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COMPUTATIONAL ASPECTS OF
OPTIMIZATION PROBLEMS
OVER THE EFFICIENT SET!

LE DUNG MUU

Abstract. We give an introduction to compulational methods for optimizing
a real valued function over the efficient set of a vector optimszation problem.
Thus problem has many applications in multiple criteria decision making. Some
recently developed algorithms for solving this problem are described in a unified
manner. Questions for further development of this problem are discussed.

1. INTRODUCTION AND THE PROBLEM STATEMENT

The purpose of this paper is to give some computational aspects
of optimization problems over the efficient set of a vector maximization
linear problem. This problem is shown to be equivalent to a linear
program with a special additional reverse convex constraint. Some
recently developed methods for solving this problem are described in a
unified manner.

Throughout the paper for two vectors a := (@1,...,ak), b :=
(b1,...,bk) we write a>b (respect. a > b) if and only if a; > b; (respect.
a; > b; and a # b) for all i. Also, a > b if and only if a; > b; for all
¢. For simplicity of notations we will omit the notation of transpose in
writing the inner product of two vectors.

Let X C R™ be a polyhedral convex set given by linear inequali-
ties and/or equalities. Let C be a (p X n) real matrix. Then the vector
(or multiple) objective linear programming problem written as

max{Cz : z € X} (VP)

1 This paper is supported in part by the National Basic Research Program in

Natural Sciences
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can be viewed as the problem of finding all efficient solutions to Problem
(VP). We recall that a point z° € X is said to be an efficient solution of
Problem (VP) if whenever Cz>Cz° for some z € X, then Cz = Cz°.
An efficient solution is also often called a nondominated or Pareto point.
Each component of the vector Cz is called the objective function or
the criterion function. We shall denote by X g the set of all efficient
solutions of Problem (VP).

The problem of main concern in this paper then can be written

max{dz : z € Xg}, (P)
where d € R is given.

Problem (P) can be classified as a global optimization problem,
since its feasible region X is, in general, nonconvex. In [28] Philip
first proposed Problem (P) and outlined a cutting plane algorithm for
finding a global optimum of this problem. In 1979 Dessouky et al 8]
considered a special case of this problem where the objective function
is one of the criterion functions of the vector maximization linear prob-
lem. They used Philip’s algorithm for solving this case. In [13] Inser-
mann and Steuer developed an algorithm for solving (P). Like Philip’s
method, this algorithm used simplex-type pivots to move along paths of
adjacent efficient extreme points which increase the value of the linear
objective function. A cutting plane is added each time and a locally
optimal efficient extreme point is thereby found. These methods re-
quire finding all efficient extreme points that lie on this cutting plane
in the newly created polyhedron. Since neither of these algorithms ex-
plains how to perform this search mathematically, it is not clear how
to implement them.

Benson (2| established necessary and sufficient conditions for ef-
ficiency to a vector convex optimization problem, and for an efficient
point to be a maximal point of a linear function over the efficient set
of the underlying vector optimization problem. Using these results, re-
cently Benson (3], [4], [5] proposed three algorithms for solving Problem
(P). The methods in (3], [4] are based on the fact that one can find a
simplex A C RP such that (P) is equivalent to the following infinitely
constrained optimization problem given by

max dz (IP)

subject to
ACz > ACy Vwe X, z€X, A€EA.
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At each iteration k of the methods in (3], [4] the infinitely constrained
problem (IP) is relaxed by the following finite constrained optimization

problem:
max dz (Pk)

subject to
ACz > ACz' (i=0,1,...,k), z€X, A€

For solving this nonconvex Subproblem, in the first algorithm (3], called
all-linear programming method, the term ACz is replaced by its convex
envelope, and then this subproblem is solved by an infinitely conver-
gent procedure. In the second method [4], called nonadjacent extreme
point search, the request of solving Subproblem (Pk) at iteration k is
weakened by finding an efficient extreme point z**! such that dz*+!
is greater than the currently known lower bound of the optimal value
of (P). The third algorithm [5], called bisection extreme point search
method, is proposed for solving a special case of (P) where the vec-
tor d is linearly dependent upon the rows of the matrix C. In this
algorithm, Problem (P) is shown to be equivalent to a finite number
of concave minimization problems in z-space. A heuristic algorithm is
also proposed recently in [6].

