Vietnam Journal of Mathematics
Volume 23, Number 1, 1995

ON GLOBALLY MINIMAL STEINER NETWORKS
WITH CONVEX BOUNDARY POINTS
ON THE PLANE

NGUYEN HUU QUANG

Abstract. In this paper we investigated global minimality of Steiner net-
works on the plane. We prove thatl if ¢ Steiner network has no growths and
branch potnts then it is globally msnsmal in the class of networks with the same

topological type.

1. INTRODUCTION

Let C be a class of Steiner networks with given fixed convex
boundary points on the plane. The problem of finding a length min-
imizing network in the class C' was studied by some authors (see, for
examples, [1], [2]).

In this paper we use the calibration system principle presented by

Dao Trong Thi to prove the global minimality of some series of locally
minimal Steiner networks on the plane.

2. PRELIMINARIES

A Steiner network on the plane is any connected one - dimension-
al simplicial complex, whose vertices all have degree at most three. A
Steiner network without vertices of degree two is said to be nondegen-
erate. Henceforth we shall study only a cyclic, nondegenerate Steiner
network with a convex boundary consisting of the vertices of degree
one.

We recall that every locally minimal Steiner network has the fol-
lowing properties:
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(1) The network consists of stright line segments;
(2) At every vertex the segments meet at angles of 120°.

We know that (see [1]) a minimal Steiner network is described as
a dual graph of some tree tiling with the twisting number at most five.

2.1. Definition. A vertex of degree three of a given Steiner network
N is called a node. We consider a tree P tiling with the dual graph N.
A node is called a growth if the corresponding cell is a growth. A node
is called a branch point if the corresponding cell is a branch point.

2.2. Definition. A network is said to be oriented if its sides can be
oriented so that every two adjacent sides are oriented opposite to each
other.

Every Steiner network is oriented.

Suppose that N is an oriented Steiner network on the plane RZ.
A path in N joining two boundary points is called a maximal path. A
set of maximal paths {P;}; in N is said to be a basis of maximal paths
if {P;}, satisfies the following conditions:

(1) The union of all paths from {P;}; overlaps N;

(2) The system {P;}; is independent;

(3) Every maximal path in N is a combination of paths from
{P;};.

We note that every Steiner network with k£ boundary points has
a basis of maximal paths consisting of (k — 1) maximal paths.

2.3. Definition. Let N, N’ be the networks in R? with the same
boundary points Ay, Az,...,Ar. We say that N and N’ are of the

same topological type if there is a homeomophism F : R? — R? such
that F(A;) = Ai;; ¢ =1,2,...,k and F(N) = N'.

2.4. Calibration system principle. Let N be an oriented Steiner
network with k boundary points on the plane and {Py, P2,...,Pr_1} is
the basts of marsmal paths in N. Suppose that there is a sysiem of close
differential 1-form {w;,ws,...,wk—1} on the plane such that

1) Y wilej(@N.) =1, Ve;

JEJa
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2) H Zsj(a)wj” =1, Ve,

J€EJa
where €;(a) ts the sign of side a in the path P;, J, = (jla € P;) and
N 1s unit tangent vector to N at = € a with the same orientation as a.

Then N 1s a length-minimizing network in the class of network
with fized topological type.

Proof. Let N’ be any Steiner network belonging to the topological
type of N. Assume that f : R?> —» R? is a homemophism such that
f(N) = N’ and f(A;) = A; for each i, where A; are the vertices of
N. The orientation on N’ is induced by the orientation on N under f.
{f(P1),..., f(Pk—1)} is a basis of the maximal paths in N’. Denote the
length of N and N’ by |N|, |N’|, respectively; the length of the sides a
and a/, by |al, |a’| where o’ = f(a). Putting ' = f(z), we have

M= la= Y [ (X wile@.)

aeN GGN jGJn
—z/% z/w, > [ X wrteste) M)
‘ J P' a' al JGJ'

<E‘/1’ [Nl

where P/ = f(P;). The proof is completed.

The system {w,}, is called a calibration system on N.

3. RESULTS

3.1. Lemma. The Steiner network shown tn Fig. 1 is globally minimal
in the class of networks with fized topological type.

Proof. Suppose that the Steiner network N is oriented as in Fig. 2

Denote the sides of N by, a;,a2,a3. We put P, = a; — a3 and
P, = a; — a3. Clearly, the system {P;,P,} is the basis of maximal
paths of N.
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Let &, @2, @3 be the unit tangent vectors to N on a;, a3, a3
respectively and a}, a3, a} are the unit co-vectors dual to them. Assume
that w;, wg are constant differential 1-forms induced by aj and a3,

respectively . We have w;(l\_f,) =1for z € a4, t = 1,2 and (w; —
wg)(N;) = 1 for z € a3 and |lwy|| = [|wz]| = 1. By (1.3), N is length-
minimizing network.

Fig. 1 Fig. 2

3.2. Theorem. A Steiner network N without growths and branch
points ts globally minimal in the class of the networks with fized topo-
logtcal type.

