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COMPUTATIONAL ASPECTS OF

OPTIMIZATION PROBLEMS

OVER THE EFFICIENT SET I

LE DUNG MUU

Abstract. We gwc an*r/ardrur;tionto ampddiond mctM lor optimizing
a rcal odud lunction ooer tJle efuied set ol a vector optimimlion prcblem.
Thid prcblem hot many qpliutiow in multiple citnria &cision m&ing. Some
rccently &aelopd algoitfuru lor aduing this prcblem orc descrihd in a unifid
tnaruur. Qwstioru lor lurlher deaelopncnt ol this prcblem arc disassed.

1. INTRODUCTION AND THE PROBLEM STATEMENT

The purpose of this paper is to give some computational aspects
of optimization problerns over the efficient set of a vector maximization
linear problem. This problem is shown to be equivalent to a linear
program with a special additional reverse convex constraint. Some
recently developed methods for solving this problem are described in a
unified manner.

Throughout  the paper  for  two vectors a i :  (ar r , . . rap) ,  b : :
(bt, . . . ,6j) we write o)b (respect. a ) 6) if and only if a; ) b; (respect.
a ; )  b ;  and a I  b)  for  a l l  a .  A lso,  a)  6  i f  and only  i f  a ; )  b ;  for  a l l
l. For simplicity of notations we will omit the notation of transpose in
writing the inner product of two vectors.

Let X C Rn be a polyhedral convex set given by linear inequali-
ties and/or equalities. Let c be a (p x o) real matrix. Then the vector
(or multiple) objective linear prograrnming probiem written as

m o r { C c : r € X } (VP)

1 Thir paper is eupported in part by the National Basic Research program in
Natural Sciences
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can be viewed as the problem of finding all efficient solutions to Problem

(vP). we recall that a point co € x is said to be an efi,cient solution of.

iroblem (VP) if whenever Cr2Cro for some r e X, then Cr : Cno.

An efficient solution is also often called a nondominatedor Pareto point.

Each component of the vector Cn is called lhe obiectiue lunction or

lhe criterion function. We shall denote by Xe the set of all efficient

solutions of Problem (VP).

The problem of main concern in this paper then can be written

as
max{d , r zx€Xs} , (P)

where d, e Rn is given.

Problem (P) can be classified as a global optimization problem,

since its feasible region Xs is, in general, nonconvex. In [ZS] Philip

first proposed Proble* (P) and outlined a cutting plane algorithm for

finding a global optimum of this problem. In 1979 Dessouky et al [8]
considered a special case of this problem where the objective function

is one of the criterion functions of the vector ma><imization linear prob- 
- ->

lem. They used Philip's algorithm for solving this case. tn [fa] Inser- i

mann and steuer developed an algorithm for solving (P). Like Philip's

method, this algorithm used simplex-type pivots to move along paths of

adjacent efficient extreme points which increase the value of the linear

objective function. A cutting plane is added each time and a locally

optimal efficient extreme point is thereby found. These methods re-

quire finding all efficient extreme points that lie on this cutting plane

in the newly created polyhedron. Since neither of these algorithms ex-

plains how to perform this search mathematically, it is not clear how

to implement them.

Benson [2] established necessary and sufficient conditions for ef-

ficiency to a vector convex optimization problem, and for an efficient

point to be a ma>cimal point of a linear function over the efficient set

of the underlying vector optimization problem. Using these results, re-

cently Benson [3], [4], [5] proposed three algorithms for solving Problem

(P). The methods in [e], [l] are based on the fact that one can find a

simplex tr c Rp such that (P) is equivalent to the following infinitely

constrained optimization problem given by

rlrax d'r

\ C r > \ C y  V y e X ,  r € X ,  ) € 4 .
subject to

(IP)
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At each iteration k of the methods in [s], [n] tle infinitely constrained
problem (IP) is relo<ed by the following finite constrained optimization
problem:

maxdr (Pk)

subject to

\ C x , 2 \ C a '  ( i : 0 , 1 , . . . , k ) ,  x e X ,  t r € 4 .