In Muu [20] Problem (IP) is replaced by a convex-concave pro-
gramming problem given by

max dz (CP)

subject to
h(X,z) <0, z€X, e\,

where h(), z) is a convex - concave function defined by
h(X, z) := max{ACy:y € X} — ACxz.

This problem is a special case of problem considered in [17], and there-
fore it could be solved by a decomposition branch-and-bound algorithm
described there. This algorithm however would be efficient only if the
dimension of the “concave-space” where subdivisions were performed
is relatively small. However, in many applications the dimension of z-
space in Problem (P) is much greater than that of A\-space which just
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equals the number of the criteria. In [20], some methods are developed
for solving Problem (CP) by linearization of the convex function g given
by

g()) ;== max{\Cy:y € X}.

The subdivisions in these methods are performed only in A - space.
Therefore they are efficient if the number of the criteria is relatively
small while the number of the variables may be fairly large. In [21]
an efficient parametric simplex method is described for solving Prob-
lem (P) with p = 2. This case frequently arises in many applications,
especially in bimatrix game theory.

The paper is organized as follows. In the next section we present
some theoretical results on optimality conditions for Problem (P) that
will be used for deriving solution methods described in the following
sections. Section 3 is devoted to describe three methods based on re-
laxation approach for solving (P). In Section 4 we outline algorithms
which use efficient extreme point search for finding a global solution to
(P) among the vertices of the polytope X. In Section 5 we consider the
bicriteria problem which can be solved very efficiently by a parametric
simplex method given there. Some other results for special cases of the
bicriteria case are also presented in this section. We close the paper by
conclusions in Section 6.

2. CONDITIONS FOR OPTIMALITY

In this section we shall be concerned with optimality conditions
which will be used for deriving solution methods to Problem (P). The
proofs of theorems in this section can be found in [2], [28]. We assume
additionally that. X is bounded. Then both the vertex set of X, which
we denote henceforth by V(X), and the efficient set Xg are nonempty,
(see e.g. [29] and [2], [28]). Furthermore Problem (P) has an optimal
solution. Let P(Xg) denote the optimal value of (P).

Theorem 2.1. Problem (P) attains its mazrimum at a vertez of X.

Let C’ be the (p + 1) X n matrix whose first p rows are identical
to those of matrix C and (p + 1)th row is the vector d. Consider the
vector maximization problem (VP’) given by

max{C'z: z € X} (VP?)
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The next theorem says that the solution set of (P) lies in the efficient
set of Problem (VP’).

Theorem 2.2 ([2]). If a point z° is an optimal solution for Problem
(P), then z° s efficient for Problem (VP’).

Consider the function r : G — R given by [2]
r(z) := max{eCy — eCz : Cy>Cz, y € X}

where G := {z|Cy>Cxz for some y € X}, and e stands for the vector
whose every entry is unit.

Now let ¢ be a real fixed number, and consider the Problem (Ut)
given by

min{r(z), dz > t, z € X}. (Ut)

Let r; denote the optimal value of this problem. As usual for the

convention we take r; = +oo if the feasible set of this problem is empty.

The following result uses Problem (Ut) to characterize optimal solution
for Problem (P).

Theorem 2.3 ([2]). The optimal value of Problem (P) is equal to
t*, where t* is the largest value of t in Problem (Ut) such that r, = 0.
Furthermore z* is an optimal solution for (P) if and only if it is an
optimal solution for (Ut*).

By considering the dual linear programming problem of the linear
program defining r, we immediately obtain the following corollary of
Theorem 2.3.

