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A Short Communicirtion

ON MINIMAX SOLUTIONS OF FIRST ORDER

NONLINEAR PAR,TII\L DIFFERENTIAL EQUATIONS

WITH '-MEASURABLE HAMILTONIANS -

NGIryEN DUY THAI SON and NGUYEN DAC LIEM

It is well-kno\iln that there may not exist a global classical solution
for a first-order nonlinear partial differential equation (PDE). In recent
years, significant attention has been paid to the study of generalized
solutions whose definition is based on replacing the equation by a pair
of differential inequalities. A nonclassical theory of Hamilton - Jacobi
equations as well as other types of first-order PDEg represents a large
portion of research in which the concept of global solutions introduced
by Crandall and Lions [2, S] is used.

Another direction in the theory of generalized solutions is moti-
vated by differential game theory and has been suggested by subbotin
[r, s]. It leads to the notion of minimax solutions of the cauchy problem
for nonlinear PDEs.

*  *  H ( t , r , e ,Y ,e )  :0 ,
dt

where .E[ is a continuous function of its arguments.

our aim here is to point out that the (global) minimax solutions
can be defined for certain PDEs satisfying Carath6odory's conditions.
The results in this paper generalize the ones of Adiatullina and Subbotin
in  [ l ] .

Let us consider the Cauchy problem of the form

otp
at + H(t ,n,g,Y rp) :  O in O :  (0,  T) x R," , (1)
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p(T,r )  -  o( r )  on R' ,  (2)

where Y rp 2: (0910x1,... ,0p1}c,n) denotes the gradient of tp in n.

We set ,S : :  {s  €  R, '  :  l l s l l  :  1} ,  B : :  {s  €  R" '  l l " l l  S 1} ,  where l l . l l
denotes the Euclidean norm.

Assume that o € C(R,") and .[J has the following properties.

a) Carath6odory's conditions:

al) For almost every (in the sense of Lebesgue measure) fixed
t € (0, T), H(t,.) is (totally) continuos on R' x R x R'.

a2) For every (r,r l ,s) e R' x R x S, H(.,n,Q,s) is measurable
on (0, ?).

b) For any bounded sets D C R", E c R there exists a function

, t ( .)  e Zt(o,T) with

lH ( t ,a ,? ,s )  -  H ( t ,a ,? ,s ) l  <  A ( t ) l l t  -  y l l ,  ( 3 )

for  a l l  n ,A € D,4 € E,  s  €S and a lmost  a l l  t  €  (0 , " ) .

c) There exists a function k(.) € trt(0,?) such that

s u p { l H ( t ,  n , e , p )  -  H ( t , 8 , 4 , Q ) !  -  l l p  -  q l l L ( t , r ) ,  p , q  €  B }  <  0 ,  ( 4 )

for al l  (r,n) € R'x R and alrnost al l  t  € (0,?), where L(t,n) z:
f t ( r)(1 + l l " l l ) .

d) For al l  (r,s) e R'x,S and almost al l  t  e (0,?), the function
H(tra,.,s) is decreasing on R..

e) H(t,n,4,s) is posit ively homogeneous in s, i .e.,

H( t ra ,?,  CIs)  :  aH(t ,xr r1rs) ,  Va )  0 ,  (5)

for al l  (r,q,") € Rn x R x S and almost al l  t  e (0,f).

Note that the conditions a2), c), e) imply the following

a '2 \  H ( . , a ,4 , s )  €  r r (0 ,? )  f o r  a l l  ( c , r , s )  €  R ' x  R  x  R ' .

Let us denote the Euclidean scalar product in R' by (., .) and set

F( t , x ) , :  r t L1 t ,n ) ' 8 ,
F v ( t , x , e , Q )  ' :  { /  €  F ( t , " ) ,  ( f  , q l  >  H ( t , r , 4 , 8 ) ) ,  ( 6 )

F t ( t , r , 4 , p )  r :  { f  e  F ( t , r ) ,  ( f  , p l  <  H ( t , n , , n , p ) } .
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Here (t,o) e O, p € P, q e Q with such sets P, Q that

{ o p ,  p  €  P , a  )  0 }  :  { o q ,  q  €  Q , d  2  0 }  :  R ' .

