A SUFFICIENT CONDITION FOR HAMILTONIAN CYCLES IN TOUGH GRAPHS

VU DINH HOA

Abstract. We prove in this paper a conjecture of Bauer and Schmeichel [5] that every 1-tough graph G on $n \geq 3$ vertices with $\sigma_{3}(G) \geq n+\kappa-2$ is Hamiltonian, where $\sigma_{3}(G)=\min \{d(x)+d(y)+d(z):\{x, y, z\}$ is an independent set of three vertices\} and κ is the connectivity number of G.

1. INTRODUCTION

In this paper we consider only finite undirected graphs without loops or multiple edges. For undefined terms we refer to [3]. Herein $V(G), \kappa(G), \alpha(G)$ and $\omega(G)$ denote respectively the vertex set, vertex connectivity number, independence number and the number of the components of a graph G. We let $n=|V(G)|$ throughout the paper. Following Chvátal [7] we define a graph G to be 1-tough if $\omega(G-S) \leq|S|$ for every subset S of $V(G)$ with $\omega(G-S)>1$. If $v \in V(G)$ and $H \subseteq V(G)$ then $G[H]$ is the spanning graph of H in G and $N_{H}(v)$ is the set of all vertices in H adjacent to v. We denote $\left|N_{H}(v)\right|$ by $d_{H}(v)$. We let $\sigma_{k}(G)=\min \left\{\sum_{1}^{k} d\left(v_{i}\right):\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right.$ is an independent set of vertices $\}$ if $k \leq \alpha$, and $\sigma_{k}(G)=\infty$ if $k>\alpha$. For σ_{1} we use the more common notation δ. If no ambiguity can arise we write sometime $\kappa, \alpha \ldots$ instead of $\kappa(G), \alpha(G)$, etc...

We begin with a result of Häggkvist and Nicoghossian [6].
Theorem 1. Let G be a 2-connected graph with minimum degree $\delta \geq$ $\frac{n+\kappa}{3}$. Then G is Hamiltonian.

The following Theorem of Bauer, Broersma, Veldman and Rao [4] generalizes Theorem 1 .

Theorem 2. Let G be a 2-connected graph on $n \geq 3$ vertices with $\sigma_{3} \geq n+\kappa$. The G is Hamiltonian.

Clearly all 1-tough graphs on three or more vertices are 2-connected. Hence a natural question is whether the degree condition in Theorem 1 can be improved if G is assumed to be 1 -tough. This is the content of a result of Bauer and Schmeichel [5].

Theorem 3. Let G be a 1 -tough graph with $\delta \geq \frac{n+\kappa-2}{3}$. Then G is Hamiltonian.

In this paper we prove a conjecture of Bauer and Schmeichel [5].

Theorem 4. Let G be a 1-tough graph with $\sigma_{3} \geq n+\kappa-2$. Then G is Hamiltonian.

The following class of graphs, originally given in [1], shows that our result is best possible if $\kappa=2$. For $n=3 r+1 \geq 7$, let us construct the graph H_{n} from $3 K_{r}+K_{1}$ by choosing one vertex from each copy of K_{r}, say u, v and w, and by adding the edges $u v, u w$ and $v w$. The H_{n} is a 1-tough nonhamiltonian graph on $n=3 r+1$ vertices. Clearly, $\kappa\left(H_{n}\right)=2$ and $\sigma_{3}=3 r=n+\kappa-3$.

The proof of Theorem 4 relies on the following Theorem, conjectured by Jung and weibing.

Theorem 5 (Theorem 2.12 in [9]). Let G be a 1-tough graph on $n \geq 3$ vertices with $\sigma_{3} \geq \max (n, 3 \alpha-5)$. Then G is Hamiltonian.

A part of our argument is facilited by a recent result of Ainouche and Christofides [2]. For nonadjacent vertices u and v in a graph G, we denote by $\alpha_{u v}(G)$ the cardinality of a largest set of independent vertices in G containing u and v. Let $\ell_{u v}(G)=|N(u) \cap N(v)|$.

Theorem 6. Let u and v be nonadjacent vertices of a graph G. Suppose $\alpha_{u v}(G) \leq \ell_{u v}(G)$. Then G is Hamiltonian if and only if $G+u v$ is Hamiltonian.

2. PRELIMINARIES

Let C be a cycle or a path in G with an assigned orientation. If x and y are two vertices of C then $x_{\mathbf{C}} y$ denotes the path on C from x to y, inclusively both x and y, following the assigned orientation. The same vertices in reverse order are given by $y_{C}^{\leftarrow} x$. We will consider $x_{\mathrm{C}} y$ and $y_{C}^{\leftarrow} x$ both as a path and as a vertex set. If c is a vertex on C, then c^{+}and c^{-}are its sucsessor and predecessor on C, respectively, according to the assigned orientation. If X is a set of vertices on C then $X^{+}:=\left\{x^{+}: x \in X\right\}$. If G is a nonhamiltonian graph, we set $\mu(C)=\max \{d(v): v \in V(G)-V(C)\}$ and $\mu(G):=\max \{\mu(C):$ C is a longest cycle in $G\}$.

The following lemmas are proved in [3].
Lemma 1 (Theorem 5 in [3]). Let G be a 1 -tough graph on $n \geq 3$ vertices with $\sigma_{3} \geq n$. Then every longest cycle in G is a dominating cycle.