Corollary 2.1 ([2]). Let A be a mxn matriz and letb € R™. Assume
that X :={z, ER": Az < b, > 0}. Then P(Xg) =t*, where t* is
the largest value of t in the Problem (Vt) given by

v ;= min{—yCz + bu — eCz} (Vt)
subject to

dz >t, Az <b, —yC+ud> eC, (z,y,u) >0

such that vy = 0. Furthermore, z° ts an optimal solution for Problem
(P) ¢f and only if for some y° € R? and u° € R™, (%% 4% is an
optimal solution for Problem (Vt*).
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Theorem 2.4. Problem (P) is equivalent to the linear program with
an additional reverse convez constraint given as

max{dz : z € X, r(z) < 0}. (RP)

Theorem 2.4 implies that solving Problem (P) amounts to solve a linear
program with an additional reverse convex constraint. The latter can
be solved by some available methods (see e.g. [9], [10], [14], [31]). It is
not difficult to show that the function r is constant on any affine space
which is parallel to the subspace H := {z € R" : Cz = 0}. If rank
C = k then the dimension of H is equal to (n — k). Thus the function r
actually depends only on k-variables. This suggests studying methods
which employ this property for solving Problem (P) more efficiently.

3. RELAXATION APPROACH TO SOLVING PROBLEM (P)

As mentioned in the previous section, Problem (P) is equivalent
to the infinitely constrained Problem (IP). The main difficulty in the
latter problem arises from the bilinear constraints. This fact suggests
using relaxation approach to solving (P) by using the branch-and-bound
technique.

The branch-and-bound is a fundamental technique in nonconvex
optimization. Branch-and-bound methods differ on the way they define
rules for branching and the methods used for calculating bounds. In
this section we shall present two branch-and-bound methods for solving
Problem (P).

Note that the infinitely constrained nonconvex optimization Prob-
lem (IP) can be written as

max{dz:z € X, XA € A, g(}) — ACz < 0} (IP’)
where we recall that
g(A) = max{ACy:y € X},

and A is the simplex as in Problem (IP), which can be found by a pro-
cedure given in [28]. In branch-and-bound algorithms that we are going
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to describe the bounds are obtained by certain relaxations of Problem
(IP) whereas the branching operations are performed by subdividing
rectangles (Algorithm 1) and subsimplices of A (Algorithm 2).

Algorithm 1 ([3]).

Initialization. Choose any point z° € XgNV (X). Find A° such that z°
is an optimal solution to Problem (Pjo) given by max{A\°Cz: z € X}.

Set k = 0 and go to iteration k.
Tteration k (k > 0).

Step k.1. Find an optimal solution (% k'H,Xk-H) to the relaxed

problem
max dz (Pk)

subject to
z€X, X€A, ACz>ACr (i=0,1,...,k).

Let £x+1 denote the optimal value of this problem.

~ Step k.2. If £kyy = dz? for some j € {0,... ,k}, then terminate:
z? is an optimal solution to (P). Otherwise continue.

Step k.3. Verify the efficiency of Z**! by solving the linear pro-
gram given by

max{eCz:z € X, Cz > cz*+1} (Lk)

If this program has an optimal solution z* such that eCz* = eCEF+1,
then terminate; T*+! solves Problem (P). Otherwise continue.

Step k.4. Solve the linear program

max{\Cz: z € X} (PA)

. <k . g S0 :
with A = X" Let z**1 be any basic optimal soiution of this program.
Increase k by 1 and go to iteration k.

Convergence theorem 1.

(i) The algorithm terminates only when a global optimal solution
for Problem (P) has been found.
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(ii) The algorithm terminates after a finite number of iterations.

Proof. (i) If algorithm terminates at Step k.2., then {ryy = dz’ for
some 0 < j < k. Since €41 is an upper bound for the optimal value

of (P), and z’ € X, 27 is a global optimal solution to (P).

If the algorithm terminates at Step k.3., then zk+l ¢ Xpg. Since
€ky1 = dz**+1, it follows that zF+! solves (P).