For solving this nonconvex subproblem, in the first algorithm [B], called
all-linear prograrnming method, the term )Cr is replaced by its convex
envelope, and then this subproblem is solved by an infinitely conver-
gent procedure. In the second method [4], called nonadjacent extreme
point search, the request of solving subproblem (Pk) at iteration /c is
weakened by finding an efficient extreme point c&*1 such that dre+1
is greater than the currently known lower bound of the optimal value
of (P). The third algorithm [5], called bisection extreme point search
method, is proposed for solving a special case of (P) where the vec-
tot d is linearly dependent upon the rows of the matrix c. In this
algorithm, Problem (P) is shown to be equivalent to a finite number
of concave minimization problems in r-space. A heuristic algorithm is
also proposed recently in [G].

In Muu [20] Problem (IP) is replaced by a convex-concave pro-
gramming problem given by

tnaxd,t

subject to
h ( ) , r )  S 0 ,  r € X ,  ) e  A ,

where h(1, c) is a convex - concave function defined by

(cP)

h(\,a) ::  max{)Cy I y € X} - \Cz.

This problem is a special case of problem considered in [rz], and there-
fore it could be solved by a decomposition branch-and-bound algorithm
described there. This algorithm however would be efficient only if the
dimension of the *concave-space' where subdivisions were performed
is relatively small. However, in many applications the dimension of c-
space in Problem (P) is much greater than that of )-space which just
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equals the number of the criteria. In [ZO], some methods are developed
for solving Problem (CP) by linearization of the convex function g given

by

9 ( ) )  : : m a : < { } C y : y e X ) .

The subdivisions in these methods are performed only in .\ - space.
Therefore they are efficient if the number of the criteria is relatively
small while the number of the variables may be fairly large. In [Zf]
an efficient parametric simplex method is described for solving Prob-

lem (P) with p : 2. This case frequently arises in many applications,
especially in bimatrix game theory.

The paper is organized as follows. In the next section we present

some theoretical results on optimality conditions for Problem (P) that

will be used for deriving solution methods described in the following
sections. Section 3 is devoted to describe three methods based on re-

laxation approach for solving (P). In Section 4 we outline algorithms
which use efficient extreme point search for finding a global solution to
(P) among the vertices of the polytope X. In Section 5 we consider the

bicriteria problem which can be solved very efficiently by a parametric

simplex method given there. Some other results for special cases of the

bicriteria case are also presented in this section. We close the paper by

conclusions in Section 6.

2. CONDITIONS FOR OPTIMALITY

In this section we shall be concerned with optimality conditions

which will be used for deriving solution methods to Problem (P). The
proofs of theorems in this section can be found in [Z]' [ZS]. We a"ssume

additionally that.X is bounded. Then both the vertex set of X, which

we denote henceforth by Ir(X)' and the efficient set XB are nonempty,

(see e.g. [zsJ and [2], [28]). Furthermore Problem (P) has an optimal
solution. Let P(Xs) denote the optimal value of (P).

Theorem 2.1. Problem (P) ottains its moximum at a uertec of X.

Let Ct be the (f + t1 x n matrix whose first p rows are identical
to those of matrix C and (e + t)th row is the vector d. Consider the

vector marcirnization problem (VP') given by

m a x { C t a : n € X } (VP')
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The next theorem says that the solution set of (P) lies in the efficient
set of Problem (VP').

Theorem 2.2 (l2l). Il a point ro is an optimol solution for problem
(P), then f is efi.cient for Problem (VP').

Consider the function r : G --+ E given bV [Z]

r(c) : :  max{eCy - eCn: Cy}Cr, y € X}

where 6 7- {tlcy}ct for some y e x}, and e stands for the vector
whose every entry is unit.

Now let t be a real fixed numter, and consider the Problem (Ut)
given by

min{r (c) ,  d .n >t ,  c  €  X} .  (Ut)

Let r1 denote the optimal value of this problem. As usual for the
convention we take rr : +oo if the feasible set of this problem is empty.
The following result uses Problem (Ut) to characterize optimal soiution
for Problem (P).