Lemma 2 (Lemma 8 [3]). Let G be a 1-tough graph on $n \geq 3$ vertices with $\sigma_{3} \geq n$. Suppose C is a longest cycle in G. If $v_{0} \in V(G)-V(C)$ and $A=N\left(v_{0}\right)$, then $(V(G)-V(C)) \cup A^{+}$is an independent set of vertices.

The next lemma is proved in [8].

Lemma 3 (Lemma 9 in [8]). Let G be a 1-tough graph on $n \geq 3$ vertices with $\sigma_{3} \geq n$. If G is nonhamiltonian then G has a longest cycle C such that C avoids a vertex $v_{0} \in V(G)-V(C)$ with $d\left(v_{0}\right)=\mu(G)$ and $\left|N\left(v_{0}\right)^{+} \cap N\left(v_{0}\right)^{-}\right| \geq \sigma_{3}-n+4$.

The next lemma can easily be proved with arguments similar to those used in the proof of Case 2 of Theorem 2 in [5]. Therefore, its proof is ommited.

Lemma 4. Let G be a 1 -tough graph with $\sigma_{3} \geq n+\kappa-2$. If there exists a cut set S of κ vertices and an independent set T of α vertices such that $d(t)=\frac{n+\kappa-2}{3}$ for any $t \in T$ and $T-\left(S \cup V\left(G_{i}\right)\right) \neq \emptyset$ for any component G_{i} of $G-S$. Then G is Hamiltonian.

In what follows we assume that C is a longest cycle in a 1-tough graph nonhamiltonian graph G on $n \geq 3$ vertices with $\sigma_{3} \geq n, v_{0} \in$ $V(G)-V(C)$ with $d\left(v_{0}\right)=\mu(G), v_{1}, v_{2}, \ldots, v_{k}$ the vertives of $N\left(v_{0}\right)$ on consecutive order, $u_{i}=v_{i}^{+}$and $w_{i}=v_{i+1}^{-}$(indices modulo k). We denote, for convenience, $\mathcal{F}=\left\{i\right.$: there exists $j \neq i$ such that $u_{i} w_{j} \in$ $E(G)\}$.

Lemma 5 (Lemma 4 in [8]). If $u_{i}=w_{i}$ then $N\left(u_{i}\right) \subset V(C)$ and $(V(G)-V(C)) \cup N\left(v_{0}\right)^{+} \cup N\left(u_{i}\right)^{+}$is an independent set of vertices.

Lemma 6 (Lemma 5 in [8]). If $\alpha=\left|(V(G)-V(C)) \cup N\left(v_{0}\right)+\right|$ then $\mathcal{F} \neq \emptyset$.

Lemma 7 (Lemma 6 in [8]). Suppose $u_{1}=w_{1}$ and $N\left(u_{1}\right)=N\left(v_{0}\right)$. Moreover, suppose $\mathcal{F} \neq \emptyset$. Let $i_{0}=\max \mathcal{F}$ and $j_{0} \neq i_{0}$ such that $u_{i_{0}} w_{j_{0}} \in E(G)$. Then $d\left(u_{j_{0}}\right)+2 d\left(v_{0}\right) \leq \ell(C)+x$, where x is the number of the vertices $u_{i}=w_{i}$ such that $\left|N\left(u_{i}\right) \cap N\left(v_{0}\right)\right| \leq d\left(v_{0}\right)-2$.

Lemma 8. Let $G=(A, B, E)$ be a bipartite graph with $A=\left\{a_{1}, a_{2}\right.$, $\left.\ldots, a_{n-1}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}(n \geq 3)$ and $\underline{S}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ for some $2 \leq k<n$ such that

1) $b_{i} a_{j} \in E(G)$ for any $i>k$ and $j \leq n-1$;
2) $d\left(b_{i}\right) \geq k-1$ for any $i \leq k$;
3) $|N(\underline{S})| \geq k$.

Then G contains a Hamiltonian path joining two different vertices of \underline{S} in G.

Proof. The proof is by induction on k. The statement is trivially true for $k=2$. Now, let $k>2$ and G is a graph satisfying the hypotheses of the lemma. We distinguish two cases:
Case 1: There exists a subset \underline{S}^{\prime} of $k-1$ elements of \underline{S} such that $\left|N\left(\underline{S}^{\prime}\right)\right|=k-1$.

We assume, without loss of generality, that $\underline{S}^{\prime}=\left\{b_{1}, b_{2}, \ldots, b_{k-1}\right\}$ and $N\left(\underline{S}^{\prime}\right)=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$. By 2$)$, the spanning graph of $\underline{S}^{\prime} \cup$ $N\left(\underline{S}^{\prime}\right)$ is a complete bipartite graph on $2(k-1)$ vertices. By 3$)$, there exists a vertex of $A-N\left(\underline{S}^{\prime}\right)$, say a_{k}, adjacent to b_{k}. Now,
$b_{k} a_{k} b_{k+1} a_{k+1} \ldots a_{n-1} b_{n} a_{1} b_{1} a_{2} b_{2} \ldots a_{k-1} b_{k-1}$ is a Hamiltonian path joining two vertices of \underline{S}.

Case 2: For any subset $\underline{S}^{\prime} \subset \underline{S}$ with $\left|\underline{S}^{\prime}\right|=k-1$ we have $\left|N\left(\underline{S}^{\prime}\right)\right|>k-1$.