(ii) Since 27 for every j > 0 is an extreme point of the polytope X,
it is sufficient to show that all these points are distinct. Indeed, since
£i+1 is generated at Step j.4., eCz* > eCT/ !, Thus /! ¢ X,
and therefore Xj+lCzj+l > Xj+10'55+1. But from Step j.1, we have
W ogi+t > 2 Tlczi for all 0 < J < k. By transitivity we see
that z*¥+! ¢ {z°,...,z*}. Hence the algorithm terminates after a finite
number of iterations, since the vertex set of X is finite.

Remark. The crucial question in the above algorithm is of solving the
relaxed Problem (Pk). This problem is a difficult global optimization
problem because of the bilinear constraints

ACz > ACz' (i=0,...,k).

These constraints can be replaced by only one constraint defined
by
gr(A, z) := max{A\Cz':i=1,...,k} - ACz < 0.

Since gk(A,z) is a convex-concave function, Problem (Pk) could be
solved by several existing methods ([17], [18], [19]). These methods
however are infinitely convergent, and efficient only if the dimension of
“concave-space” is small.

In [3] Benson proposed an infinitely convergent branch-and-bound
algorithm for solving Problem (Pk) by using the convex envelope of the
bilinear terms ACz over a rectangle which can be easily calculated by
a formula given in [1].

Now we describe another method which solves Problem (IP’) di-
rectly. As mentioned this problem is equivalent to (P).

Note that since the function h(), z) is convex-linear on A X X,
Problem (IP’) is of the form of the problem considered in our paper
[17]. Thus one could use the method proposed there for finding a global
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optimal solution of (IP’). However to apply that algorithm to Problem
(IP’) the subdivision process would be performed in R™, and therefore
[17] would be a good choice only if n is small. In many applications
however the number n is much larger than p. The algorithm that we are
going to describe is also a branch-and-bound procedure in which the
branching operation is a simplicial bisection which is not necessarily
exhaustive and takes place in R? only.

As usual we adopt the convention that the maximum of a function
over an empty set equals —oo0.

Algorithm 2.

Initialization. Set So = A, T'g = {So}, v° € Sy and solve the linear
program

max v’Cz

zEX
to obtain an optimal solution 2° (hence 2° € Xg).

Take t° € dg(v°) (a subgradient of the convex function g at v°)
and solve the Program (RPS) given by

max dz

subject to
ze X, A EISO, (tO,A - vo) +v°C2° - ACz <0

to obtain an optimal solution (A°,2°) € Sy x X and the optimal value
ao 1= a(So) = d2°.

Let % = 29, B, = dz°. Set k = 0 and go to iteration k. Delete
all S € T such that a(S) < Bi. Let Ry be the remaining set.
1) If Rx = @, then terminate: Z* is an optimal solution of (P).

2) If R # @,\then select S € Ry such that oy := aSi) =
max{a(S)|S € Ri}.

Let (A*, z¥) be the obtained solution of Problem (RPS}k). Divide
the simplex Sj into two simplices Sk, and Sk, by a simplicial bisection
will be presented below.

Choose u* € V(Sk,) NV (Sk,) and solve the linear program:

max{u*Cz: z € X}.
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Let w® be the obtained solution of this linear Program (w* €

XEg)-
Take d* € 8g(u*) and solve the relaxed Pprograms (RPSk,) (¢ =
1,2):
max dz
subject to

zeX, AESk, (5 F-u*)+uFcw*-rcz<o0
to obtain the optimal value a(Sk;) and optimal solutions (e R o =
1,2).

If a(Sk;) > a(Sk) let a(Sk;) = a(Si). As these programs are
solved we may obtain new efficient points. Let z**! be the best efficient
point known so far. Let x4 = dz k+1 Get

Tit1:= Tk \ {Sk}) U {Sk,, Sk, }-

Increase k by 1 and go to iteration k.

In order to implement the above algorithm, the relaxed Problem
(RPS) must be solved for any simplex § C A. This problem can be
solved via linear programs due to the following lemma.

Lemma 3.1. For each simple Sk C A the relazed Problem (RPSk)
max dz

subject to
z€X, AeSk (FA-vF)+vkCcF-Acz<o0

attains sts global mazimum, if any, at a point (Ak,zk) such that \* €
V(Sk).

