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A Short Communication

ON MINIMAX SOLUTIONS OF FIRST ORDER
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
WITH t-MEASURABLE HAMILTONIANS *

NGUYEN DUY THAI SON and NGUYEN DAC LIEM

It is well-known that there may not exist a global classical solution
for a first-order nonlinear partial differential equation (PDE). In recent
years, significant attention has been paid to the study of generalized
solutions whose definition is based on replacing the equation by a pair
of differential inequalities. A nonclassical theory of Hamilton - Jacobi
equations as well as other types of first-order PDEs represents a large
portion of research in which the concept of globa.l solutions introduced
by Crandall and Lions [2, 3] is used.

Another direction in the theory of generalized solutions is moti-
vated by differential game theory and has been suggested by Subbotin
[1, 5]. It leads to the notion of minimax solutions of the Cauchy problem
for nonlinear PDEs.

dp

E + H(t I,P, Vzp) = 0)

where H is a continuous function of its arguments.

Our aim here is to point out that the (global) minimax solutions
can be defined for certain PDEs satisfying Carathéodory’s conditions.
The results in this paper generalize the ones of Adiatullina and Subbotin
in [1].

Let us consider the Cauchy problem of the form

d9p

5 + H(t,z,0,Vzp) =0 in 0 =(0,T) xR, (1)
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o(T,z) =o(z) on R", (2)

where V. = (3p/dzy,...,0p/0z,) denotes the gradient of ¢ in z.
We set S :={s € R" : ||s|| =1}, B:= {s € R" : ||s|| < 1}, where |.||
denotes the Euclidean norm.

Assume that 0 € C(R") and H has the following properties.
a) Carathéodory’s conditions:

al) For almost every (in the sense of Lebesgue measure) fixed
t € (0,T), H(t,.) is (totally) continuos on R™ x R X R".

a2) For every (z,n,s) € R* xR x S, H(.,z,7, s) is measurable
on (0,T).
b) For any bounded sets D C R", E C R there exists a function
A(.) € £}(0,T) with
|H(taz,’7as) "H(tay’”’s)' < A(t)”a:—y”, (3)

for all z,y € D, n € E, s € S and almost all t € (0, 7).
c) There exists a function k(.) € L'(0,T) such that

sup{|H(t, z,n,p) — H(t,z,n,q)| — |lp — q|| L(t,z) : p,g € B} <0, (4)

for all (z,n) € R™ x R and almost all t € (0,T), where L(t,z) :=
k(8)(1+ l=[])-

d) For all (z,s) € R™ X S and almost all t € (0,T), the function
H(t,z,.,s) is decreasing on R.

e) H(t,z,n,s) is positively homogeneous in s, i.e.,
H(t,z,n,as) = aH(t,z,n,s), Ya>0, (5)

for all (z,7,s) € R® X R x S and almost all t € (0, T).
Note that the conditions a2), c), e) imply the following
a’2) H(.,z,n,s) € L'(0,T) for all (z,n,s) e R* x R x R™.
Let us denote the Euclidean scalar product in R™ by (.,.) and set

F(t,z) := V2L(t,z) - B,

Fy(t,z,n,q) := {f € F(t,z): {f,q) > H(¢t,z,m,9)}, (6)
Fi(t,z,n,p) :={f € F(t,z): (f,p) < H(t,z,n,p)}-
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Here (t,z) € N1, p € P, ¢ € Q with such sets P, Q that
{ap:peP,a>0}={ag: g€ Q,a >0} =R".

For example, we can take P = Q = S. It is easy to see that the
nonempty convex compact valued multifunctions 1 > (¢,z) — F(¢,z),
N> (tz) — Fy(t,z,ng), Q> (¢,z) — Fr(t,z,n,p) are continuous
in z and measurable in ¢ for any n € R, p € P, ¢ € Q. From the
monotonicity and continuity in  of H we have

FU(taxaﬂl’q) C FU(t,.’B,le, q)a
FL(t’zanZyP) C FL(taz’r’l,p)’

M Fult,z,n,9) = Fu(t,z,n1,9), (7)
n>m

n FL(tax,ﬂ,P) = FL(t,I,’?ZaP),

n<nz

whenever n; < 15. It can also be shown that

FU(tazanaq) N FL(t,iE,ﬂ,p) :l'é @
for all p€ P, g € Q and therefore

H t, ’ t b = i ’ =i f b ’ 8
e etonshss T, (oo it 1,y et R

for all z,n7,s) € R™® x R x R" and almost all t € (0, T).

In the following, by Xy(t.,z.,n,q) and X(t.,z.,n,p) we de-
note the sets of all absolutely continuous functions z(.) : [0,T] — R"
satisfying almost everywhere in (0, T) the differential inclusions #(t) €
Fy(t,z(t),n,q) and z(t) € Fr(t,z(t),n, p), respectively, subject to the
same constraint z(t.) = z.. From Theorems 5.2, 7.1 in [4], it follows
that Xy (t.,z.,7n,q) and X (t.,z«,n,p) are nonempty compact sets in
C([0,T},R") for all (t.,z.) € Q.

Definition 1. A supersolution of Prolem (1), (2) is a lower semicon-
tinuos function ¢ : 1 — R satisfying for al0 <t <7 < T; z € R"®,
the conditions

su min 7,z(1)) —p(t,z)] <0 9
qeg z(.)EXu (t,2,p(t,2),9) le(r,2(r)) e )] (9)
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o(T,z) > o(z), VYVzeR". (10)

Definition 2. A subsolution of Problem (1)-(2) is an upper semicon-
tinuous function ¢ : 1 — R satisfying forall0 <t <7 < T; z € R"
the conditions

inf - ; — olt, <0 11
x}gpx(.)ex;.r(?gtp(t,z)m) [(p('r ={1)) ~ el z)] 5 an

eo(T,z) < o(z), VzeR" (12)

The sets of all supersolutions and subsolutions of (1), (2) will be
denoted by Soly and Solj, repectively.

Definition 8. A function ¢ € SolyNSoly is called a minimax solution
of the Cauchy Problem (1), (2).

In [6, 7] Tran Duc Van proposed the following notion of global
generalized solutions.

Definition 4. A function p € C(0) locally Lipschitz continuous in 2
is called a global quasi-classical solution of (1)-(2) if for all z € R™ and
for almost all t € (0, T), p is (totally) differentiable and satisfies (1) at
the point (¢, z), and if (2) is fulfilled.

We are now able to formulate the main results in this paper.

Theorem 1. Assume a) - ¢). Then

i) Every global quasi-classical solution ¢ of (1)-(2), such that
o(t,.) € CL(R") for almost all t € (0,T), is also a minimaz solution
of the same problem.

i1) There exists a subset A C (0,T) of the Lebesgue measure 0 such
that at any point (t,z) € ((0,T) \ A) x R", where a minimaz solution
© of (1)-(2) is differentiable, the equation (1) must be satisfied.

Theorem 2. Let o0 € C(R") and H satisfy all the conditions a) - e).
Then there ezxists one unique minimaz solution for the Cauchy Problem

(1), (2)-
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Our proofs are based on a sharpening of the Lebegue theorem,

t46
which states that for a function ¢ € L! (0,T), lsi?ol(l/a) f lg(7) —
t

loc

g(t)|dr = 0 almost everywhere in (0, T), and on a new version of Gron-
wall’s inequality. They will be published elsewhere.
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