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THE ACTION OF THE MOD P STEENROD
OPERATIONS ON THE MODULAR
INVARIANTS OF LINEAR GROUPS

NGUYEN H. V. HUNG and PHAM ANH MINH

Abstract. Let p be an odd prime. The purpose of this paper 1s to compute
the action of the mod p Steenrod operations on the Dickson and Mus invariants
of the general linear group GL(n, Z/p) and of the subgroup T,, consisting of all
upper iriangular matrices with 1 on the main diagonal. Our method is extended
from that of [18] to the case of odd primes.

1. INTRODUCTION AND STATEMENT OF RESULTS

For p an odd prime, let GL, = GL(n,Z/p) and let T, be the
Sylow p-subgroup of GL, consisting of all upper triangular matrices
with 1 on the main diagonal. These two groups act on the elementary
abelian p-group E™ = (Z/p)™ and so on its cohomology H *(BE™) =
H*(BE™; Z/p) in the usual manner.

As is well known, H*(BE™) & E(zy,...,z,) ® P(yy,--.,Yn),
where |z;| = 1, y; = B(z:), with 8 the Bockstein homomorphism.
Here and in what follows, E(.,...,.) and P(.,...,.) are respectively
the exterior algebra and the polynomial algebra over Z /p generated
by the variables indicated. Under this identification, the action of
GL, and T, on H*(BE™") is identified with their canonical action on
E(z1,...,20) ® P(y1,...,yn). The invariants of this action are deter-
mined by Dickson [2] and Mui [3] as follows.

Set [e1,...,e,] = det (yf ¢J.) for every sequence of non-negative

integers (e1,...,e,). In particular, we define

L,.=[0,...,8,...,n], 0<s<n, Lpn=Lpn=[0,...,n=1].
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The Dickson invariant Q, , and the Mui invariant V,, are defined by

Qn,a = Ln,a/Ln (0 <8< n),

Vo= Ln/Ln——l = H (Alyl + oo+ An-1Yn-1 + yn)-
A.‘EZ/P

They are related each other by

n—1
Qn,a = Qfl—l,a—l + V:_IQn—l,aa Vn = Z(—l)n_l+aQu—l,8yﬁ.,

8=0
For 0 < k < n, we set
zy n
- N : }k rows
[k; ext1,-- -, ea] = (1/K)) yi’f"l“' - yﬁf:“
£ e

Here the right-hand side is first computed in
Ez(z1,..-,Zn) ® Pz(y1,...,Yn)
and then is projected to
E(z1,...,2Zn) ® P(y1,...,¥n).
'In particular we define the Mui invariant
Mpas, o =1k30,...,81,. -, 8k ... sn — 1]

for0<s; << <n-—-1

Then one has
(H*BE™)SL" = P(Qn0,.--,Qnn-1)®

n
©® E Mn,al Y I Lf;—zp(Qn,O, cecy Qn,n—l),
1

k= 0<L8; <-- <o <N
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(H*BE")T" = P(Vy,...,V,)®

Z @ Z @ ). Mooy, P(V1s- -, V).

k=1 8=k 0<g<---<gr=8—1

(see (2] and [3] for details).

We recall further that the mod p Steenrod algebra A = A(p)
acts on H*(BE™) by means of the Cartan formula together with the
relations

Bz; =y, P0$i=zb ijizoalsja
Byi=0, Poy=y;, Plyi=y, Ply=0,1<y.

Since this action commutes with the actions of GL, and T,, it induces
a natural action of A on H*(BE™)€ for G = GL,, or T,.

In this paper, we determine explicitly the action of the Steerod
operations on Dickson and Mui invariants which are described above.
Below we formulate the main results of this paper in the form of those
theorems (theorems A, B, C). Their proofs are given in Section 3. In
Section 2 we recall some well-known results which arised in proving the
main theorems.