Proof. Let
L(\z) = (%, X — v*) + vFC2F — ACa.
Then L is a bilinear function. Problem (RPSy) then is equivalent to

the problem
max {dz : z € X. min L(),z)<0}.
AES =
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Since L(.,z) is linear for each fixed z € X we have
max {d:z: 1T € X,’\nelgi L(Az) < 0}
= max {dz :z€ X, min L(Az) <0},
AEV (Sk) -

which implies the lemma.

Thus solving Problem (RPSi) amounts to solving the p linear
programs:

max {dz:z € X, L()',z) <0} (A € V(Sk)).

If a(A‘) denotes the optimal value of the linear program corresponding
to A* € V(Sk) then a(Sk) := max{ca()’) : A\* € V(S)} is the optimal
value of Problem (RPSy).

We turn now to the simplicial bisections which can be used in the
above algorithm. Here we give two simplicial bisections which seem to
be suitable for Algorithm 2.

The following simplicial subdivision introduced first by Horst [11]
can be described as follows.

Let S be a fully dimensional simplex in RP. Let v* and v’ be two
vertices of S such that the edge of S defined by these two vertices is
longest. Let u be the midpoint of this edge, i.e., u = (v* 7 v')/2. We
bisect S into the two simplices S; and S; by repla,cmg v* and v’ by u
respectively.

Clearly S = Sy U S;. Moreover this bisection is exhaustive in the
sense that any infinite nested sequence generated by it tends to a single
point (see e.g. [11], [12]).

It is well recognized that this bisection is not expected to be a
best way to bisect a simplex, since it does not take intc account the data
of problem being solved as well as the iteration points obtained in the
previous iterations.\ Below we give another simplicial bisection which
uses the points obtained through a bounding operation. The idea of
this bisection is taken from the branching operation in our ealier paper
[15]. The main difference is that the sets generated by this bisection
are simplices whereas in [15] they may be polytopes.

Let S be a subsimplex of A. Assume that we want to divide S
into two simplices. Consider Problem (RPS):

max dz
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subject to
zeX, A€eS, ({HA-u)+uCw-ACz <0

where u € V(S), t € 9g(u) and w € arg mea})(cuCz are given.
z

Let (A, z) € S x X be an optimal solution of Problem (RPS). It is clear
that if A = u, then (X, z) is a feasible point of Problem (IP’). Thus the
simplex S may be deleted from further consideration. In particular, if
the optimal solution (A¥,z*) of Problem (RPS}) is feasible for (IP’),
then the algorithm terminates since the optimal value a(Sk) of Problem
(RPS;) is an upper bound for the optimal value of (IP’). Hence if
Xk o£ u* it suggests bisecting the simples Sy via the edge determined
by the vertices A¥ and uk of Sk. Precisely, we bisect Si as follows:

Let (A*, z*) be an optimal solution of Problem (RPSk). Assume
that A¥ # u*. Let u®*t! = (A* + u¥)/2 be the midpoint of the edge
[A¥, u*] determined by )% and u*. We bisect S into the two simplices
Sk, and Sk, by replacing Ak and u* by u**! respectively. We shall
refer to this bisection as adaptive simplicial bisection (or subdivision).
The points A\*, u* will be called bisection points of Si. Since the edge
[/\", u"] is not necessarily longest, this bisection may not be exhaustive.
However under an appropriate condition this subdivition is sufficient to
guarantee the convergence.

Definition 3.1. An infinite sequence {Sg} of simplices generated by
the above bisection process is said to be locally exhaustive if the se-
quences of their bisection points converge to the same limit. A sim-
plicial subdivision process is said to be locally exhaustive if its every
infinite nested sequence is locally exhaustive.

Locally exhaustive s;:)divisions have been used in our recent papers
[15], [20], {22], (23], [24]

From the definition it is clear that the simplicial bisection process via a
longest edge is locally exhaustive. Another locally exhaustive bisection
process is the simplicial bisection via a shortest edge of the simplex.

Convergence theorem 2. (1) If the algorithm terminates at steration
k, then T is a global optimal solution of Problem (P).

