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A Short Communication

ON DIRECT AND INVER.SE THEOREMS

IN MULTTVARIATE TRIGONOMETRIC

APPROXIMATION -

DINH DUNG

1. As well known, the classical direct and inverse theorem of best
uninariate approximation establishes a connection between the smooth-
ness properties of functions, defined via moduli of smoothness, and the
speed of the best approximation by trigonometric polynomials of order
at most n. ( i .e. with frequencies from {0,1,.. . ,2}). This theorem has
some direct multivariate generalizations with simple frequency domains
in terms of norm equivalence of Besov spaces (see [s]). Generally, in
multivariate trigonometric polynomial approximation, because of the
complicatedness of multivariate smoothness and of the various possi-
bilities for restricting their frequencies we must first of all understand
what frequency domains should be selected for a best method of ap-
proximation for a set of functions with common smoothness. Hyperbol-
ic crosseses are such domains for a finite smoothness, characterized by
the .Lo-boundedness of one or several mixed derivatives and differences
(see [a], [5], [10], [U] for detailed descriptions of history and results on
hyperbolic cross approximation).

In the direct and inverse setting of such a problem, it is of great
interest to characterize the smoothness properties which guarantee a
given speed of the appro>rimation by trigonometric polynomials with
frequencies from a given sequence of hyperbolic crosses. The authors of
the manuscript [2] have deal with this problem for the regular hyper-
bolic crosses {tc e zd: ll max(r,lftil) S 

"}. 
Let A be a finite subset

d : I
of Rd. In this note we formulate a direct and inverse theorem for the
following family of hyperbolic crosses
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I e ( A ) , :  { ,  
D "  :  ( a , s )  S  € ,  s € N d ,  o e e } ,  € ) 0 ,

where
E" : :  {n e zo : lz" i -z1S l t i l  .  z" t - t  } .

2. A function / in .Lo(Td), 1 S p S m, can_be considered as a

regular distribution on the-d-dimensional torus Td. (see, e.g., [t2] for

details about distributions on T). For any a e Ed the distributional

derivative /(n) itt the Weil sense is defined by

d

7@) 2: D ftrl f[{;ri)"'ed(ft'.)
hezi , : l

where f1t1 i, the lc-th Fourier coefficient of f , Z!: fi. ',,, Zt :
i : L

Z \ { 0 }  f o r t t ' O a n d  Z t : Z  f o r t = 0 a n d

(ru)t : :  lzltexp (?"*"").

Let A be a finite subset of Rd. We denote bV Wf the space of

all functions on Td such that

l f lw ':  Dll/(") l lo_ 
o€A

is finite where ll 
. ll, a"""tes the norm of Io(Td). We say that the func-

tions in Wf; have the common mixed smoothness .A. Our requirement

on the smoothness .A is that

a " e A  f o r  V a e  A  a n d  Y e C I o ,  ( 1 )

w h e r e  I o . : { r , r  < i  S d ,  a i  > 0 } a n d  a "  e P ' d  i s d e f i n e d b y  a } : a i

for j e 
" 

',,d o,.:ofor j l e. This requirement allows us to be free

from the restriction to operate only functions in t|(Td) which consists

of all functions in Io(Td) with zero mean value at each variable.
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3. If G is a subset of Zd, we let J(G) denote the .Lo-closure of
the span of the harmonics ei(k,'|, k e G. For a finite G, J(G) is the
space of all trigonometric polynomials with frequencies in G. We shall
use the abbreviated notation: Jq(A): J(Ie (,a)). One can prove that
Ie (A) is a finite subset of Zd if and only if

min ma:c @; ) O.
I< i1d  o€A

For any € > 0, we let

Ee(t,f)p:: 
,tifrntllf 

- ell,

denote the best Zo-approximation of / by elements from J6(,4). If
t < p < oo and o ) 0, we have for any € > 0

Ee(t, f) < c(A,p)z-"elf l*_n, (B)

le l * t "<c ' (A,p)z 'e l l r l lo ,  peJe(A) ,  (4)
where aA :: {c e Rd i E : d.a, a € A}. Moreover, the degree of
(3)-(4) is exact. There inequalities were first proved in [1] (p : 2) and
then in  l l l  (p l2)  in  the case when a:L and A:  {o}  wi th  o € Nd.
The inequality (3) was proved in [A] for c : 1 and l, - {o} with oi ) 0.
Inequalities.(with a : 1), similar to (a)-(l) was given in [6] for funttions
from r!(Td). th" inequalities (a)-(+) can be proved by an analogous
method to those in [0] - [8], using the Littlewood-paley theorem and its
generalizations.