Theorem 2.3 ([2]). The optimal ualue of Problem (p) rr equal to
t*, where t* is the largest uolue ol t in Problcm (Ut) such that rt : O.
Furthermore E* is an optirnal solution lor (PJ il and only if it is an
optimol solution for (Ut*)"

By considering the dual linear programming problem of the linear
program defining r, we immediately obtain the following corollary of
Theorem 2.3.

corollary 2.1 ([2]). Let A be o rnxn motrir and, let h e R . Assuyne
that X ,-- {r^ € Rn : Ac 1 b, r ZO}. Then P(Xp) : t*, uhere t* is
the largest ualue of t in the Problem (Yt\ giuen by

us.:: min{ -vCr * bu - eCt} (Vt)

subject to

d , x 2 t ,  A x , < b ,  - y C + u A > e C ,  ( c , y , u )  > O
such that at : O. Furthermore, to is an optimal solution lar Problem
(P) rI and only i f  for some yo e Rp anduo e R^, (ro,vo,uo) is an
optimol solution for Problem (Vt*).
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Theorem 2.4. Problem (P) rr equiualent to the linur program with

an additionol reuerse convet constraint giuen os

max{da :a€X ,  r ( c )  <  0 } . (RP)

Theorem 2.4 implies that solving Problem (P) amounts to solve a linear

program with an additional reverse convex constraint. The latter can

be solved by some available methods (see e.g. [o]' [to]' [ta]' [er]). It is

not difficult to show that the function r is constant on any affine space

which is parallel to the subspace H :: {r € R" : Cr : O}- If rank

c : k then the dimension of Ir is equal to (n - &). Thus the function r

actually depends only on k-variables. This suggests studying methods

which employ this property for solving Problem (P) more efficiently.

3. RELAXATION APPROACH TO SOLVING PROBLEM (P)

As mentioned in the previous section, Problem (P) is equivalent

to the infinitely constrained Problem (IP). The main difficulty in the

latter problem arises from the bilinear constraints. This fact suggests

using relarcation approach to solving (P) bV using the branch-and-bound

technique.

The branch-and-bound is a fundamental technique in nonconvex

optimization. Branch-and-bound methods differ on the way they define

rules for branching and the methods used for calculating bounds. In

this section we shall present two branch-and-bound methods for solving

Problem (P).

Note that the infinitely constrained nonconvex optimization Prob-

lem (IP) can be written as

l r c r a x { d . n : n € X ,  ) € 4 ,  g ( } )  - } C o S o }

where we recall that

(IP')

s ( A )  : m a x { ) c Y : Y e X ' . ,

and a is the simplex as in Problem (IP), which can be found by a pro

cedure given in [ZA]. In branch-and-bound algorithms that we are going
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to describe the bounds are obtained by certain rela:<ations of Problem
(IP) whereas the branching operations are performed by subdividing
rectangles (Algorithm 1) and subsimplices of A (Algorithm 2).

Algorithm r ([s]).
Initializotion. choose a,ny point no e xBiv(x).Find )o such that z0
is an optimal solution to Problem (Pr") given by man{}oCs : r e X}.

Set k : 0 and go to iteration /c.

I t e ra t i on f r ( f t>0 ) .

Step k.1. Find an optimal solution (zt+r,It*') to the rela>red
problem

maxd,n (Pk)

subject to

x € X ,  ) e  A ,  \ C n 2 \ C r i  ( f  : 0 , 1 , . . . , k ) .

Let fp..1 denote the optimal value of this problem.

. Step k.2. If €r+r : d,ai for some f € {0,. . . , k}, then terminate:
s, is an optimal solution to (P). Otherwise continue.

Step k.3. Verify the efficiency of te+l by solving the linear pro-
gram given by

max{eCr : r € X, Cr }_ Crk+r} (Lk)

ff this program has an optimal solution c* such that eCr* : eCTk*r,
then terminatel Vk*r solves Problem (P). Otherwise continue.

Step k.4. Solve the linear program

m u c { } G c : c € X } (PI)

with ) : ) 
**t. 

Let r&*1 be any basic optimal solution of this program.
Increa.se /c by 1 and go to iteration lc.

Convergence theorem L.

$) rhe algorithm terminotes only when a global optimal solution
lor Proble- (P) has been found,.
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(ii\ The algorithm terminates after a finite number ol iterotions.

Proof. (i) If algorithm terminates at Step k.2., then €t+r : d,ni for

some O i i S lc. Since €r+r is an upper bound for the optimal value

of (P), ard ai e Xs, ct is a global optimal solution to (P).

If the algorithm terminates at Step k.3., then Ek+L € Xp. Since

€r+r : dik*r, it follows that sk+l solves (P).