For example, we can take P : Q - S. It is easy to see that the
nonempty convex compact valued multifunctions O > (t,") r- F(t,r),
o  > ( t ,o)  *  Fv( t ,s ,4 ,Q),  o  )  ( t ,c)  *  Fr( t , t ,4 ,p)  are cont inuous
in c and measurable in t for any ? € R, p € P, q € Q. From the
monotonicity and continuity in 4 of Il we have

Fv (t,  E t 4 r, q) c n, (t ,  r,  42, 8),

Fr , ( t ,  t ,42,  p)  c  Ft ( t ,  r , r t  r ,  p) ,

I  a "  ( t , r , n ,q ) :  Fv ( t ,8 ,4 t ,8 ) ,  ( z )
r l)4r

0 
" ,  

( t , r , r t ,p )  :  F t  ( t , r ,q r ,p ) ,
4142

whenever nt 1qz. It can also be shown that

Fu (t ,  r ,4, e) n Fp(t,  r ,q, p) + 0

for all p € P, q e Q and therefore

H(t, a,eta,s) : 
;:t t.rfri!,r,o,(/, ") 

: 
otpl ree1ffi,4,o,(.f,"), 

(8)

for all t,4,s) € Rn x R x R' and almost all t e (O, 
").In  the fo l lowing,  by Xu( t . t r * t l ;q)  and Xz( t*s t , * t r l tp)  we de-

note the sets of all absolutely continuous functions r(.) : [0, ?j -+ R,
satisfying almost everywhere in (0, T) the differential inclusions i(t) e
Fu(t,r(t),n,q) and i(t) € Ft(t,a(t),q,p), respectively, subject to the
same constraint z(t*) - c*. From Theorems 5.2,7.I in [a], it follows
that Xu(t*tr+tqrq) and Xt(t. tx*;4tp) are nonempty compact sets in
c([0,?],R") for al l  ( t . , r*) e n.

Definition t. A supersolution of Prolem (1), (2) is a lower semicon-
t inuos function g: n -+ R satisfying for al l  0 < t 1r 1T; r €Rn,
the conditions

f."8 "t.1.* ut,*e(t,,),orl'(""(")) 
- rp(t' c)] < o (9)



t4E Nguyen Duy ?hai Son and Ngupn Dac Liem

p(T,r) > o(s), Vr € R,n (10)

(1 r )

(12)

Definition 2. A subsolution of Problem (1)-(2) is an upper semicon-
t inuousfunct ion p zn --+ R sat isfy ingfor al l  0 < t  1r  1T; ne Hn
the conditions

p(T,r\ < o(r), Vc € R"

The sets of all supersolutions and subsolutions of (1), (2) will be

denoted by Solu and Soly, repectively.

Definition 8. A function g € SoIUO^Sol1, is called a minima:< solution

of the Cauchy Problem (1), (2).

In [0, 7] Tran Duc Van proposed the following notion of global

generalized solutions.

Definition 4. A function I € C(q locally Lipschitz continuous in O

is called a global quasi-classical solution of (1)-(2) if for all c € R' and

for almost all t € (0, ?), p is (totally) differentiable and satisfies (1) at

the point (t,r), and if (2) is fulfilled.

We are now able to formulate the main results in this paper.

Theorem l. Assume a) - e). Then

i) Euery global quasi-classical solution p 
"f 

(1)'(2), such that
p(t,.) e Cr(E') for dmost oll t €. (0,?), is olso o minimoc solution
of the same problem.

ii) There ecists o subset.d c (0, T) ol the Lebesgue mea,sure 0 such

thot ot ony point (t,r) e ((0,") \A) x Rn, where o miniman solution
,p ol (1)-(2) is differentiable, the equotion (1) must be satisfied.

Theorem 2. Leto € C(R") ond H sotisfy allthe conditions o) - 
").

Then there eaists one unique minimos solution for the Cauchy Problem

(1), (2).
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Our proofs are based on a sharpening of the Lebegue theorem,
r+6

which states that for a function s e Ll""(0,T), tj6(r/a) I lsb) -

g(t)ldr : 0 almost everywhere in (0, ?), and on a new version of Gron-
wall's inequality. They will be published elsewhere.
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