(2) If the algorithm is infinite and the ssmplicial bisection process
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used in the algorithm is locally-ezhaustive, then ay — P(Xg), and the
sequence {z*} has a limit point which solves (P).

Proof. (1) If the algorithm terminates at iteration k, then Ry '= 0.
Hence o(S) < B for all S € T'x. In particular a < Bk = dz*. Since
o > P(XE)_and Z* is feasible for (P) we have that oy = B = dz* =
a,and % is a global optimal solution of (P).

(2) Assume now that the algorithm is infinite. Then there must
exist an infinite nested subsequence {S;} of the sequence {S:}. Let
A? and u? be the bisection points of S;. From the locally exhaustive
assumption, the sequences {A?} and {u?} converge to the same limit
point, say, .

On the other hand, since (A?,z9) is feasible for Problem (RPS,)
and g(u?) = uICw?Y, it follows that the inequality (¢7, X7 — u?) +g(u?) -
A?Cz9 < 0 is satisfied.

Note that {t?} is bounded and g is continuous |7] we obtain in
the limit that g(A) — ACT < 0. From the definition of g follows A\C'z —
ACZ < 0 for all z € X which together with A€eATEX implies
that (,Z) is feasible for (IP’). Hence Z € Xpg. Furthermore, from
oy = dz? > P(Xg) follows lima, = dZ > P(Xg). Hence Z is an
optimal solution of (P). This and the monotonicity of the sequence
{ax} imply the theorem.

Remark. Consider the following parametric problem
max{tdz + h(, z), A € A, z € X}, (Pt)

where h(),z) is defined as in Problem (CP). In (25], [26] it is shown
that under a certain nondegenerate assumption there exists ¢* > 0 such
that any solution of (Pt*)is also an optimal solution to (P). Note that
for each t > 0 (Pt) is a convex-concave programming problem.

4. SOLUTION METHODS BY EXTREME POINT SEARCH

Another approach for solving problem (P) is extreme point search
technique. The main idea of this approach is based on the fact that
(P) has a global optimal solution among the vertices of X. To accom-
plish this idea, the proposed methods iteratively identify efficient faces
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X, (A € A) of X. For each such face X that is found, an efficient
extreme point of X which maximizes dz over X is generated. Then
procedures for searching all efficient faces are executed, and a global
optimal solution of (P) thereby is found.

Below is an informal description of such an extreme point search
algorithm. For more detail see [4].

Algorithm 3 (An informal description).

At the start an arbitrary efficient extreme point z° is found.
Thereafter in each iteration, an additional efficient extreme point is
found which is distinct from all previous generated efficient points. In
some iterations, the new point is guaranteed to have a larger objective
function value than all previously generated efficient points. In other
iterations, it may not. :

Assume k > 0. To find an efficient extreme point which distinct

from each of z7, 0- < j < k, iteration k executes the following step. First
it seeks a point z which, together with some A € A, is a feasible point of
Problem (Pk) and which satisfies dz > LBy, where LBy is the largest
lower bound for the optimal value of (P). If no such point z exists,
then a global optimal solution has been found. The algorithm then
terminates. If such a feasible point of (Pk) exists, then the algorithm

finds any such a feasible point and denotes it by (Z*+*,X k+l)

Next the algorithm uses this point to find a new efficient extreme
point z¥+1. The method used to find z**! depends upon the nature of
the point 5!, Since TF¥*! € X, either

(i) ¥+ ¢ Xg, or
(i) ¥+ € Xp NV (X), or
(iti) 2¥+1 € X but ZF+1 ¢V (X).
In all but the first case, the new efficient extreme point found by

the algorithm is guaranted to satisfy dz**! > LBy.

When Z**! is not efficient the algorithm chooses z*¥*! to be any

basic solution of Problem (PA) with A = X*t1. It can be seen that in
this cases, z**! is an efficient extreme point and distinct from each of
the previously found efficient extreme points. However dzktl > LBk
may not hold in this case.