(ii) Since ni for every f 2 0 is an extreme point of the polytope X,

it is sufficient to show that all these points are distinct. Indeed, since

rj* l  is generated at Step j.4., eCf > eCii+t. Thus i j+t 4 Xp,

and therefor" )t*tc"r*r ) 1i+Lgvi+l. But from Step j.l, we have

Ir+tgEj+t > f'+t Cni for all 0 < i < k. By transitivity we see

that r&*r 4 {ro,. . . , rk}. Hence the algorithm terminates after a finite

number of iterations, since the vertex set of X is finite.

Remorlc. The crucial question in the above algorithm is of solving the

relored Problem (Pk). This problem is a difficult global optimization

problem because of the bilinear constraints

\ C r >  \ C r i  ( f  : 0 , . . . , & ) .

These constraints can be replaced by only one constraint defined

by
g r (1 ,  r )  z :  ma<{ }Cr '  :  i  : 1 , . . .  , l c }  -  }Cc  <  0 '

since gr(),o) is a convex-concave function, Problem (Pk) could be

solved by several existing methods ([17], [18], [19]). These methods

however are infinitely convergent, and efficient only if the dimension of
ttconcavespacet is small.

In [3] Benson proposed an infinitely convergent branc.h-and-bound

algorithm for solving Problem (Pk) by using the convex envelope of the

bilinear terms )Cc over a rectangle which can be easily calculated by

a formula given in [t].

Now we describe another method which solves Problem (IP') di-

rectly. As mentioned this problem is equivalent to (P).

Note that since the function h(I, r) is convex-linear on a x X,

Problem (IP') is of the form of the problem considered in our paper

[f 7]. Thus one could use the method proposed there for finding a global
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optimal solution of (IP'). However to apply that algorithm to problem
(IP') the subdivision process would be performed in -R', and therefore
[17] would be a good choice only if z is small. In many applications
however the number z is much larger than p. The algorithm that we are
going to describe is also a branch-and-bound procedure in which the
branching operation is a simplicial bisection which is not necessarily
exhaustive and takes place in r?r only.

As usual we adopt the convention that the macimum of a function
over an empty set equals -oo.

Algorithrn 2.

Initiolization. Set ,Ss : A, Io : {So}, u0 € ,56 and solve the linear
Program 

,"ru*roc z

to obtain an optimal solution zo (hence zo e Xp).

Take to e dg(uo) (a subgradient of the convex function g at uo)
and solve the Program (RP,S6) given by

max d,n

subject to

c €  X ,  I  e , S s ,  ( t o , l - r o ) +  a o c z o - ) C r S o

to obtain an optimal solution ()o, r0) € ^96 x x and the optimal value
os !: o(So) : dzo.

Let ao - zo, go: Eo. set ft :0 and go to i teration /c. Delete
all S e 11 such that a(^g) < gr.Let R* be the remaining set.

1) If ,Qr : 0, then terminate: tft is an optimal solution of (p).

2) If R.x * 0) ttt"n select Sr, € R n such that d1 :: a(S;) :
max{a(^9)lS e Pr}.

- Let (le, rh) be the obtained solution of problem (npS&). Divide
the simplex ,s6 into two simplices ,sp, and ^91, by a simplicial'bisection
will be presented below.

Choose uk eV(Sp,) n V(S1,) and solve the linear progratn:

m a x { u k C z z z e X } .
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Let urft be the obtained solution of this linear Program (r* e
Xo).

Take d& e )g(uk) and solve the rela>ced Pprograms (RPSr'd) (t' :

Lr2'):
max d,n

subject to

x €  x ,  ) € , s 1 , ,  ( d r , ) *  - u * )  + u k c w k - ) c c  <  o

to obtain the optimal value a(Sr,) and optimal solutions (.\h, red) (r :

1 , 2 ) .

If o(S1,) > a(Sr) let a(S1,) : o(Sr). As these prograrut are

solved we may obtain new efficient points. Let rk+1 be the best efficient
point known so fa,r. Let Byrrl: dtk*r. Set

l&+r ::  (f  r \  {Sr}) u {Sr, ,  ,Sr, }.

Increase lc by I and go to iteration lc.

In order to implement the above algorithm, the relared Problem
(nPS) must be solved for any simplex S c A. This problem can be

solved via linear programs due to the following lemma.