To prove that G contains a Hamiltonian path joining two vertices of \underline{S} we assume the contrary and show that this assumption leads to a contradiction. A path W joining two vertices of \underline{S} such that $\underline{S} \subseteq V(W)$ is called an 0-path. We claim that G contains no 0 -path. Suppose, to the contrary, that G contains an 0-path W. Without loss od generality we may assume that $\ell(W) \geq \ell\left(W^{\prime}\right)$ for any 0 -path W^{\prime}. We give a direction on W and assume, without loss of generality, that $b_{i+1} \in$ $b_{i} \overrightarrow{\mathbf{w}} b_{i+2}$ for any $i<k-1$. Since G contains no Hamiltonian path joining two vertices of $\underline{S}, B-V(W) \neq \emptyset$ and $A-V(W) \neq \emptyset$. Let $b^{*} \in B-V(W)$ and $a^{*} \in A-V(W)$. By the maximality of $\ell(W)$, $b_{i}^{+}=b_{i+1}^{-}$. Otherwise, $b_{i}^{++} \notin \underline{S}$ for some $b_{i} \in \underline{S} \cap V(W)$ and therefore $b_{1} \overrightarrow{\mathbf{w}} b_{i} b_{i}^{+} b^{*} a^{*} b_{i}^{++} \overrightarrow{\mathbf{w}} b_{k}$ is a longer 0-path than W, a contradiction. For convenience we may assume that $a_{i}=b_{i}^{+}$for any $i \leq k-1$, we claim that $N\left(b_{1}\right)=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$. Otherwise, there exists some $a_{i_{0}} \notin$ $\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$ adjacent to b_{1} and therefore $b_{1} a_{i_{0}} b^{*} a_{1} \overrightarrow{\mathrm{w}} b_{k}$ is a longer 0 -path than W, a contradiction. Similarly, $N\left(b_{k}\right)=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$. By 3), there exists some $b_{j_{0}} \in \underline{S}$ and some $a_{i_{0}}^{\prime} \notin V(W)$ such that $b_{j_{0}} a_{i_{0}}^{\prime} \in E$ and therefore $b_{j_{0}} a_{i_{0}}^{\prime} \bar{b}^{*} b_{j_{0}}^{-} \overleftarrow{\mathbf{w}} b_{1} b_{j_{0}}^{+} \overrightarrow{\mathbf{w}} b_{k}$ is a longer 0-path than W, a contradiction. Thus, G contains no 0 -path.

Let $\underline{S}^{\prime}=\left\{b_{1}, b_{2}, \ldots, b_{k-1}\right\}$ and choose some $a_{i_{0}} \in N\left(b_{k}\right)$. We set $G^{\prime}=G-\left\{b_{k}, a_{i_{0}}\right\}$. It is easy to see that the graph G^{\prime} satisfies conditions 1) - 3) for $k-1$ and therefore there is in G^{\prime} a Hamiltonian path joining two vertices of \underline{S}^{\prime}. A path W in G^{\prime} joining two vertices of \underline{S}^{\prime} such that $\underline{S}^{\prime} \subseteq V(W)$ is called a 1-path. Let W be a 1-path in G^{\prime} such that $\ell(W) \leq \ell\left(W^{\prime}\right)$ for any 1-path W^{\prime}. We give a direction on W and assume, without loss of generality, that $b_{i+1} \in b_{i} \overrightarrow{\mathbf{w}} b_{i+2}$ for any $i<k-1$. By the minimality of $\ell(W), N\left(b_{1}\right) \cap\left(V(W)-\underline{S}^{\prime+}\right)=\emptyset$. Otherwise, there exists some $a^{*} \in N\left(b_{1}\right) \cap\left(V(W)-\underline{S}^{+}\right)$. We set $i_{0}=$ $\max \left\{i: b_{i} \in b_{1} \overrightarrow{\mathrm{w}} a^{*}\right.$ and $\left.b_{i} \in \underline{S}^{\prime}\right\}$ and the path $b_{i_{0}} \overleftarrow{\mathbf{w}} b_{1} a^{*} \overrightarrow{\mathbf{w}} b_{k-1}$ would be a shorter 1-path than W, a contradiction. Thus, $N\left(b_{1}\right) \cap V(W) \subseteq \underline{S}^{\prime+}$ and therefore $\left|N\left(b_{1}\right) \cap V(W)\right| \leq \cdot k-2$, implying that there exists in G some $a^{*} \notin V(W)$ adjacent to b_{1}. Since there is no 0-path in $G, a^{*} \neq a_{i_{0}}$. Since $|B|-|A|=1$, there exists some $b^{*} \in B$ such that $b^{*} \notin S \cup V(W)$. Now the path $b_{k} a_{i_{0}} b^{*} a^{*} b_{1} \overrightarrow{\mathbf{w}} b_{k-1}$ would be an 0 -path, a contradiction.

The proof is complete.

3. PROOF OF THEOREM 4

The proof is by contradiction. Suppose that G is a 1 -tough nonhamiltonian graph on $n \geq 3$ vertices with $\sigma_{3} \geq n+\kappa-2$ and suppose that, additionally, $|E(G)|$ is maximum. Let S be a fixed cut set of κ vertices and suppose that $G_{1}, G_{2}, \ldots, G_{t}$ are the components of $G-S$ $(t \geq 2)$. Let T be an independent set of α vertices $t_{1}, t_{2}, \ldots, t_{\alpha}$ such that $d\left(t_{1}\right) \geq d\left(t_{2}\right) \geq \cdots \geq d\left(t_{\alpha}\right)$.
Claim 1.