When z*+! is efficient point the algorithm set zF1 equal to
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z*+1, This clearly guarentees that z**! is distinct from each point x,
0 < j < k and that dz*+1 > LB,.

Finally when Z**! is efficient but not extreme point of X, the
point zF+! js found by maximizing dz over the efficient face which
contains z*¥*!. In this case z*¥*! is also a new efficient extreme point
for which dz**! > LB holds. The algorithm thus is finite, since in

each iteration a new extreme point of X is generated.

Recently Benson in [5] developed another algorithm for solving
Problem (P) in the case where d linearly depends upon the rows of the
matrix C. An important special case of this problem is the problem
where d = —¢* and ¢’ is the ith row of C. The latter problem arises
in decision making theory when it requires us to minimize a criterion
function over the efficient set. The proposed algorithm is based on the
following proposition.

Proposition 4.1 [5]. Let X be as in Corollary 2.8 and d linearly
deperids upon the rows of C. Then there erists a positive number M*
such that for any M > M*, P(Xg) = t*, where t* is the smallest value
of the parameter t in the Problem (Wt) given by

w; := max ACz — bu — tv (Wt)
subject to

Az < b, uA+vd—-z\C%0.
eA=M, ,\;e, T, u, v>0

such that w; = 0.

The proof of this proposition can be done by a similar argument
as that in the proof of Corollary 2.3. Note that for each fixed ¢ Problem
(Wt) is a bilinear program.

Let

tm:=min{dz:z € X}, t™:=max{dz:ze€ X}.

It is clear that ¢,, and t™ are lower and upper bounds respectively for
P(XEg) =t*.
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Proposition 4.1 leads to the following method, called bisection
extreme point search algorithm for solving Problem (P) when d linearly
depends upon the rows of C.

Algorithm 4 (Outline of the bisection point search algorithm).

Let an interval [L,U] containing t* be given (at the start set
L=t,, and U =t™). Set t := (L4 U)/2 and checking whether w; = 0
or w; > 0.

If w, = 0, set U = t, (L is unchanget); if w; > 0, set L =¢. (U is
unchanged).

Repeat the procedure with the new interval. The algorithm ter-
minates when U — L is small enough.

For checking the value w; one must solve the bilinear program-
ming Problem (Wt). The following corollary says that determining w;
leads to maximization of a convex function over X.

Corollary 4.1. ([5]) For eacht > t,, we have
w; = max{h¢(z) : Az < b, z > 0},

where for each £ € R™, hy is the continuous picewise linear convez
function defined by

hi(z) := maxACz — bu — tv
subject to
uA +vd — AC > 0, eA=M, A>e u,v>0

(M as in Proposition 4.1).

5. BICRITERIA CASE

An important special case of Problem (P) that frequently arises
in many applications, especially in the bimatrix game theory, is the
bicriteria case, i.e., the matrix C has exactly two rows. In this case
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Problem (P) could be solved more efficiently. As we have seen Algo-
rithm 2 for this case involves a simplex bisection in R?, and therefore
it is quite efficient even with n is fairly large.

In this section we show that solving (P) for bicriteria case amounts
to performing a parametric simplex tableau with one parameter in the
objective function. In an important special case when d = ac! + fc?
with @« < 0, 8 > 0, in particular d = —c!, we show that a globally
optimal solution of Problem (P) can be obtained by solving at most
two linear programs.

The algorithm we are going to describe is based upon the follow-
ing proposition whose proof can be found, for example in [28].

Proposition 5.1. Let z° be an extreme point of X, then z° € Xg
if and only if there ezists a X € RP, X > 0 such that z° is an optimal
solution for the scalarized problem

max ACz, subject to z € X. (PA)

By dividing to ) A; one can always assume that }_ A; = 1. Thus in
the case p = 2, Problem (P)) can be written as

max(tc' + (1 —t)c?,z), subjectedto =z € X, (Pt)

where ¢! and ¢? are two rows of the matrix C.

From Proposition 5.1 and the fact that the set of optimal solutions
of a linear program is a face of its feasible domain, it follows that there
exists a finite set I of real numbers such that Xz = |J X; where X,

tel
denotes the solution set of the linear Program (Pt).