Suppose ¢ is a non-negative interger. Let a; = o;(t) be the i-th
coefficient in the p-adic expansion of ¢t. That means

t=ap+apt+...,
with 0 < a; < p. By convention, a; = 0 for ¢ < 0. We have

Theorem A. B(V,) =0,

[ |74 4 t=pn—-l,

n

-1
(=1)*2an_,! ai—asmy E<PTT
PYV,,) = | I (- os_y) V HQn Lé o 2 @iy

0<i<n—2 fori <n-2,

. O otherwise.
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Theorem B. B(Qn,.) =0,

Pt‘(Qn,c) =
[ Q%
(-1)**'an_1!(a, +1)

(es+1—aeg)! JI (—aa)!
4 ' s#i<n .

Theorem C.
(i) For 0< 8 < <8 <n-1,

B(Maar...0r) = { 0

Pt(Mn,og ,...,a,,) =

Mps,,...te

k+1

(_1)k+12(-1)‘ n,t; |---,£|',-.-’tk+l Q”tti
t=1

. 0

Here, by convention, so = —1.

t=p"-p’

‘n—1
. —ai, t<p"—p°
@n. [ @2
=0

a2 o5y

for s #1 < n,
a,+1=>a,,

otherwise.

(‘—l)k—an,ag,...,a. 8 =0

8 >0,

with s;_; < t; < sy,

p" — pith
-5

E pti — pti

with 8;1 < t; < 8,

t

8k <tlgy1 <n,

otherwise.
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(ii) ,B(Ln) =0,

Pt(L ) = 4 : Pi= 1 ’
n
0 otherwise.

Part (ii) was first proved in Mui (3, I1.5.5]. It is worth noticing
that the above action has been studied by many authors. Their results
can be divided into two kinds: either they are only valid for ¢, a pow-
er of p, or they are given only by inductive procedures. (See Singer
[14], Campbell [1] for results concerning Theorem A, and Madsen [6],
May (10, 1.3], Madsen-Milgram [7, Chap. 3]. Mann [8], Mann-Milgram
[9], Smith-Switzer [16], Wikerson [18], Singer [15] for results related to
Theorem B.)

The results analogous to Theorem A, B, C for p = 2 were given
by Hai-Hung [12] and Hung [13].

It should be noted that the method which we use in this paper
is very elementary. It is extended from that of the first author’s work
[13]. Roughly speaking, we mainly read off the action of Steenrod
operations from the expansion of Mui invariants in terms of Dickson
and Mui invariants of fewer variables.

2. PRELIMINARIES

Recall that the Steenrod algebra A = A(p) has an additive basis

consisting of the admissible monomials in P*’s and 8. Let A, be the
dual of A and 7, £ € A. the duals respectively of ﬂP"‘-l {21 PPPY,
k—1

PP" " ... PPP! with respect to that basis. Milnor showed in [11] that,
as an algebra,

A, EE(To,Tl,...)®P(fl,fz,...).

So A, has a basis, in the Milnor sense, consisting of all the monomials

of the form

rgt® = Gaddoca il TPE,

with S = (s1,...,8k), 81 <--- < sg and R = (ry,...,ry,).
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We denote by St5'% the dual of 75¢F with respect to the Milnor
basis. In particular, St(©):® = 8 and §t%(*) = Pt

In [5], Mui described St5'F in terms of Dickson and Mui invariants
by means of the homomorphism d;,, P, a generalization of d* P, which
was first studied by Steenrod [17].

Throughout this paper, the cohomology is always taken with co-
efficients in Z/p. Suppose X is a topological space. Let

Pp i HY(X) — HP" *(EZpm Xg,m X))

be the Steenrod power map which sends z to 1 ® uP" at cochain level.
Let E™ C Z,m be the regular permutation representation of E™ =
(Z/p)™. This inclusion together with the diagonal map of X and the
Kiinneth formula induces the homomorphism

d, : H*(EZym X5, X?") > H*(BE™) ® H*(X).

One can easily get Imd?, C H*(BE™)SLm @ H*(X), where

SLy = {w € GLp; (detw)* =1, h = (p—1)/2}.