1) $\alpha \geq \frac{n+\kappa+4}{3}$.
2) $\frac{n}{2} \geq \alpha \geq \kappa+4$.
3) $\ell_{t_{i} t_{j}} \geq \kappa$ for $t_{i} \neq t_{j} \in T-\left\{t_{\alpha}\right\}$.

Proof. Since G is a 1 -tough graph, $\kappa \geq 2$ and therefore $\sigma_{3} \geq n$. By Theorem $5, \sigma_{3} \leq 3 \alpha-6$, implying by $\sigma_{3} \geq n+\kappa-2$ that $\alpha \geq \frac{n+\kappa+4}{3}$ and $n+\kappa-2 \geq \frac{3}{2}(n+\kappa-\alpha)$. By $\alpha \leq \frac{n}{2}$ since G is a 1 -tough graph and by $\alpha \geq \frac{n+\kappa+4}{3}$ we get $\alpha \geq \kappa+4$. If $t_{i} \neq t_{j} \in T-\left\{t_{\alpha}\right\}$ then $d\left(t_{i}\right)+d\left(t_{j}\right) \geq \frac{2}{3} \sigma_{3}$ and $N\left(t_{i}\right) \cup N\left(t_{j}\right) \subseteq V(G)-T$. Thus,

$$
\begin{align*}
& \ell_{t_{i} t_{j}}=\left|N\left(t_{i}\right) \cap N\left(t_{j}\right)\right|=d\left(t_{i}\right)+d\left(t_{j}\right)-\left|N\left(t_{i}\right) \cup N\left(t_{j}\right)\right| \\
&-2)-(n-\alpha) \\
&- \geq \frac{2}{3}(n+\kappa-2) \\
&-\quad \geq(n+\kappa-\alpha)-(n-\alpha) \tag{1}\\
&=\kappa .
\end{align*}
$$

Claim 2. There exists some i, say $i=1$, such that $T-\left\{t_{\alpha}\right\} \subseteq$ $S \cup V\left(G_{1}\right)$.

Proof. Suppose, to the contrary, that there exists $i \neq j$, say $i=1$ and $j=2$, such that $\left(T-\left\{t_{\alpha}\right\}\right) \cap V\left(G_{1}\right) \neq \emptyset$ and $\left(T-\left\{t_{\alpha}\right\}\right) \cap V\left(G_{2}\right) \neq \emptyset$.

Choose $t_{i_{j}}$ in $\left(T-\left\{t_{\alpha}\right\}\right) \cap V\left(G_{j}\right)(j=1,2)$. Clearly, $N\left(T_{i_{1}}\right) \cap$ $N\left(t_{i_{2}}\right) \subseteq S$, implying by 3)of Claim 1 that $\ell_{t_{i} t_{j}}=\kappa$ and all inequalities
in (1) are in fact equalities. Thus, $d\left(t_{i_{1}}\right)=d\left(t_{i_{2}}\right)=d\left(t_{\alpha}\right)=\frac{n+\kappa-2}{3}$ and $S \cap T \neq \emptyset$, and therefore $T-\left(S \cup V\left(G_{i}\right)\right) \neq \emptyset$ for any component G_{i} of $G-S$. Since $t_{i_{1}}$ and $t_{i_{2}}$ are arbitrary chosen, $d(t)=d\left(t_{\alpha}\right)=$ $\frac{n+\kappa-2}{3}$ for any $t \in T$. By Lemma 4, G is Hamiltonian, a contradiction.

Claim 3. $t=2$ and G_{2} is a complete graph.
Proof. Let $A=V(G)-V\left(G_{1}\right)-S, n_{1}=\left|V\left(G_{1}\right)\right|$ and $n_{2}=|A|$ so that $n=n_{1}+n_{2}+\kappa$. It suffices to show that $G|A|$ is complete. Suppose, to the contrary, that there exist $v_{1}, v_{2} \in A$ such that $v_{1} v_{2} \notin E(G)$. By Claim 2 and by 2) of Claim $1,\left|T \cap V\left(G_{1}\right)\right| \geq 3$. So we can choose $t_{1} \neq t_{2}$ in $T \cap V\left(G_{1}\right)$. Then $n+\kappa-2 \leq d\left(t_{1}\right)+d\left(v_{1}\right)+d\left(v_{2}\right)=n_{1}+\kappa-$ $(\alpha-1)+2\left(n_{2}+\kappa-2\right)$, implying by $n=n_{1}+\kappa+n_{2}$ that $n_{2} \geq \alpha-\kappa+1$. Similarly, $n_{1} \geq 2 \alpha-\kappa-3$ because of $n+\kappa-2 \leq d\left(t_{1}\right)+d\left(t_{2}\right)+d\left(v_{1}\right) \leq$ $2\left(n_{1}+\kappa-\alpha+1\right)+\left(n_{2}+\kappa-1\right)$. Thus, $n_{1}+n_{2} \geq(\alpha-\kappa+1)+(2 \alpha-\kappa-3)$ and therefore $\sigma_{3} \geq n+\kappa-2 \geq 3 \alpha-4$, which contradicts 1) of Claim 1. Claim 4.