Let £(t) denotes the optimal value of (Pt). Then solving Problem
(P) amounts to solving the following linear Program (Lt), one for each
tin I:

max dz (Lt)

subject to
T€ X, (te'+(1-1t)e,z)=¢(t)

Let z* be an optimal solution and 7n(t) be the optimal value of this
problem. Then 7n(t*) := max{n(t) : t € I'} is the globally optimal value
and z*" is an optimal solution of Problem (P). Using these results we
have the following algorithm
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Algorithm 5 (A parametric simplex algorithm for a bicriteria linear
problem).

Assume that we are given the critical values t;,...,tx of the
parametric linear Program (Pt). Let ao be a lower bound for P(Xg)
and z° € Xz such that dz° = ap. Set 1 =1.

Iteration ¢ (1 = 1,..., K).

Step 1. Solve the linear program
max{(t;e* + (1 — t;)c?,z), z € X}.

Let w® be the obtained optimal basic solution, B; = (z;x) the corre-
sponding basic matrix, and J; the set of the basic indices.

Step 2. (The case when w' is also an optimal solution of (Lti)).

If either

Api=cli— Y zpch <OVEgJjor dp=) 2d; SOVk¢ T

JEJ JEJi
then set . .
. { w' if dw® > o1
¥ = :
z*~! otherwise
and n; = dz*.
If i = K, then terminate: z* := z' is an optimal solution of

Problem (P).
If 1 < K, then increase 1 by 1 and go to iteration 1.
Step 3 (The case when w* is not an optimal solution of (Lti)).

If
di — Z zjxd; > 0 for some kedJ;,
JEJ:

then let

J?- = {k € Jix: c:: = Z ijc;-" < 0}

JEJ;

and solve the linear Program (Mti) given by

max{dz:z € X, zx =0, k€ J}} (Mti)
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Let y* denote the obtained optimal solution of this linear program, and

set ) :
g { yrifdy' > a;_,

z*~! otherwise
and n; = dz’. Increase ¢ by 1 and go to iteration i.

An important special case of Problem (P) occurs when
d=—c', forsome i€({l,...,p}.

This problem is considered in some papers [13], [21]. For the cases when
p = 2 and d is a linear combination of the two rows of C, Benson has
shown that the maximal value of dz over Xz attains at a vertex of X
which is also an optimal solution of at least one of the following three
linear problems:

max ¢'z, subjectto z€ X, (*=1,2), (Li)

maxdz, subjectto z€ X. (L)

Using this result Benson proposed an algorithm for maximizing dz over
XE by generating all basic solutions of these linear programs.

In particular, it is easily shown that an optimal solution of Prob-
lem (P) with d = ac' + fc? and @ < 0, B > 0 can be obtained by
solving the linear program

max C'z, subjected to z € X,

with X3 being the solution set of (L2).

6. CONCLUSIONS

The Problem (P) of maximizing a real valued linear function over
the efficient set of a multiple objective linear program has important
uses in multiple criteria decision making. This is a difficult global opti-
mization problem due to the fact that its feasible region is in general a
nonconvex set. In this paper we have given a brief survey of computa-
tional methods for this problem. The existing methods have been clas-
sified into two approaches: branch-and-bound technique and efficient
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extreme point search scheme. The bicriteria case has been considered,
and an efficient parametric simplex algorithm has been described for
this case.

Due to the inherent difficulty of the considered problem, the pro-
posed methods are efficient only in particular cases where either the
number of the criteria or the number of the underlying variables are
somewhat small. For other cases, to our knowledges there does not
exist an efficient solution method in the literature. General cases of
Problem (P) where either the objective function or the concerning mul-
tiple objective program are no longer linear and/or X is a unbounded
convex set would be an interesting subject to further researches. De-
composition methods which employ the fact that the constancy space
of r is of n — k dimension, where k is the rank of the matrix C, are
now being prepared [27] in order to develop more efficient methods for
solving Problem (P).
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