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A Short Communication

ON DIRECT AND INVERSE THEOREMS
IN MULTIVARIATE TRIGONOMETRIC
APPROXIMATION *

DINH DUNG

1. As well known, the classical direct and inverse theorem of best
univariate approximation establishes a connection between the smooth-
ness properties of functions, defined via moduli of smoothness, and the
speed of the best approximation by trigonometric polynomials of order
at most n (i.e. with frequencies from {0,1,...,n}). This theorem has
some direct multivariate generalizations with simple frequency domains
in terms of norm equivalence of Besov spaces (see [9]). Generally, in
multivariate trigonometric polynomial approximation, because of the
complicatedness of multivariate smoothness and of the various possi-
bilities for restricting their frequencies we must first of all understand
what frequency domains should be selected for a best method of ap-
proximation for a set of functions with common smoothness. Hyperbol-
ic crosseses are such domains for a finite smoothness, characterized by
the Lp-boundedness of one or several mixed derivatives and differences
(see [4], [5], [10], [11] for detailed descriptions of history and results on
hyperbolic cross approximation).

In the direct and inverse setting of such a problem, it is of great
interest to characterize the smoothness properties which guarantee a
given speed of the approximation by trigonometric polynomials with
frequencies from a given sequence of hyperbolic crosses. The authors of
the manuscript (2] have deal with this problem for the regular hyper-
bolic crosses {k € Z% : [] max(1,|k;|) < n}. Let A be a finite subset

=1

of R%. In this note we formulate a direct and inverse theorem for the
following family of hyperbolic crosses
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Te(4) = {UDL: (a,6) <& s€NY, ac 4}, €20,

where
O, = {k € 2%: 297 < k] < 21},

2. A function f in L,,(Td), 1 < p < o0, can be considered as a
regular distribution on the d-dimensional torus T? (see, e.g., [12] for
details about distributions on T). For any a € R? the distributional
derivative f(%) in the Weil sense is defined by

d
=1

kezd

. d
where f(k) is the k-th Fourier coefficient of f, z¢ =[] Z,,;, Z; =
i=1
Z\ {0} for t # 0 and Z; = Z for t = 0 and

it
(1u)t := |u|*exp (%signu).

Let A be a finite subset of R, We denote by W,;4 the space of
all functions on T? such that

s = 17,

a€A

is finite where “ . ||p denotes the norm of L,(T?). We say that the func-

tions in WI;,‘l have the common mixed smoothness A. Our requirement
on the smoothness A is that

a®c€ A for YVa€ A and VeC I, (1)

where I, :=={j:1<5<4d, a; > 0} and a® € R? is defined by ai = a;
for j € e and a} = 0 for j ¢ e. This requirement allows us to be free
from the restriction to operate only functions in Lg(Td) which consists
of all functions in L,(T?) with zero mean value at each variable.
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3. If G is a subset of Z¢, we let J(G) denote the L,-closure of
the span of the harmonics e!*+), k € G. For a finite G, J(G) is the
space of all trigonometric polynomials with frequencies in G. We shall
use the abbreviated notation: J;(A) = J(I'¢(A)). One can prove that
T'¢(A) is a finite subset of Z¢ if and only if

min maxa; > 0. (2)
1<j<d a€A

For any £ > 0, we let

E:(A, 1=y, 0 -
A Dpi=_ it =0l
denote the best L,-approximation of f by elements from Je(A). If
1< p < oo and a > 0, we have for any £ > 0

Ef(A, f) < C(A, p)z_aflfIW;As (3)

[elwea < C'(AR)2%¢ o]l o € Je(a), (4)

where ad := {z € R? : = aa, a € A}. Moreover, the degree of
(3)-(4) is exact. There inequalities were first proved in 1] (p = 2) and
then in [7] (p # 2) in the case when a =1 and A = {a} with ¢ € N¢.
The inequality (3) was proved in [8] for & = 1 and A = {a} with a; > 0.
Inequalities (with o = 1), similar to (3)-(4) was given in [6] for functions
from Lo(T?). The inequalities (3)-(4) can be proved by an analogous
method to those in [6] - [8], using the Littlewood-Paley theorem and its
generalizations.

