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A Short Communscation

ON THE REAL STABILITY RADIUS OF
POSITIVE LINEAR SYSTEMS *

NGUYEN KHOA SON

In this note we consider the problem of robust stability of linear
discrete-time systems whose trajectories are invariant with respect to a
closed convex cone in the state space. We are able to derive some esti-
mates for upper bounds and lower bounds of parameter perturbations
which preserve stability of the system. In the case the constraint cone
is the positive orthant R’ , the obtained bounds yield a simple formula
for real stability radius of the system. Our proofs are based on the
state space approach to robustness analysis of stability developed by
Hinrichsen and Pritchard, (see e.g. [2]) and spectral theory of positive
matrices founded by Perron and Frobenius [1]. It is worth noticing that
the problem of deriving a computable explicit formula of real stabils-
ty radius, even for a simple autonomous linear system, was a difficult
problem. Only recently, a general formula for the real stability radius
has been found by Qiu et al. [7]. Its computation, however, requires
the solution of a complicated global optimization problem.

Consider a linear system described by the difference equation
Tky1 = Azk, k =0,1,..., (1)
subject to the state constraint
zy € K C R", (2)

where A € R**X"™ and K is a nonempty closed convex cone in R”. The
cone K is invariant with respect to System (1) if every solution z(zo)
starting at an arbitrary point ro € K remains in K or, equivalently, if
and only if

AK C K. (3)
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In such a case, the system (1) is said to be positive w.r.t. K. If K =

% , the positive orthant, then (1) is simply called positive. Positive
systems arise frequently from the modeling of real processes in such
fields as economics, population dynamics, ecology, etc. where the state
variables may represent quantities which do not have meaning unless
they are nonnegative.

We recall that the system (1) is said to be asymptotically stable
or Schur stable if the spectrum o(A) of A lies in the open unit disk
C, = {s € C : |s| < 1}, or equivalently, iff p(A) < 1 where p(A)
is the spectral radius of A : p(A) = max{|A| : A € o(A)}. The
basic problem under consideration that we address in this paper is
the following. Given a Schur stable linear discrete-time system (1)
satisfying (3) and given a set of perturbations D C C"*™ such that
(A+ D)K C K for any D € D, determine the largest value v >. 0 for
which the perturbed system

Ze+1 = (A + D)z, || Dl <

remains Schur stable for each D € D. For this purpose we introduce
the D-radius of stability of A by defining

ro(A) =inf{||D||: DeD, p(A+D)>1}). (4)

Here and in what follows the norms of matrices are defined as operator
norms induced by some vector norms on R". If the norm of D in the
above definition need to be specified then we shall use the notation
rp(A4;| - ||) instead of rp(A).

If D = C"*"(resp.,R"*") the above definition is reduced to the
one of complex (resp., real) unstructured stability radius rc(A) (resp.,
rr(A)) (see e.g. [2], [4]).

In this paper we shall restrict ourselves to the case of unstructured
nonnegative perturbations, i.e. when

D=D,:={DeR™": DK C K}.

The corresponding D, -radius of stability of A will be shortly denoted
by r4(A). The case of structured perturbations of linear output feedback
type is considered in {5]. It can be shown first that for an arbitrary
norm on R™ the following bounds for r hold.
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Proposition 1. Let K C R™ be a pointed closed convex cone with
int K # 0 and A be a Schur stable positive (w.r.t. K) matriz. Then

1 1

e R N D =1 1
-2~ =7 sup [|(7—A) 7 ef
eEKﬂBl

(6)

(where By is the closed unst ball in R™).

The proof of the above assertion is based on the Krein Theorem on
extension of positive functionals, see e.g. [6].

For any matrix P € R"*" let us define
M(P) = {e€ By : ||P| = || Pe|},
Then, the following result is an immediate consequence of Proposition 1.

Proposition 2. Let K C R"™ be a potnted closed convex cone with
int K # @ and A be a Schur stable positive (w.r.t. K) matriz. If

KnM((I-4)7") #0, (7)

then
1

) =TT e

It is remarkable that in case K* = K (i.e. K is self-dual), where
K™ is the nonnegative polar cone of K, the condition (7) holds for
the operator norms of matrices || - ||, p = 1,2,00, induced by the
corresponding vector norms.

Proposition 3. Let K C R" be a self-dual pointed closed convez cone
with int K # @ and A be a Schur stable positive (w.r.t. K) matriz.
Then

re(4; - ll2) = sn((I - 4)71),
where s,(-) denotes the minimal singular value of a matriz.
It is obvious that R% is a self-dual pointed closed convex cone

and the matrix A is positive w.r.t. R% if and only if all the entries of
A are nonnegative. Therefore, we have
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Proposition 4. If A € R} " is a Schur stable matriz, then

e (A I llo) = Ty Q

where a = 1,2, 0o.

Now we are going to study the relationship between stability radii.
Clearly, by definition, we always have

rc(4) < rr(4) < ri(4). (9)

It is well known that if A is an arbitrary real matrix, then rg and r¢
may be largely different. In fact, in [3] it has been shown that the ratio
rr/rc may be unbounded. Fortunately, this does not happen if A has
all nonnegative entries, provided that |- || = || - ||la, With @ =1,2,00
in the definition of these stability radii. Moreover, the following result
shows that in this case all the stability measures in (9) coincide.

Proposition 5. Let A € R}*" be a Schur stable matriz. Then

re(4; |- lla) =r(4; | - lla) = r(4; [ - llo)s

provided that a = 1,2, 00.

We note that in [5] it has been shown that for any Schur stable
matrix A € R**" and for arbitrary operator norm || - ||,

1

jer— A
o )

re(4; |- 1) =

The above theorem shows that if matrix A is nonnegative and | - || =
| - lla« With & = 1,2, 00, then the above maximum is achieved at ¢ = 0
and, moreover, the real stability radius and the complex stability radius
coincide.
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