Lemma 3.1. For e.och simple 51 C A the relaxd Problem (^RPS1)

max da

eubject to

n € X ,  ) € , 9 r ,  ( t * , ) - r e )  + a k c z k - ) c z  <  o

ottains its gtobat moximum, if ong, ot o point ()fr,"t) suchthot \k €
Y(sr).

Prof. Let
L(\ ,n)  :  ( th, l  -  ,*)  + akczk -  ) ,C z.

Then .L is a bilinear function. Problem (nPSe) then is equivalent to
the problem

max {dx : c € X. ftH r(r, ")S0}.



Optimiration problemc orcr tle elDcient set

Since L(.,r) is linear for each fixed c € X we have

*-, {a, : a € X,ftifi r(r, ") < o}

95

: max {a" ' n e x'^.?tt-l r(}'c) < o},

which implies the lemma.

Thus solving Problem (RPS1) amounts to solving the p linear
programs:

ma;c {dc : t e X, ,(tt, r) s. o} (,\d e f (Se)).

If a(,\d) denotes the optimal value of the linear prograrn corresponding
to I1 € y(,S&) then a(^91) :: mar{o(}d) : }d € y(Sr)} is the optimal
value of Problem (^RPS;).

We turn now to the simplicial bisections which can be used in the
above algorithm. Here we give two simplicial bisections which seem to
be suitable for Algorithm2.

The following simplicial subdivision introduced first by Horst [11]
can be described as follows.

Let ^9 be a fully dimensional simplex in Rp. Let ud and u, be two
vertices of .S such that the edge of ,9 defined by these two vertices is
longest. Let u be the midpoint of this edge, i.e., u : (rd + ai) lZ. We
bisect ,S into the two simplices ,S1 and Sz by replacing ud and ur by u
respectively.

Clearly ,S : ,Sr U,S2. Moreover this bisection is exhaustive in the
sense that any infinite nested sequence generated by it tends to a single
point (see e.g. [11], [12]).

It is well recognized that this bisection is not expected to be a
best way to bisect a simplex, since it does not take into account the data
of problem being solved as well as the iteration points obtained in the
previous iterations.\ Bulo* we give another simplicial bisection which
uses the points obtained through a bounding operation. The idea of
this bisection is taken from the branching operation in our ealier paper
[15]. The main difference is that the sets generated by this bisection
are simplices whereas in [fS] they may be polytopes.

Let ,S be a subsimplex of A. Assume that we want to divide ,S
into two simplices. Consider Problem (RPS):

max dr
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n e X ,  I € , S ,  ( t , ) -  u ) + u C w - \ C n  < o

where u eV(S), t e 7g(u) and ur € arg mayuCa are given.

Let (1, c) e s x x be an optimal solution of Problem (RPS). It is clear

that i f  . \ :  ur then (.1,c) is afeasible point of Problem (IP').Thus the

simplex ,S may be deleted from further consideration. In particular, if

the optimal solution (tk,"e) of Problem (nPSk) is feasible for (IP'),

then the algorithm terminates since the optimal value o(St) of Problem

(nPSk) is an upper bound for the optimal value of (IP'). Hence if

^k + ue it suggests bisecting the simples ,Sp via the edge determined

by the vertices )t and zft of ^9*. Precisely, we bisect Sr as follows:

lution of Problem (nPSk). Assume

"h)12 
be the midpoint of the edge

We bisect S1 into the two simPlices
uk by u&tl respectively. We shall

refer to this bisection as adaptive simplicial bisection (or subdivision).

The points lk, uk will be called bisection points of ,sr. since the edge

h*, rr*l is not necessarily longest, this bisection may not be exhaustive'

However under an appropriate condition this subdivition is sufficient to

guarantee the convergence.

Definition 8.1. An infinite sequence {so} of simplices generated by

the above bisection process is said to be locally exhaustive if the se-

quences of their bisection points converge to the same limit. A sim-

plicial subdivision process is said to be locally exhaustive if its every

infinite nested sequence is locally exhaustive'

Locally erchaustive srpbdivisions have been used in our recent papers

[rb], [20], lz2l, Izrl, lml.
From the definition it is clear that the simplicial bisection process via a

longest edge is locally exhaustive. Another locally exhaustive bisection

process is the simplicial bisection via a shortest edge of the simplex.