Proof. The Steiner network N is of the form shown in Fig. 3.

S St

Fig. 8

The Steiner network N oriented as in Fig. 4 (The sides can be
oriented so that every two adjacent sides are oriented opposite to each

other).
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Fig. 4

Denote the boundary points of N by A,,...,A,. We shall prove
the theorem by induction on n. For n = 3, by Lemma 2.1, we have the
basis of maximal paths {P;, P;} and the calibration system {w;,w;}.
Suppose that the Steiner network Ny C N with (n — 1) boundary
points Ay,..., Ap_2, C has the basis of maximal paths {P;,...,P,_,}.
Without loss of generality, we can assume that the side a belongs to
only one path P,_; in N;. We put

P;=PF, 1=1,...,n-3,

Pn_2=Pn_y —ak41,

P, 1 =ar42 — apqa,

where ay1, axy2 are the sides of N joining C with A,_;, A,_2, re-
spectively.

To prove that the system {—131, X3 ,7’-,,_1} is the basis of minimal
paths in N, we need only to check the condition (3) of Definition 1.1.
Let P be a path joining two boundary point A; and A; in N. Here
we only consider the case where A; belongs to N; and A; is the end
of axy2. We suppose that P is the maximal path joining A;, C in N;.
Then P is the combination of Py,,..., Pa, from {Py,...,P,_3} and P
is the combination of {Fm e ,Fa,,ﬁn_’l} in N. Now, we construct
a calibration system on N.

Denote by wy_; the 1-form induced by aj, +2- Here af_, is the
co-vector dual to the unit tangent @i, 2 on the side axy3. Then, the
system {wi,...,wpn_2,wn—1} is the calibration system on N. Indeed if
Z € ak41 then

(wn—2 i wn—l)(_ﬁz) = (a): + a,‘;+2)(—1\7,;) = ‘al:+1(‘ﬁz) =1,
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and
| — wn—2 —wn-1|l = l| = ak — ak42ll = |lak41ll = 1.

If £ € agys then wp_y(N:) = a,‘;_,_z(l\_fz) = 1 and ||wp—1|| =
a; = 1. By (1.3) N is a length-minimizing network.
k+2 .

3.3. Theorem. A Steiner network N without branch points s globally
minimal in the class of networks with fized topological type.

Proof. The network N is of the form shown in fig. 5.

Fig. 5

We choose the orientation on N such that every two adjacent
sides are oriented opposite to each other (see Fig. 6).

Fig. 6
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Suppose that C is the first growth of the Steiner network N with
boundary points Ay, Az, As,...,C. We assume that {P;, P;,...,P;}
and {w;,ws,...,w:} are respectively, the basis of maximal paths and
the calibration system on the network (A1, A2, As,...,C) (by Theorem
2.2). We can assume that the side a; belongs only to one path P,. Put

P;=P; i=12,...,t—1,
Py = —P; + aks2,
Pii1 = —Pi+ agt1 — ¢,
Piia=b—c.

Then the system {Fl,ﬁz, e ,ﬁH_z} is a basis of maximal paths
of the Steiner network (A;, Az,..., D). Denote by w;, Wiy 1, Wiy2 the
1-forms induced by @i, 9> Gf,q, b*, respectively. Here Gki2s Gkyqs ks
b*, c* are respectively the co-vectors dual to unit tangent on the sides
QK425 Qk4+1, Qk, b, c. Put

w=wg; t=1,2,...,t—1.

then {wy,...,Wt42} is the calibration system in (A, A42,...,D). In-
deed,

If € ax1 then Wy(Ns) = af5(Na) = 1, and [[@] = Jlaj,, ) = 1.
If z € ag4y then w,+1(1\73) = a,’:+1(ﬁz) =1, and ||[We41]| = llagsall = 1.
If z € b then wt+2(ﬁz) = b*(ﬁz) =1, and ”Gt-{.zll = ”b*” = 1.

If £ € cthen (@e1+@e42)(—No) = (afy  +0*)(—N2) = —c*(=Ny) = 1,
and || — Wiy — Dyl = || — afyy — b*|| = |le*|| = 1.

Let £ € m, where m is any side belonging to P;. We can assume
that m also belongs to P,, ... Ps,. Then we have

(@ay + -+ + Tay, ) (Vz) + (@ + Teg1)(—No)

= (wa, +--+ + wak)(ﬁz) ale (a,*¢+2 + ai+1)(—]\72)
= (Way ++* +wa )(N2) + (~a}) (= N2)

= (Way ++++wa, + a:)(ﬁz)

= (Way + -y Way +wr) (N3)

=) |3
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Therefore,

|@a, + -+ Way — Ut — Wit
= ||wa, + *+* + way + agl|

= ||lwa, + - + wa, + wy|
=-1.

Proceeding in this way, we construct at the end the basis of max-
imal paths and the calibration system on N, satisfying the conditions
of Definition 1.3. The theorem is proved.
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