In [5], Mui determined explicitly H* (BE'”)ﬁ'". In particular,
this invariant algebra contains Ly, = L%, My, = My L2 . Note
that Q0 = L2,. The following beautiful result has been proved in 5]

Theorem 2.1 ([5]). Set pu(q) = (h!)?(—1)P~1)/2 gnd h = (p—1)/2.
Then

4% Pa(z) =
“(q)m Z(;I)T(S’R)Mmr’l e Mms’k 'i:rova:flhl . Q:';::;ll—l ® Sts’R (X)

for £ € HY(X). Here the sum is taken over all (S,R) with R
(r15--+"m), i 20, S = (81,...,8k),0< 81 < -+- < 8 <m, and ro
g—k—=2(ri+---+rm), r(S,R) = k+s1+---+sk+r1+2r2+---+mrp.

For m = 1, d} P, is nothing but d* P of Steenrod [17]. One has

d;Pl(.’l:) — M(Q) Z (_1)e+iziy§q—2i)h—e ® ﬂepi(i).
05‘:’;':—¢
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Moreover, the following result holds.

Proposition 2.2 ([3], [5]).

(1)

(i)
(iii)

d;, Py, ts a natural monomorphism preserving cup product up to a
stgn, or more precisely, dy, Pp,(uv) = (—1)™P9"d% P, (u)d}, P (v),
where ¢ = dimu, r = dimwv.

dp P =d;,_Prn_sd:Ps, 0 < s <m.

m—s
A Pr(y) = Vinr1(v1s-..,Ym»y), where y is the generator of
H*(BZ/p). -

Theorem 2.1 and Proposition 2.2 will be used to prove Lemmas

3.1 and 3.2, in the next Section which supply the main techniques in
our computation of P*(V,,) and P*(Qn,s). The following results, given
respectively in [2] and [3] are also crucial for these lemmas:

P(yla--'ayn)GL" = P(Qn,OwwaQn,n—l)y

P(y1,. s 9a) T = P(V1,...,V,).

3. PROOF OF THE RESULTS

We start with a corollary of Theorem 2.1.

Lemma 3.0.

d:an(Vn) =

(_l)m Z (_1)7(@,R)L:';: Q:rlz,l . err'z'::nl—l ® St@,R(Vn)’
R=(7‘1 ,...,r,,.)

d:an(Qn,s) =

Z (_l)r(w’R)f’:éQ:rlz,l el Q:n::;ul—l ® Sto’R(Qn,s),

R=(r1,...,rm)

where

ro=2p""1 —2(r1 4+ + ),
ro=2(p" = p°) = 2(r1 + -+ +7),
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St*R(V,) € P(Vh,...,Va),
St%®(Qn,s) € P(Qn,0,- -, Qnn—1)-

Proof. Note that u(2p"~') = —1, u(2p™ — 2p°) = 1. So, applying
Theorem 2.1, we need only to show why the invariants M, ,’s do not
appear in the right-hand sides.

Remark that P(yi,...,yn) and so P(V;,...,V,) as well as
P(Qr,05---yQn,n—1) is closed under the action of any P*, and is anni-
hilated by f. Thus, by twice dualizing, we get

St*R(V,) € P(Vi,...,Va),

Sto'R(Qn,a) S P(Qn,O’ ceey Qn,n-—l)a
StSR(V,) =0, St58(Q,,) =0,

for any S # 0. The lemma follows.

Lemma 8.1. There erxists uniquely an ezpansion

Vm+n(zl’---,Zm,yl,---,yn) =
"l (rtetrm 4
Z an,o = f )Q:rll,l s Q:n,ml—ltpR (Vl, ceny Vn)

R=(r1,:+4s"m)

with p® € P(V1,...,Va), @m,s = @m,e(21,...,2m) for 0 < s < m,
Ve = Ve(y1,.-.,¥r) for 1 < r < n. Furthermore,

St9RY, = (=1)™tT@ORIGR(V,, .. V), St5ERV, =0,
for any S # 0.
Proof. From Proposition 2.2, we have
dr PmVn(y1s.--5Un) = Vinin(Z15- s Zmy¥1y -, Un)-
Recall that f,fn = Qm,o. So, according to Lemma 3.0, there exists such
an expansion. The uniqueness of the expansion follows from the alge-

braic independence of V3, ..., V, over P(zy,..., 2m)- The last equations
also follow from Lemma 3.0.
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Proof of Theorem A.