Convergence theorem 2. F) A the olgorithm terminotes ot itetotion

lc, thenik is o globd optimol solution of Prohlem (P\.

(Z) Il the olgorithm is infinite and the simpliciol bisection process
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used in the olgorithm is locally exhaustive, then a;, --+ P(Xp), and the
sequcnce {xk} hos a limit point which solues (P).

Pruf. (1) If the algorithm terminates at iteration /c, then P* : 0.
Hence a(S) < fl* for all S € Ir. In particular a.k < g* : dtk. Since
d.k > P(Xe) and te is feasible for (P) we have that a1 : frk: dGk :
c* and tk is a global optimal solution of (P).

(2) Assume now that the algorithm is infinite. Then there must
exist an infinite nested subsequence {so} of the sequence {sr}. Let
)c and uE be the bisection points of ,so. From the locally exhaustive
assumption, the sequences {)e} and {ue} converge to the same limit
point, say, ).

On the other hand, since (Ie ,zq) is feasible for Problem (.Rp,So)
and g(ue ) : uQCuQ, it follows that the inequality (te , )e - #l +'g(ut) :
X ICr ' t<0 i ssa t i s f i ed .

Note that _{to} ll bounded and g is continuous [Z] we obtain in
the limit that g()) -\cr ( 0. From the definition of g iollows \cn -

^CE < 0 for all c € X which together with ) € A, r € X implies
that (A,E) is feasible for (IP'). Hence E € XB. Furthermore, from
ds : d,# 2 P(Xo) fol lows l imao :.dE > P(Xn). Hence o is an
optimal solution of (P). This and the monotonicity of the sequence
{a1} imply the theorem.

Remark. Consider the following parametric problem

max{ td ,x+r } ( } ,c ) ,  )  €L ,  a€X} , (Pt)

where h(\,r) is defined as in Problem (Cp). In [ZS], [26] it is shown
that under a certain nondegenerate assumption there exists t* > 0 such
that any solution of (Ptfis also an optimal solution to (p). Note that
for each t > 0 (Pt) is a convex-concave prograrnming problem.

4. SOLUTION METHODS BY EXTREME POINT SEARCH

Another approach for solving problem (P) is extreme point search
technique. The main idea of this approach is based on the fact that
(P) has a global optimal solution arnong the vertices of X. To accorn-
plish this idea, the proposed methods iteratively identify efficient faces
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Xr, () € A) of X. For each such face Xr that is found, an efficient

extreme point of X which maximizes da over X1 is generated. Then
procedures for searching all efficient faces are executed, and a global

optimal solution of (P) thereby is found.

Below is an informal description of such an extreme point search

algorithm. For more detail see [4].

Algorithm 3 (An informal description).

At the start an arbitrary efrcient extreme point co is found.

Thereafter in each iteration, an additional efficient extreme point is

found which is distinct from all previous generated efficient points. In

some iterations, the new point is guaranteed to have a larger objective

function value than all previously generated efficient points. In other

iterationsn it may not.

Assume & > O. To find an efficient extreme point which distinct

from each of xi , O S r S lc, iteration /c executes the following step. First

it seeks a point r which, together with some I € A, is a feasible point of

Problem (Pk) and which satisfies d'n > LBy, where LBp is the largest

lower bound for.the optimal value of (P). If no such point r exists,

then a global optimal solution has been found. The algorithm then

terminates. If such a feasible point of (Pk) exists, then the algorithm

finds any such a feasible point and denotes it by (zt+r,f 
t*t).

Next the algorithm uses this point to find a new efficient extreme
point ak+r. The method used to find c&*1 depends upon the nature of

the point Eh+r. Since ck+r € X, either

(i) zt+t /  Xs, or

(i i ;  et+t € Xa n Iz(X), or

( i i i ;  zt+t e xb but E&+1 4v(x).
In all but the first case, the new efffrcient extreme point found by

the algorithm is guaranted to satisfy 4rk*L > LB*.

When vk*r is not efficient the algorithm chooses r&*r to be any

basic solution of Problem (P)) with ) = )e+t. It can be seen that in

this ca.ses, sft*l is an efficient extreme point and distinct frorn each of

the previously found efficient extreme points. However *rhtr > LB*

may not hold in this case.