The inequality (3) shows that if the function f has the smoothness
aA, then the degree of E¢(A, f)p, 1 < p < 00, is not greater than 2~ ¢,
Moreover, the degree 27*¢ in (3) with n ~ card T'¢(4) < n coincides
with the degree of n-widths of the unit ball of W;‘A (for a = 1, see
[1], [6], [7], [3]). However, as in the univariate case, the space W;‘A is
smaller than the set of all functions f such that E:(A f)p < Cc2 €,
We are interested in characterization of the smoothness properties of
functions f which govern a preassigned degree of E¢(A f)p. fa>0
and 0 < ¢ < oo, we let &, (A, a) denote the space of all functions
f € Ly(T?) such that

('Zil{Z""En(A, f)p}q) 1/‘1, q< oo

sup 2°"En(A4, f)p, g=o0
1<n<oo

|f| £r.q [AIQ) =



160 Dinh Dung

is finite. We define the “norm” in &, 4(A4, @) by
11, - amy = 11, + 1, o aray

4. We shall give a characterization of the smoothness proper-
ties of the space &, 4(A, a), by introducing a “modulus of smoothness”
which is defined via the convolution with a certain distribution. The
author of [2] gave such a characterization for the regular hyperbolic
cross approximation by suggesting new moduli of smoothness which is
defined with the aid of higher-order mixed difference operators and the
convolution with the symmetric multivariate B-splines.

For a natural number r, we let the distribution A; = A:(A4,r),
t € R, on T¢, be defined by its Fourier coefficients A;(k) as follows

elk) 5 ( eitn(k) 1 )r

1+ [tu(k)|
with
d d
p(k) := H signk; sup H |ks|%, ke YA
i=1 €4 j=1

We define the operator A}(A) for distributions f on T as the convo-
lution of f with As:
AL(A)f = f* Ay,

and the “modulus of smoothness” Q" (A, f,h)p, 0 < h < 7, for functions
in Lp(T?) by
07 (A, f,R)p = sup ||A7(4)f]|,-
[t|I<h

For a > 0 and 0 < ¢ < 00, let By, 4(4, a,r) denote the space of
all functions on T? such that

( f: {2“"(1!'(A,f;2‘")p}q) l/q, g < oo

gkt =t =2
Bp.a(4s7) sup 2°"017(A4, f;27")p, q = oo.

0<n<oo

is finite. We define the “norm” in B, (A, a,r) by

”f"B,,,.,(A,a,r) = "f"P % |f|B,,.,(A,a,r)°



Direct and inverse theorem 161

5. The main results of this note read as follows

Theorem 1. Let A be a finite subset of R%, and a natural number £,
a>0,1<p<oo,0<q< oco. Assume that there hold the conditions
(1)-(2). Then for any r > a, we have

€pg = Bp,q(A’ a).

Moreover, for functions f in &, 4(A, a)

”f”;p.q(A,a) = ”f”B,,,q(A,a,r)'

Theorem 2. Under the hypotheses of Theorem 1, for any natural
number n, the following direct and inverse inequalities

(1) En(A4, f)p < C( Z {nr(A,f;z—m)p}p')l/p‘

m=n+1

n s\ 1/p"
(5) Q7 (4, £;271) < €27 (3 {2 Ein(4, £),)" )
m=0
hold with some constants C and C' independent of f where p* = min(p, 2).

Theorem 2 extends results proved by A. F. Timan, M. F. Timan
and Stechkin (see [3]) for univariate functions. Some weaker inequal-
ities were obtained in [2] for the best regular hyperbolic cross Ly-
approximation and the modulus of smoothness defined in this work.
In order to prove Theorem 2, we used the Littlewood-Paley theorem
the Marcinkiewicz multiplier theorem, the Bernstein type inequality
(4) and the following facts. Under the hypotheses of Theorem 1, let
D¢ =T¢(A) \T¢—1(A). Then for any t € R and ¢ > 0, we have

IAE(A)fllp < C(Asmp)ItI" | flw; A, f € Ly(TY);

lelle < C'(A,r,p)|A-c(A) fllpy 0 € J(De).
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