1) $\frac{n_{1}+\kappa}{2}-1 \leq d\left(t_{i}\right) \leq \frac{n_{1}+\kappa+1}{2}$ for any $t_{i} \in T \cap V\left(G_{1}\right)$. The equality $d\left(t_{i}\right)=\frac{n_{1}+\kappa}{2}-1$ or $d\left(t_{i}\right)=\frac{n_{1}+\kappa+1}{2}$ holds only for at most one of the vertices in $T \cap V\left(G_{1}\right)$.
2) If $T \cap V\left(G_{2}\right)=\emptyset$ then $d(t)=\frac{n_{1}+\kappa-1}{2} \geq \alpha-1$ for any $t \in T \cap V\left(G_{1}\right)$ and $N(w)=S \cup V\left(G_{2}\right)-\{w\}$ for any $w \in V\left(G_{2}\right)$.
3) If $T \cap V\left(G_{2}\right) \neq \emptyset$ and $T \cap S \neq \emptyset$ then $T \cap S=\left\{t^{*}\right\}$ for some $t^{*} \in T$ and $d(t)=\frac{n_{1}+\kappa}{2} \geq \alpha-1$ for any $t \in T \cap V\left(G_{1}\right)$ and $N\left(t_{\alpha}\right)=S \cup V\left(G_{2}\right)-\left\{t_{\alpha}, t^{*}\right\}$.
4) If $T \cap V\left(G_{2}\right) \neq \emptyset$ and $T \cap S=\emptyset$ then $n_{1} \geq 2 \alpha-\kappa-1$ and $d(v) \geq \alpha-1$ for any $v \in V\left(G_{1}\right)$.

Proof. First note that for any $t_{i} \neq t_{j} \in T \cap V\left(G_{1}\right)$ we have:

$$
\begin{equation*}
\alpha=\alpha_{t_{i} t_{j}}>\ell_{t_{i} t_{j}}=d\left(t_{i}\right)+d\left(t_{j}\right)-\left|N\left(t_{i}\right) \cup N\left(t_{j}\right)\right| . \tag{*}
\end{equation*}
$$

1) Setting $\left|N\left(t_{i}\right) \cup N\left(t_{j}\right)\right| \leq\left|S \cup V\left(G_{1}\right)-T\right| \leq n_{1}+\kappa-\alpha+1$ in $\left(^{*}\right.$) we get $(\alpha-1) \geq d\left(t_{i}\right)+d\left(t_{j}\right)-\left(n_{1}+\kappa-\alpha+1\right)$ and, consequently, $n_{1}+\kappa \geq d\left(t_{i}\right)+d\left(t_{j}\right)$. Moreover, $d\left(t_{i}\right)+d\left(t_{j}\right) \geq n_{1}+\kappa-1$ since $n+\kappa-2 \leq$
$d\left(t_{i}\right)+d\left(t_{j}\right)+d(w)$ by $d(w) \leq n_{2}+\kappa-1$ where w is an arbitrary vertex of $V\left(G_{2}\right)$. Thus, $n_{1}+\kappa \geq d\left(t_{i}\right)+d\left(t_{j}\right) \geq n_{1}+\kappa-1$ for any $t_{i} \neq t_{j}$ in $T \cap V\left(G_{1}\right)$. We easily get that $\frac{n_{1}+\kappa+1}{2} \geq d\left(t_{i}\right) \geq \frac{n_{1}+\kappa}{2}-1$ for any $t_{i} \in T \cap V\left(G_{1}\right)$ and that the equality $d\left(t_{i}\right)=\frac{n_{1}+\kappa}{2}-1$ or $d\left(t_{i}\right)=\frac{n_{1}+\kappa+1}{2}$ holds only for at most one of the vertices in $T \cap V\left(G_{1}\right)$.
2) Setting $\left|N\left(t_{i}\right) \cup N\left(t_{j}\right)\right| \leq n_{1}+\kappa-\alpha$ by $T \cap V\left(G_{2}\right)=\emptyset$, $d\left(t_{i}\right)+d\left(t_{j}\right) \geq n+\kappa-2-d(w)$ and $d(w) \leq n_{2}+\kappa-1$ in $\left(^{*}\right)$ where w is an arbitrary vertex of G_{2}, we get $\alpha>\ell_{t_{i} t_{j}} \geq \alpha-1$. Thus, $\ell_{t_{i} t_{j}}=\alpha-1$ and, consequently, $d\left(t_{i}\right) \geq \alpha-1, d(w)=n_{2}+\kappa-1$ and $d\left(t_{i}\right)+d\left(t_{j}\right)=$ $(n+\kappa-2)-\left(n_{2}+\kappa-1\right)=n_{1}+\kappa-1$. Using $\left|T \cap V\left(G_{1}\right)\right| \geq 3$ we choose $t_{k} \in T \cap V\left(G_{1}\right)-\left\{t_{i}, t_{j}\right\}$. Similarly, $d\left(t_{i}\right)+d\left(t_{k}\right)=d\left(t_{i}\right)+d\left(t_{j}\right)=d\left(t_{j}\right)+$ $d\left(t_{k}\right)=n_{1}+\kappa-1$ and therefore $d\left(t_{i}\right)=d\left(t_{j}\right)=d\left(t_{k}\right)=\frac{n_{1}+\kappa-1}{2}$. Thus, $d\left(t_{i}\right)=\frac{n_{1}+\kappa-1}{2} \geq \alpha-1$ and $N(w)=S \cup V\left(G_{2}\right)-\{w\}$ for any $t_{i} \in T \cap V\left(G_{1}\right)$ and $w \in V\left(G_{2}\right)$.
3) Setting $\left|N\left(t_{i}\right) \cup N\left(t_{j}\right)\right| \leq n_{1}+\kappa-\alpha+1$ by $T \cap V\left(G_{2}\right) \neq \emptyset$, $d\left(t_{i}\right)+d\left(t_{j}\right) \geq n+\kappa-2-d\left(t_{\alpha}\right)$ and $d\left(t_{\alpha}\right) \geq n_{2}+\kappa-|S \cap T|-1$ in $\left({ }^{*}\right)$, we get $\alpha>\ell_{t_{i} t_{j}} \geq|S \cap T|+\alpha-2$. By $S \cap T \neq \emptyset$, in fact, $|S \cap T|=1$ and $\ell_{t_{i} t_{j}}=\alpha-1$ and consequently, $d\left(t_{i}\right) \geq \alpha-1, d\left(t_{\alpha}\right)=n_{2}+\kappa-2$ and $d\left(t_{i}\right)+d\left(t_{j}\right)=(n+\kappa-2)-\left(n_{2}+\kappa-2\right)=n_{1}+\kappa$. Similarly as in 2), we get $d\left(t_{i}\right)=\frac{n_{1}+\kappa}{2} \geq \alpha-1$ and $N\left(t_{\alpha}\right)=S \cup V\left(G_{2}\right)-\left\{t_{\alpha}, t^{*}\right\}$.
4) By $T \cap S=\emptyset, \alpha=w\left(G-\left(V\left(G_{1}\right) \cup S-T\right)\right) \leq\left|V\left(G_{1}\right) \cup S-T\right|=$ $n_{1}+\kappa-\alpha+1$ since G is a 1 -tough graph, and therefore $n_{1} \geq 2 \alpha-\kappa-1$.