By Lemma 3.1, 8(V,) = St()?(V,) = 0. Setting V! = V,,(ys,...,
Yn—1,¥) and applying Lemma 3.1 with m = 1, one gets

Vn+l(ysyl""syn) = HVn(yl"”syn—l,Ay'i'yn)
A

=11 [E(—l)"“*’Qn-l,a()\y +va)"|
A

8=0

= [I(va +2¥;)
A

- Vz(V':, Vn)
=V:_Vn'V,:p_l
= V,f o= Vn . Z (_I)V(I)C(I)Q::il,gl -
I=("Jl seeerfagy)
k:n'.1+...+.'.usp_l
0<e; < <ay<n—1

Qg oy R (- 1R (3.1)
where

V(I) = 811, + -+ 8uls, +(P— 1~ k)(n - 1),

~1)! k!
c(I)=i,l!...i(:!(p)—l—k)!=(—1)ki T stiph

8y w®

On the other hand, applying Lemma 3.1 with m =1, R = (t), Qi =
yP~1, we get

Vn+1(y1 Yi,--.. ’yn) = - Z(_l)ty(pn_l—t)(p—l)Pt(Vn)' (32)
t

Comparing (3.1) with (3.2) and using the uniqueness of the expansion
of V41 showed in Lemma 3.1, we obtain

(Va t=0,

Ve t=p"t,

P‘(Vn) — J (_l)t‘+u(1)c(I)Q:ll,al i 'Q:L.:I,auvﬂ (pn—l - t)(p T 1) =
16, 0% + .. .15, P+
(P ol oo k)pn7

L 0 otherwise.
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Since (p"~! —t)(p—1) = 15,p* + -+, p° + (p— 1~ k)p", we easily

get :

g ket i Pt e P
p—1

with 0 < k =1,, +-+- +1s, < p— 1, In particular, t = v(I) (mod 2).

It is easy to express k, t5,,...,%5, in terms of ap,ay,...,an—2,
the coefficients in the p-adic expansion of t, completing the proof of the
theorem.

Lemma 3.2. There ezists uniquely an expansion
Vm+n+1(zl" cvsZmylYly. - ,yn’z) =

n
=ZPs(zly~-°7zmayls ayn) +1(21, zm,z),

with P, € P(z1,...,2m)%I™ ® P(y1,... yYn)En. Furthermore, if

‘IJa = Z QP et 4 _("1+"'+"m)Q:;’l

R= ("l ’” s"m)

Qe 0 F(Qn05- - Qnin—1),
with Qm,r = Qm,r(21,--+12m); Qnt = Qn,t(Y1,---,¥n), then
StORQ, , = (-1)" " ORIYR(Qu0,. -1 Qnn-1)s
StSEQy,, =0,

for any S # 0.

Proof. Recall that V,11(y1,...,¥n,2) = Z(—l)”""Qn;,z”'. By using
Theorem 2.1 and Proposition 2.2, we obtain

Vm+u+1(zl’°",zm,yl’-",yﬁaz) =

= Z(—l)n+s(d*umQn,a)V,ﬁ;l(21, eesZmy ).

=0

This is the desired expansion with

P,(Z]_,...,Zmayls-“ayﬂ) =
= (—1)n+’d:anQn,c € P(Lm,Qm,l,-- .,Qm,m—-l) ® P(yla . "’yn)GLn'
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Moreover, combine Lemma 3.0 with the fact that 1”;3,, = @m0, one gets
d:anQn,a = Z(_I)T(G,R)Q:’oho :;'1‘11 e Q:;:::':—l ® Stw’RQn’s'
R
So

St9 ¥ @5 (1) PRl R0, 7. O L),
S5t58Q,, =0 for S #0.

