a — k — 1 and therefore
v € V(G,) — T since 1). Moreover, d(v) + d(t;) +d(ta) < n+£K—2
since d(t;) < Byt Kbl by 1) and d(t,) < ng + £ — 1, and therefore

vt; € E(G) forany a—12>1 > 2, implying by d(v) < a — 2 that, in
fact, d(v) = @ — 2 and N(v) = {t2,t3,...,ta—1}. Hence, vt; & E(G)

— 3
and therefore n + £ — 2 < d(v) + d(ta) + d(t1) < . ket + (ng +
1 1
k—1)+ ™ +2'€ i Lo + & — 2 and consequently, d(t1) = ﬁl—_*_-;—_—*_—
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and d(v) = a -2 = nu 58, But [V(G)US - T| = n1+2n+1

ny+x—3

by a —2 = and therefore N(t,) = V(G;) U S — T, which

contradicts vt; ¢ E(G).
Claim 5. 0’2(G1) > 2(& = 1).

Proof. For any two different nonadjacent vertices u and v in G; choose
w in Gy, specialy w = to if V(G2) N T # 0. We easily get d(u) +d(v) >
2(a — 1) by 2) - 4) of Claim 4 and by d(u) + d(v) > 03 — d(w). Thus
Claim 5 is true.

Now, a longest cycle C and a vertex vy € V(G) — V(C) are cho-
sen such that d(vo) = u(G) and [N(vo)* N N)vp)~| > 03 — n+ 4. Let
T* := {vo} U (N(vo)* N N(vo)~) and u;,,u,,,...,u;, the vertices of
T* — {vo} such that d(u;,) > - > d(u;,). Using |T*| > £ + 3 because
of 03 —n+4 > k+2and [T*NV(G:)| < 1since G is a complete graph
by Claim 3, we get |T* N V(G,)| > 2, say u*, u** € T* NV (G;). By
Claim 5 and by the maximality of d(vo), d(vo) > (d(u*) + d(u**))/2 >
a — 1. Since {vo} U N(vo)" is an independent set of vertices, in
fact, d(vo) = d(u*) = d(u**) = a — 1. Note that if u; = w; then
N(ui) € N(vo) by Lemma 5. It follows that N(u*) = N(u**) = N(vo)
by d(vo) = d(u*) = d(u**) proved above. Let T := {vo} U N(vo)™.
Using 7 # 0 by Lemma 6 we determine io = max ¥ and jo # #o such
that u;,wj, € E(G). By Lemma 7, d(uj,) + 2d(vo) < £(C) + z, where
z is the number of the vertices u; = w; such that d(u,) < d(vo) — 2.
By 03 > n, z > 1 and therefore d(u;,) + d(vo) + d(u;,) < £(C) +z — 2.
Thus, z > 3 and therefore a — 3 > d(u,,_,) > d(us,_,) > d(uy,).
Hence T N V(G2) = 0 since, otherwise, {ui,_,,ui, ,} NV (G1) # 0
and therefore d(ui,_,) > « — 1 by 3) and 4) of Claim 4, a contra-
diction. Now, by 2) of Claim 4 for ¢t = u*, and by d(u*) = a — 1,

d(ut) = BLHETL Ly and therefore N(u*) = V(Gi) US = T
2

since |[V(G1)US —T| =a—1 by n_1_-|-2n——-1 = o — 1. It follows by
2) of Claim 4 that N(t) =V(G,)US — T for any t € TN V(G;). Let
V1,Y2,...,Vn—1 the vertices of V(G1)US -T, t;,,t;,,...,t;, the vertices
of SNT, 1, stirsas-- - »ti, the vertices of TNV (Gy) and wy, ..., w,, the
vertices of G;. Clearly, r > 1 by TNV (G;) = . Moreover, r > 2 by
w(G—(V(G1)US-T)) < |V(G1)US ~T| = a—1since G is a 1-tough
graph. Let A=V(G1)US~T,B=T,8=TnS and G* = (A, B; E)
the bipartite graph obtained from G[AUB] by deleting all edges of G[A].
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——K'—_—-l-foranyt;eV(Gl)nT and by o3 >n+ k-2,