Now, suppose, to the contrary, that $d(v) \leq \alpha-2$ for some $v \in$ $V\left(G_{1}\right)$. Then $d(v) \leq \frac{n_{1}+\kappa-3}{2}$ by $n_{1} \geq 2 \alpha-\kappa-1$ and therefore $v \in V\left(G_{1}\right)-T$ since 1). Moreover, $d(v)+d\left(t_{i}\right)+d\left(t_{\alpha}\right)<n+\kappa-2$ since $d\left(t_{i}\right) \leq \frac{n_{1}+\kappa+1}{2}$ by 1) and $d\left(t_{\alpha}\right) \leq n_{2}+\kappa-1$, and therefore $v t_{i} \in E(G)$ for any $\alpha-1 \geq i \geq 2$, implying by $d(v) \leq \alpha-2$ that, in fact, $d(v)=\alpha-2$ and $N(v)=\left\{t_{2}, t_{3}, \ldots, t_{\alpha-1}\right\}$. Hence, $v t_{1} \notin E(G)$ and therefore $n+\kappa-2 \leq d(v)+d\left(t_{\alpha}\right)+d\left(t_{1}\right) \leq \frac{n_{1}+\kappa-3}{2}+\left(n_{2}+\right.$ $\kappa-1)+\frac{n_{1}+\kappa+1}{2}=n+\kappa-2$ and consequently, $d\left(t_{1}\right)=\frac{n_{1}+\kappa+1}{2}$
and $d(v)=\alpha-2=\frac{n_{1}+\kappa-3}{2}$. But $\left|V\left(G_{1}\right) \cup S-T\right|=\frac{n_{1}+\kappa+1}{2}$ by $\alpha-2=\frac{n_{1}+\kappa-3}{2}$ and therefore $N\left(t_{1}\right)=V\left(G_{1}\right) \cup S-T$, which contradicts $v t_{1} \notin E(G)$.
Claim 5. $\sigma_{2}\left(G_{1}\right) \geq 2(\alpha-1)$.
Proof. For any two different nonadjacent vertices u and v in G_{1} choose w in G_{2}, specialy $w=t_{0}$ if $V\left(G_{2}\right) \cap T \neq \emptyset$. We easily get $d(u)+d(v) \geq$ $2(\alpha-1)$ by 2$)-4$) of Claim 4 and by $d(u)+d(v) \geq \sigma_{3}-d(w)$. Thus Claim 5 is true.