To prove the uniqueness of such an expansion, assume that

n
ZF,(zl,...,zm,yl,...,yn)V,ﬁH(zl,...,zm,z) =0
8=0

with the polynomials F, of the indicated variables. Observing the co-
efficient of the leading term zpm+", we have F, = 0. By descending
induction on n, we get F, = --- = Fy = 0. The lemma follows.

The following lemma can easily be proved by induction on k, so
we omit its proof.

Lemma 3.3. Set V = Vy(y,2) = z(2P~1 — yP~1), then

k—1
k k k +1
zp — zyp -1 + E Vp‘yp _p‘

8=0

Jor k> 0.

Proof of Theorem B.

 From Lemma 3.2, B(Qn,) = St©?(Q, ,) = 0. We now apply
Lemma 3.2 with m = 1. Denote

Vn+l = Vn+l(yla <oy Yn, Z), Vr:+l = Vn+l(yls coosYn, y)-
We have, as seen in the proof of Theorem A,

Vatz = Vara(¥,91,. -, ¥n, 2) = Va(Vay 1, Vas1) = VP, = Ve Vo I11

= 0 { P ren

=0

T [i(—l)iQn,izp‘] [i(_l)iQn,iyp‘]p_l}.

t=0



50 Nguyen H. V. Hung and Pham Anh Minh

By Lemma 3.3, we have
Vasa = (-1)" {E( ~1)'QY, ZVP piti=ptt
—[Z( 1)°Qus va-v ][Z( 1)°Qn, yr] e,

with

n

F= (1) Y 0iesr

Since : —
Fy=(-1)"{ é(—l)‘@ﬁ,;y"“
- [Xen] [Z';O(_lm,,,,.ypf]"“} —
Vatz = (-1 {EV” [E( 1)'QE g7 P
(X (euw ") (Z( FQua?') |}

1=a+1

Therefore by Lemma 3.2, we get

d3PyQn e = (-1)* {Z g
i( 1)Qn,iy” ][ij(—l)‘on,;yp‘]’ }-

-1,
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Hence

+1

d= d;PlQn,a . yp'
— Z(_l)ty(p"—p‘—t)(p—1)+p‘“pt(Qn'G)

{Z( 1)'Qh
—[ > - 1)onwp][§: (~1'Qu”]" )

t=8+1
=(-U‘{§:04) A > - 1)°Qniv?’|
i=s i=s+1

[ X Coemein, ..

I=(|'.1 ..... fay)
0Sk=iy, +--+iay <p
0<s) < <oy <n

Qlau ‘I.IP‘I +"'+1'-,‘P.“+(p—1—k)p"] }

nau ’

whete k(I} = 814,, + -+ + 848, + (p — 1 — k)n, and ¢(I) is defined as
in the proof of Theorem A.

i= Y

=8

= S (=1)=D+ne(n)Qls, ...

I=(‘.ll ----- '.lu)
0<§l=u.‘+ gy <P
o<a1< <o..<u 2K

Qfa.. $o, Pl 4 +‘-..P"‘+(P k)p

n.e,Y
~ —1)!
s -1 k(I)4+n . : (P '
,;(.-.;..-.,, (1) ,=§+] Furlo (i — D). 1. (p — )

1Sk=iy) +-+igy <p
0521 < <o L8<
<1< <oy<n

Yoy Q'“ y'-xP 1ty p*e+(p—k)p" }

81 - Wn,8,
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a+1

= () {(-1*Qz.v*

= b (1)<t k! — (k — 1)Y(ia,,, + - +1s)

by e artd

I=(n',l seeestsy )
15k=-'.1 +otig, <p
081 < - <op S8<
<um+1<--~<au<n

‘Yn,a - n,8u

By the same argument as used in the proof of Theorem A, we
obtain

Pt(Qn,a) =
( Qn,a t=0,
fu,a t=p"—p°
(~pE-tasr e ER B o, QR (7~ p* - O
(p—1) +p°*
ﬁ =150+ ...
+14,p°"
+(p — k)p",
[ 0 otherwise.