d(t) > k—1+ny and therefore d4(t) > k—1foranyt € S. If |S| < |S| or
|S| = |S| < |[Na(S)| then G* contains a Hamiltonian path joining two
different vertices of S by Lemma 8. Let H be a Hamiltonian path in G*
joining two vertices t;, and t;, in S. Then wyw; ... w,, Hw, would be a
Hamiltonian cycle in G, a contradiction (note N (w;) = SUV (G2)—{w;}
by 2) of Claim 4). Thus, |S| = |S| > |Na(8)|, implying by da(t) > x—1
for any t € S that, in fact, |S| = |S| = |Na(S)| + 1 and da(t) =k - 1
for any t € S. Since G is a 1-tough graph, w(G — (N4(S) U V(G:)) <
|N4(S) UV(G3)| = & — 1+ ny and therefore 2 < ny. Let vy,...,vk_1
the vertices of N4(S) then every vertex of S is adjacent to any ver-
tex of {v1,...,vk—1}. Now, {vk,...,Va—1} is an independent set of
vertices since, otherwise, say vkvg+1 € E(G), and C : t;,vat;,v3. ..
tio_2Vk—1ti. VeV +1bip 2 Uxt2 - ti_Va—1ti viti,_ , wit; w2 ... Wp,ti
would be a Hamiltonian cycle, a contradiction. Moreover, there is no
edge joining a vertex of {v1,...,vx—1} with a vertex of {ve,...,va-1}
since, othewise, say vxvc—1 € E(G), and C : ¢;,vati,v3 ... i, ,Vk—1Vk
i1 Vktibin aUt2 .o ti_ Va—1ti Viti _ witi Wz ... Wy, t;, would be
a Hamiltonian cycle, a contradiction. Thus, d(v,), d(vc41) < a—« and
therefore d(v.) + d(vet1) +d(w1) < 2(@—k) +n2+x—1) <n+k—4,
a contradiction (note that ny = 2a — « — 1). Thus last contradiction
completes our proof.

B Al B

4. FINAL REMARKS

The following conjecture will strengthen the conjecture of Bauer
and Schmeichel.

Conjecture: Let G be a 1-tough graph such that 03 > max(n+x—4, n),
then G is Hamiltonsan.
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REFERENCES

1. A. Ainouche and N. Christofides, Conditions for the existence of Hamiltonian circusts
in graphs based on vertez degrees, J. London Math. Soc. (2) 32 (1985), 385-391.



Sufficient condition for Hamiltonian cycles 67

2,

A. Ainouche and N. Christofides, Strong sufficient conditions Jor the existence of
Hamsltonsan ciecusts in undirected graphs, J. Combin. Theory, B 31 (1981), 339-
343.

D. Bauer, A. Morgana, E. Schmeichel, and H. J. Veldman, Long cycle in graphs
with large degree sums, Discrete Mathematics 79 (1989/90). 59-70.

D. Bauer, H, J. Broersma, H. J. Veldman and L. Rao, A generdlization of a results
of Haggkvist and Nicoghossian, J. Combin. Theory, B 47 (1989), 237-243.

D. Bauer, and E. Schmeichel, A sufficient condition Jor Hamiltornsan cycles in 1-
tough graphs, Stevens research reports in Mathematics, 1988, Stevens Institute
of Technology, Hoboken, NJ 07030.

R. Haggvist, and G. G. Nicoghossian, A remark on Hamsltonian cycles, J. of Com-
bin. Theory, B 80 (1981), 118-120.

V. Chvital, Tough graphs and Hamsltonian circuit, Discrete Math. 5 (1973), 215-
228,

Vu Dinh Hoa, Note on a theorem of Bauer, Morgana, Veldman and Schmeschel, J. of
Graph Theory, to appear.

Vu Dinh Hoa, On the length of longest dominating cycles in graphs, Discrete Mathe-
matics 121 (1993), 211-222.

Wundt str. 7/4L1 Recesved April 12, 1993
01217 Dresden Revised September 5, 1994

Germany