Now, a longest cycle C and a vertex $v_{0} \in V(G)-V(C)$ are chosen such that $d\left(v_{0}\right)=\mu(G)$ and $\left.\left.\mid N\left(v_{0}\right)^{+} \cap N\right) v_{0}\right)^{-} \mid \geq \sigma_{3}-n+4$. Let $T^{*}:=\left\{v_{0}\right\} \cup\left(N\left(v_{0}\right)^{+} \cap N\left(v_{0}\right)^{-}\right)$and $u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{s}}$ the vertices of $T^{*}-\left\{v_{0}\right\}$ such that $d\left(u_{i_{1}}\right) \geq \cdots \geq d\left(u_{i_{\text {}}}\right)$. Using $\left|T^{*}\right| \geq \kappa+3$ because of $\sigma_{3}-n+4 \geq \kappa+2$ and $\left|T^{*} \cap V\left(G_{2}\right)\right| \leq 1$ since G_{2} is a complete graph by Claim 3, we get $\left|T^{*} \cap V\left(G_{1}\right)\right| \geq 2$, say $u^{*}, u^{* *} \in T^{*} \cap V\left(G_{1}\right)$. By Claim 5 and by the maximality of $d\left(v_{0}\right), d\left(v_{0}\right) \geq\left(d\left(u^{*}\right)+d\left(u^{* *}\right)\right) / 2 \geq$ $\alpha-1$. Since $\left\{v_{0}\right\} \cup N\left(v_{0}\right)^{+}$is an independent set of vertices, in fact, $d\left(v_{0}\right)=d\left(u^{*}\right)=d\left(u^{* *}\right)=\alpha-1$. Note that if $u_{i}=w_{i}$ then $N\left(u_{i}\right) \subseteq N\left(v_{0}\right)$ by Lemma 5. It follows that $N\left(u^{*}\right)=N\left(u^{* *}\right)=N\left(v_{0}\right)$ by $d\left(v_{0}\right)=d\left(u^{*}\right)=d\left(u^{* *}\right)$ proved above. Let $T:=\left\{v_{0}\right\} \cup N\left(v_{0}\right)^{+}$. Using $\mathcal{F} \neq \emptyset$ by Lemma 6 we determine $i_{0}=\max \mathcal{F}$ and $j_{0} \neq i_{0}$ such that $u_{i_{0}} w_{j_{0}} \in E(G)$. By Lemma 7, $d\left(u_{j_{0}}\right)+2 d\left(v_{0}\right) \leq \ell(C)+x$, where x is the number of the vertices $u_{i}=w_{i}$ such that $d\left(u_{i}\right) \leq d\left(v_{0}\right)-2$. By $\sigma_{3} \geq n, x \geq 1$ and therefore $d\left(u_{i_{a}}\right)+d\left(v_{0}\right)+d\left(u_{j_{0}}\right) \leq \ell(C)+x-2$. Thus, $x \geq 3$ and therefore $\alpha-3 \geq d\left(u_{i_{s-2}}\right) \geq d\left(u_{i_{g-1}}\right) \geq d\left(u_{i_{s}}\right)$. Hence $T \cap V\left(G_{2}\right)=\emptyset$ since, otherwise, $\left\{u_{i_{s-1}}, u_{i_{-2}}\right\} \cap V\left(G_{1}\right) \neq \emptyset$ and therefore $d\left(u_{i_{g}-2}\right) \geq \alpha-1$ by 3) and 4) of Claim 4 , a contradiction. Now, by 2) of Claim 4 for $t=u^{*}$, and by $d\left(u^{*}\right)=\alpha-1$, $d\left(u^{*}\right)=\frac{n_{1}+\kappa-1}{2}=\alpha-1$ and therefore $N\left(u^{*}\right)=V\left(G_{1}\right) \cup S-T$ since $\left|V\left(G_{1}\right) \cup S-T\right|=\alpha-1$ by $\frac{n_{1}+\kappa-1}{2}=\alpha-1$. It follows by 2) of Claim 4 that $N(t)=V\left(G_{1}\right) \cup S-T$ for any $t \in T \cap V\left(G_{1}\right)$. Let $v_{1}, v_{2}, \ldots, v_{n-1}$ the vertices of $V\left(G_{1}\right) \cup S-T, t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{r}}$ the vertices of $S \cap T, t_{i_{r+1}}, t_{i_{r+2}}, \ldots, t_{i_{\alpha}}$ the vertices of $T \cap V\left(G_{1}\right)$ and $w_{1}, \ldots, w_{n_{2}}$ the vertices of G_{2}. Clearly, $r \geq 1$ by $T \cap V\left(G_{2}\right)=\emptyset$. Moreover, $r \geq 2$ by $\omega\left(G-\left(V\left(G_{1}\right) \cup S-T\right)\right) \leq\left|V\left(G_{1}\right) \cup S-T\right|=\alpha-1$ since G is a 1 -tough graph. Let $A=V\left(G_{1}\right) \cup S-T, B=T, \underline{S}=T \cap S$ and $G^{*}=(A, B ; E)$ the bipartite graph obtained from $G[A \cup B]$ by deleting all edges of $G[A]$.