When Eh+r is efficient point the algorithm set cftfl equal to
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Tk+r. This clearly guarentees that ce+l is distinct from each point zr,
0 < f /c and that dzh+' > LBx.

Finally when Ek+r is efficient but not extreme point of X, the
point ct*l is found by maximizing d,x over the efficient face which
contains ik+L. In this case z&*r is also a new efficient extreme point
for which 4rk*t > LB* holds. The algorithm thus is finite, since in
each iteration a new extreme point of X is generated.

Recently Benson in [s] developed another algorithm for solving
Problem (P) in the case where d linearly depends upon the rows of the
matrix c. An important special ca.se of this problem is the problem
where d,: -ci and ed is the ith row of c. The latter problem arises
in decision making theory when it requires us to minimize a criterion
function over the efficient set. The proposed algorithm is based on the
following proposition.

Proposition 4.L [5]. Let x be os in corollary p.9 ond d, rinearly
d,eperids upon the rows of c. Then there exists o positiue number M*
such thot lor ony M > M*, P(XB) : t*, where t* is the smallest ualue
of the parameter t in the Problem (Wt) given by

7D1 i: ma:< )Cc - bu - ta (wt)

subject to

A r  < b ,  u A * a d -  \ C  >  O .

e \ : M ,  ) : " ,  E s t ,  u > o

such that  u t :  O.

The proof of this proposition can be done by a similar argument
as that in the proof of corollary 2.3. Note that for each fixed t problem
(Wt) is a bilinear program.

Let

t^ i: min{dz : o € X}, t^ .: max{dc : a €. X}.

It is clear that t- and t- are lower and upper bounds respectively for
P(Xe)  :  t . .
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Proposition 4.1 leads to the following method, called bisection

extreme point search algorithm for solving Problem (P) when d linearly

depends upon the rows of C.

Algorithm 4 (Outline of the bisection point search algorithm).

Let an interval lL,ul containing t* be given (at the start'set

L : t^ and U - t^\. Set t :: (L + U) 12 and checking whether u1 : Q

o r u t ) 0 .

I f  w1-  0,  set  (J : t , ,  ( .L  is  unchanget) ;  i f  wt )  0 ,  set  L : t '  (U is

unchanged).

Repeat the procedure with the new interval. The algorithm ter-

minates when U - L is small enough.

For checking the value ur one must solve the bilinear program-

ming Problem (Wt). The following corollary says that determining ur1

leads to maximization of a convex function over X.

Corollary 4.tr. (l5l) For eoch t Zt,n we hove

u)r : max{ht(t):  Aa : '  b, r 2 0},

where lor eoch a € R , fu is the continuous picewise linear conuex

function defined by

ht@):_ max ) ,Cr  -  bu -  ta

subject to

u A *  a d ,  -  ) ' C  > 0 ,  e ) , :  M ,  l  Z  t '  u ,  a  2 O

(M as in Proposition 1.1).

5. BICRITERIA CASE

An important special case of Problem (P) that frequently arises

in many applications, especially in the bimatrix game theory, is the

bicriteria case, i.e., the matrix C has exactly two rows. In this case
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Problem (P) could be solved more efficiently. As we have seen Algo-
rithm 2 for this case involves a simplex bisection in R2, and therefore
it is quite efficient even with z is fairly large.

In this section we show that solving (P) for bicriteria case amounts
to performing a parametric simplex tableau with one parameter in the
objective function. In an important special case when d, : o,cr t flc2
with a < O, p ) 0, in particular d, : -cr, we show that a globally
optimal solution of Problem (P) can be obtained by solving at most
two linear programs.

The algorithm we are going to describe is based upon the follow-
ing proposition whose proof can be found, for example in [Za].

Proposition 5.1. Let * be an ertreme point ol X, then ao € Xp
if and only if there exists o ) € RP, l > 0 sueh thot xo is an optimal
solution for the scalarized, problem

max )Cc, subject to n € X. (P))

By dividing to D tr; one can always assume that ! )i : l. Thus in
the case p : 2, Problem (P.\) can be written as

ma.:r(tcr + (1 - t)cz,o), subjected to a € X, (Pt)

where cl and c2 ate two rows of the matrix C.