Since (p" —p° —t)(p—1) +p*F! =14, p* + - +ig,p* + (p—k)p",
we easily obtain
P —pn -p° + kp™ — i.sllrgl L 1s,0°" ’
p—1 p—1
with 1 < k =1, +---+1,, <p. In particular,t = k(I) + n — s (mod
2).

By a routine computation we can express k, t,,,...,%s, in terms
of ag, 01,...,0n_1, the coefficients in the p-adic expansion of t. This
completes the proof of the theorem.

Proof of Theorem C.

We proced now to prove Theorem C. Notice first that the second
part of Theorem C was proved by Mui [3, Lemma I1.5.5], using the Car-
tan formula, as follows. Let (ej,...,€,) be a sequence of non-negative
integers with ¢; < --- < e,. We have
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Puyt™ ... phay”

Pt[el,...,en]= Z

ty 4 Ft,=t Pt"yi’en Pt"y""‘
N "

- { [ex +€1,...56n+En] t=€1p% + -+ €np®, €; =0,1,
0 otherwise. (3.3)

It remains to prove the first part of Theorem C. Also using the Cartan

formula, we have

] ... 2y Ty ... T
Y 3 }krows }k-—lrows
. 500 . Ty o ofe Tn
T In W1 e Yn
Y1 Yn Y1 oY Yn
Pl . . == 2, e
s An®l ~ An®l
U 4 a ... 9P
e - POMRL -
i U4 e =8N
n—1 n—1 n—1 2 et
H e vy g yP
Hence, from the definition of M, ,, ... 5., we obtain
(_‘l)k_an,ag,...,ak 81 =0,
ﬂMn,al,...,sk oY 0 g

Similarly, we have
PtMn,sl,...,ak =
Ea"_lt-
A= P
1<i<k
8$i—1 <t < S¢,
= a n_tk4l o _nti
=) [k;ov"-7t17""tk+1'a°--,n_ 1] t= Lp% o Z P;p:;L
1<i<k

Si—1 <t < 8, Sk <4y < n.

-~ -

(K50, yt1yennytiyen.yn—1]

’

otherwise.
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The theorem follows by combining [3, Prop. 1.4.7], which asserts
that

k{k—1
[k;ekt1s---r€n] = (_1)—(—)-3 .

Z (_1)81+m+’k My s,,....50 [31, EERR TE HS PR en]/Ln
0<8; < <8 <n—-1

for ex41 < -+ < e, < n, and the following obvious fact

[tl"- .,ti’... )tk+l,o,t1,oc . ’tk+1’. " ,n] =
= (_1)&#+t‘+"'+f-‘+"-+h+l+1—iLn tie

Remark. We note that the proof of Theorem C is only based on
the Cartan formula and the definition of L, and M, ,, ..., . Using a
similar argument, an alternative proof of Theorems A and B can be
given. Indeed, since V,L,, = Ln41 and Q@ sL, = Ly ,, by the Cartan
formula, we have

PHV,) = P{(Lps1) 3 ‘Pt_,-(Vn)pi(Ln)

L, 0<i<t Ln
PYL, - Ps(L,
Pt(Qn,a) = 'LL"’_) - Z P (Qn,e)_‘é——l :
L 0<i<t T

Using (3.3) we can prove Theorems A and B by induction on k,
which is determined by t as follows. Suppose 0 < ¢t < p™, then t can
uniquely be decomposed in the form:

_ kp™ — g p* — - — i P

t
p—1

+q(t),

where 0 < 7,, < p,0<8; <+ <8, <m—1,0<k<p,andif

agt) =qo+qp+ -+ gm_2p™ 2

is the p-adic expansion of g(t), then ¢,;,—; =0, for 1 < j < w.
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