By $d\left(t_{i}\right)=\frac{n_{1}+\kappa-1}{2}$ for any $t_{i} \in V\left(G_{1}\right) \cap T$ and by $\sigma_{3} \geq n+\kappa-2$, $d(t) \geq \kappa-1+n_{2}$ and therefore $d_{A}(t) \geq \kappa-1$ for any $t \in \underline{S}$. If $|\underline{S}|<|S|$ or $|\underline{S}|=|S| \leq\left|N_{A}(\underline{S})\right|$ then G^{*} contains a Hamiltonian path joining two different vertices of \underline{S} by Lemma 8. Let H be a Hamiltonian path in G^{*} joining two vertices $t_{i_{1}}$ and $t_{i_{2}}$ in \underline{S}. Then $w_{1} w_{2} \ldots w_{n_{2}} H w_{1}$ would be a Hamiltonian cycle in G, a contradiction (note $N\left(w_{i}\right)=S \cup V\left(G_{2}\right)-\left\{w_{i}\right\}$ by 2) of Claim 4). Thus, $|\underline{S}|=|S|>\left|N_{A}(\underline{S})\right|$, implying by $d_{A}(t) \geq \kappa-1$ for any $t \in \underline{S}$ that, in fact, $|\underline{S}|=|S|=\left|N_{A}(\underline{S})\right|+1$ and $d_{A}(t)=\kappa-1$ for any $t \in \underline{S}$. Since G is a 1-tough graph, $\omega\left(G-\left(N_{A}(\underline{S}) \cup V\left(G_{2}\right)\right) \leq\right.$ $\left|N_{A}(\underline{S}) \cup V\left(G_{2}\right)\right|=\kappa-1+n_{2}$ and therefore $2 \leq n_{2}$. Let v_{1}, \ldots, v_{k-1} the vertices of $N_{A}(\underline{S})$ then every vertex of S is adjacent to any vertex of $\left\{v_{1}, \ldots, v_{k-1}\right\}$. Now, $\left\{v_{k}, \ldots, v_{\alpha-1}\right\}$ is an independent set of vertices since, otherwise, say $v_{k} v_{k+1} \in E(G)$, and $C: t_{i_{1}} v_{2} t_{i_{2}} v_{3} \ldots$ $t_{i_{\kappa-2}} v_{\kappa-1} t_{i_{\kappa+1}} v_{\kappa} v_{\kappa+1} t_{i_{\kappa+2}} v_{\kappa+2} \ldots t_{i_{\alpha-1}} v_{\alpha-1} t_{i_{\alpha}} v_{1} t_{i_{\kappa-1}} w_{1} t_{i_{\kappa}} w_{2} \ldots w_{n_{2}} t_{i_{1}}$ would be a Hamiltonian cycle, a contradiction. Moreover, there is no edge joining a vertex of $\left\{v_{1}, \ldots, v_{\kappa-1}\right\}$ with a vertex of $\left\{v_{\kappa}, \ldots, v_{\alpha-1}\right\}$ since, othewise, say $v_{\kappa} v_{\kappa-1} \in E(G)$, and $C: t_{i_{1}} v_{2} t_{i_{2}} v_{3} \ldots t_{i_{\kappa-2}} v_{\kappa-1} v_{\kappa}$ $t_{i_{\kappa+1}} v_{\kappa+1} t_{i_{\kappa+2}} v_{\kappa+2} \ldots t_{i_{\alpha-1}} v_{\alpha-1} t_{i_{\alpha}} v_{1} t_{i_{\kappa-1}} w_{1} t_{i_{\kappa}} w_{2} \ldots w_{n_{2}} t_{i_{1}}$ would be a Hamiltonian cycle, a contradiction. Thus, $d\left(v_{\kappa}\right), d\left(v_{\kappa+1}\right) \leq \alpha-\kappa$ and therefore $\left.d\left(v_{\kappa}\right)+d\left(v_{\kappa+1}\right)+d\left(w_{1}\right) \leq 2(\alpha-\kappa)+n_{2}+\kappa-1\right) \leq n+\kappa-4$, a contradiction (note that $n_{1}=2 \alpha-\kappa-1$). Thus last contradiction completes our proof.

4. FINAL REMARKS

The following conjecture will strengthen the conjecture of Bauer and Schmeichel.

Conjecture: Let G be a 1-tough graph such that $\sigma_{3} \geq \max (n+\kappa-4, n)$, then G is Hamiltonian.

Acknowledgement. The author wishes to thank the referees of this paper for their comments and many helpful suggestions.

REFERENCES

1. A. Ainouche and N. Christofides, Conditions for the existence of Hamiltonian circuits in graphs based on vertex degrees, J. London Math. Soc. (2) 82 (1985), 385-391.
2. A. Ainouche and N. Christofides, Strong sufficient conditions for the existence of Hamittonian ciecuits in undirected graphs, J. Combin. Theory, B 31 (1981), 339343.
3. D. Bauer, A. Morgana, E. Schmeichel, and H. J. Veldman, Long cycle in graphs with large degree sums, Discrete Mathematics 79 (1989/90). 59-70.
4. D. Bauer, H, J. Broersma, H. J. Veldman and L. Rao, A generalization of a results of Häggkvist and Nicoghossian, J. Combin. Theory, B 47 (1989), 237-243.
5. D. Bauer, and E. Schmeichel, A sufficient condition for Hamiltonian cycles in 1tough grophs, Stevens research reports in Mathematics, 1988, Stevens Institute of Technology, Hoboken, NJ 07030.
6. R. Häggvist, and G. G. Nicoghossian, A remark on Hamiltonian cycles, J. of Combin. Theory, B 30 (1981), 118-120.
7. V. Chvátal, Tough graphs and Hamiltonian circuit, Discrete Math. 5 (1973), 215228.
8. Vu Dinh Hoa, Note on a theorem of Bauer, Morgana, Veldman and Schmeichel, J. of Graph Theory, to appear.
9. Vu Dinh Hoa, On the length of longest dominating cycles in graphs, Discrete Mathematics 121 (1993), 211-222.

Wundt str. 7/4L1
01217 Dresden
Germany

Received April 12, 1999
Revised September 5, 1994