From Proposition 5.1 and the fact that the set of optimal solutions
of a linear prograrn is a face of its feasible domain, it follows that there
exists a finite set -I of real numbers such that XE : U X, where Xg

denotes the solution set of the linear Program (Pt). 
tel

tet f(t) denotes the optimal value of (Pt). Then solving problem
(P) amounts to solving the following linear Program (Lt), one for each
t in -I:

rraax d,r (Lt)

subject to
r e. X, (tcr + (t - t)c2,r) :  f(t)

Let xt be an optimal solution and a(t) be the optimal value of this
problem. Then q(t*) :- ma:r{a(t) : t e I) is the globally optimal value
and rt' is an optimal solution of Problem (P). using these results we
have the following algorithm
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Algorithm 5 (A parametric simplex algorithm for a bicriteria linear

problem).

Assume that we are given the critical values trr"''tK of the

parametric linear Program (Pt). Let cs be a lower bound for P(xs)

and co € Xe such that doo : as. Set a :1'

I tc rat ion i  (s '  :  1 , . .  . ,K) .

Step 1. Solve the linear Program

Let urd be the obtained optimal basic solution, B; : (zi*\ the corre-

sponding basic matrix, and { the set of the basic indices.

Step 2. (The case when uri is also an optimal solution of (Lti)).

If either

A d k : : r f  -  
D  , i * " ' i '  < O V k  / J i o r  d t :  D  z i r d i < o v k e J i '
i€J; ieJ;

then set 
, ( wi if. dui ) a;-r

"' 
t: 

I cd-r otherwise

and 7; : d,ci.

If a : K, then terminate: t* .: cd is an optimal solution of

Problem (P).

If ? < K, then increase I by f and go to iteration i'

Step 3 (The case when ud is not an optimal solution of (Lti)).

If
ar-  D z ixd ' i  >o forsome ke J ; ,

j €J ;

then let  
t , :  {& e J; : . i '  -  I  " i r" ' , '  < o\

iet,

and solve the linear Program (Mti) given by

m a x { d ' a : r € X ,  r , k : O ,  n e [ ]  ( M t i )
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Let yi denote the obtained optimal solution of this linear progra,rr, and
set

-, - | vi if dvi ) ai-r
*  - t  

cd - ro the rw ise

and ?i : d,ri.Increase r by 1 and go to iteration r.

An important special case of Problem (P) occurs when

d:  -c i ,  for  some a e { r ,  . . .  rp} .

This problem is considered in some papers [lg], [2r]. For the cases when
p : 2 and d is a linear combination of the two ron's of c, Benson has
shown that the ma>cimal value of dt over Xp attains at a vertex of X
which is also an optimal solution of at least one of the following three
linear problettrs:

ma)r c'c, subject to n € X, (r : 1,2),

maxdx, subject to c € X.

(Li)

(t)
using this result Benson proposed an algorithm for ma:cimizing d,a over
Xe by generating all basic solutions of these linear programs.

In particular, it is easily shown that an optimal solution of prob-
lem (P) with d : dcr t gcz and a < O, P ) 0 can be obtained by
solving the linear program

maxCr r, subjected to r € X2

with X2 being the solution set of (L2).

6. CONCLUSIONS

The Problem (P) of ma>cimizing a real valued linear function over
the efficient set of a. multiple objective linear program has important
uses in multiple criteria decision making. This is a difficult global opti-
mization problem due to the fact that its feasible region is in general a
nonconvex set. In this paper we have given a brief survey of computa-
tional methods for this problem. The existing methods have been clas-
sified into two approaches: branch-and-bound technique and efficient



Le Dung Muu

extreme point search scheme. The bicriteria case has been considered,

and an efficient parametric simplex algorithm has been described for

this case.

Due to the inherent difficulty of the considered problem, the pro-

posed methods are efficient only in particular cases where either the

number of the criteria or the number of the underlying variables are

somewhat small. For other cases, to our knowledges there does not

exist an efficient solution method in the literature. General cases of

Problem (P) where either the objective function or the concerning mul-

tiple objective program are no longer linear and/or X is a unbounded

convex set would be an interesting subject to further researches. De-

composition methods which employ the fact that the constancy space

of r is of n - lc dimension, where /c is the rank of the matrix C, are

now being prepared [27] in order to develop more efficient methods for

solving Problem (P).

l'
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