The inequality (3) shows that if the function / has the smoothness
cA, then the degree of Eq(A, f)r, L < p < oo, is not greater than 2-a€.
Moreover, the degree 2-a€ in (a) with z = card re (e) ( n coincides
with the degree of n-widths of the unit ball of wf,A (for a : l, see

[f], [O], [7], [3]). However, as in the univariate case, the space Wf,^ is
smaller than the set of all functions / such that Eq(A,f)r S C2-oe.
We are interested in characterization of the smoothness properties of
functions / which govern a preassigned degree of EE(A,f)o. It a ) 0
and 0 < g ( oo, we let €r,o(A, a) denote the space of all functions
f e t o(fa) such that

159

(2)

(ir{r'"r^(t, yloyo)'/', s < oo

sup 2"n Eo(A, f)p,
l ( n ( o o

9 :  o o
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is finite. We define the *norm' in €o,,'(Ara) by

l l/l lr","r,n,') ': l l/l lo + l/1r",.(A,a)'

4. we shall give a characterization of the smoothness proper-

ties of the space €o,o(Ara), bV introducing a 'modulus of smoothness"

which ie defined vii the convolution with a certain distribution. The

author of [2] gave such a characterization for the regular hyperbolic

cross .ppt*i-.tion by suggesting new moduli of smoothness which is

defined with the aid of higher-order mixed difference operators and the

convolution with the symmetric multivariate B-splines.

For a natural number r, we let the distribution )t - l1(A,r),

t € R, on Td, be defined by its Fourier coefficientr ir1t1 ds follows

,  
" i t p ( h )  

_ l  \ 'r'(k) =(ffiJ
with 

d (t

p(k) :- ff signtcl .gq fl lkilor, k e zd.
ii ot^ i:t

We define the operator A[(A) for distributions / on Td as the conv(>

lution of / with rt: 
Ai,,\r:- / * )s,

and the "modulus of smoothness' n'(A, f ,h)p,O < h ( zr, for functions

in Io(Td) by
n'(A, f ,h)p: r:l?^ llAi(/)/llr.

For c ) 0 and 0 < q S o, let Bo,o(A,drr\ denote the space of

all functiong on Td such that

t , (A , f ;z_n , )p lo ) t ro ,  s  <  oo

l ' ( A , f ; 2 - " ) r ,  g : o .

is finite. We define the 'norm" in Bo,o(A, o, r) by

l l / l la","t 'n,c,r) 3: l l / l lo + l/14,,,1.,r 'o' '1'
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5. The main results of this note read as follows

161

Theorem l. Let A be a finite subset of Rd, ond a naturol number r,
a ) 0, |  < p ( €,0 < g ( oo. Assumethat there hotdthe condit ions
(1)-(2). Then for ony t ) d, we haue

€r,o -- Bo,o(A,a).

Moreover, for functions f in €o,o(A,a)

l l  l l l "" ,  (A,o) N l l  | l l  
"o,o1n,, , ,1.

Theorem 2. under the hgpotheses of Theorem 7, for ony naturol
number n, the following direct and inuerse inequolities

( ; )  E^ (A , f ) rSc (  i .  {n ' ,  A , f ;2 - ^ )o }o ' ) "o
m = n * l

(;i) n, (A, f ;z-^+r7 < ctz-'.n( r {2,^ E^1,t , ilo}o )"o'm:0

hold with some constants C and Ct independent of f where p* : min(p,2).

Theorem 2 extends results proved by A. F. Timan, M. F. Timan
and stechkin (see [3]) for univariate functions. some weaker inequal-
ities were obtained in [2] for the best regular hyperbolic cross .Lo-
approximation and the modulus of smoothness defined in this *o.i .
In order to prove Theorem 2, we used the Littlewood-paley theorem
the Marcinkiewicz multiplier theorem, the Bernstein type inequality
(+) and the following facts. under the hypotheses of rheorern l, lei
De: fe (A) \ Ie-t(,a). Then for any, € R and f ) 0, we have

l lAi(A)/ l l  p < c(A,r,p)lt l ' l f lw;.e,, f  e Lo(r\;

l lel lo S c'(A,r,p)l l \ i-e(A)fl lo, p e J(D€).
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