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A REPRESENTATION THEOREM FOR
SKOROHOD MARTINGALES

NGUYEN MINH DUC

Abstract. A new representation of anticipating martingales 1s given via a two-parameter
stochastic integral. Its advantages are shown. A kind of moment inequalities for the martin-
gales 1s presented.

INTRODUCTION

An integrable process X = X;, 0 < t < 1 will be called a Skorohod
martingale, or simply an S-martingale, if E{X; — X|7,-} = 0 for all s < t,
where 7|, . denotes the o-field generated by the increments of the Brownian
motion on the complement of the interval [s,¢].

This notion arises from the fol'lowing property of the Skorohod stochastic
integral (see [6], Proposition 5.1): if u = {u;, 0 <t < 1} is a Skorohod integrable
process such that there exists the indefinite integral fot u,.dW, for every t € [0, 1],

then for all s <t ;
E {/ u,dW,’f[syt]r} =4y

Conversely, in [4],‘We proved that an S-martingale can be represented by the Sko-
rohod stochastic integral under a slight hypothesis. In the present paper we shall
give a new representation of Skorohod martingales via a two-parameter stochas-
tic integral and show its advantages in characterizing smooth Wiener functionals
without using their Wiener chaos expansions and in giving a new sufficient condi-
tion for f(fot u,dW,) to be an S-quasimartingale, where the function f belongs to
Class C%(R). Other related results are also discussed in Section 1.
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In Section 2, we present a moment inequality for S-martingales and its appli-
cation to deducing a sufficient condition for an S-martingale to have a continuous
version.

Most of the results of the paper was obtained while the author was visiting
Institute of Applied Mathematics of the University of Bonn. The author would
like to thank all the colleagues of the Institute, especially Professor Hans Féllmer,
for their warm hospitality and useful discussions.

1. A REPRESENTATION RESULT

Our basic probability space ({2, 7, P) will be the canonical Wiener space
associated with the standard Brownian motion {W;, 0 < ¢t < 1} on the unit
interval [0,1]. For 0 < t < 1 let (%) denote the right-continuous completion of the
o-field o(W,, 0 < s < t). In the same way we define (7) in terms of the o-field
oW, —W,, 1-t<s<1). |

Put
T={(s,t):0<s,t ands+t<1},

Ry = {(u,v) €T such that u < s and v < t}.
Let ® = {¢yy, (u,v) € T} be a stochastic process such that:

For all 0 <t < 1, the process {¢uy, (u,v) € Ry1-+} is a predictable process
w.r.t. the filtration {7, v 7%, (u,v) € Rt 11} (see [2]) and (1.1)

” E'/R 2 dudv < +o0. (1.2)

Under these conditions, X, := fR“ GuvdWodW?" is well-defined for any
(s,t) € T as a two parameter stochastic integral, where W* denotes W; — W, _,,.
For fixed t, {W,,0 < u < t} and {W,0 < v < 1-— t} are two independent
Brownian motions, and so {Xy,, (v,v) € R;,;_:} is a square-integrable continuous
two-parameter martingale.

Let us introduce the process X = {X;, 0 <t < 1} defined by

Xi =Xt = / burdWodW®. (1.3)
Rt.l—t

Proposition 1.1. Under the above assumptions, the process X is an S-martin-
gale. Such an S-martingale of the form (1.8) will be called an outward martingale.
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Proof. Indeed, for all 0 < s <t <1 we have

X=X, = DupdWodW ¥ ~ / GupdW, dW?".
(8,8 [0,1—1] (0,8] X [1=t,1=3]
Since
E{dW, |7, V F cnikom O fonall 1% 6ilstl,
ELaWef, v T =0 forall well —f1=9,
we have

Bl =X v a0 gel

Suppose that X = {X;,0<t < 1} is an integrable process. Let us recall that X
is said to be a (forward) martingale (resp. a backward martingale) iff X is F-
(resp. F17'- measurable) for all ¢ and

BiXy~ X, |%}=0 forall &5
(resp. E{X; — X,|F' 7'} =0 forall s<t).

Theorem 1.2. Suppose that X = {X;,0 < t < 1} is a square-integrable S-
martingale. Then there exists a unique decomposition

X=x04 x® 4 x® (1.4)

where
X)) ¢s a forward martingale with EXo = EX(()l),
X(2) 45 g backward martingale,
X®) is an outward martingale,
X1 gnd X ) are given by

XM = B{X1| 7}, X = E{Xo|fi_} ~EXo; 0<t<1.  (15)

Proof. It isshown in [4] thata squ’are-int'eg'rable S-martingale X has the following
form

Xt:EXO+Z (Z In(hn,lé'lA.ﬁ(t))> s (OSt < 1). (16)
n=1"\k=0

Here we put
Tn= {(tnl,,....,tn) V0K I AR, 1},
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AR )=l (b alstioee Ty sitd K<t € By

and h, x are deterministic functions on T}, satisfying

1 n t2
An(hi,k z lAfL(t)) = / / / hf&,k 'lAﬁ(t)dtl'“dtn < =0 for all 0 S t S 1,
o Jo 0
(1.7)
I(f) denotes the multiple Ito integral of the deterministic function f (see [3]):

to
/"./’ ftl, dWQl dW/

Now we put

x = Ex, +ZI nnlane) = E{X1|#},

e 21 wi Lanpd = B{X017 ) < B,

Clearly X(1) is a forward martingale, and X(?) is a backward martingale. On the
other hand,

0o
¢uu = hz 1 u,1— 'U Z Z nk t17 tk—laual_vatk)~~',tn—2))7(uav) = T’

(1.8)
clearly satisfies hypotheses (1.1) and (1.2), and for every 0.« Py

oo n—1
- xVoxP =%} (Z In(hn - um)) :/ BuvdW W,
n=2 \k=1

Ly —1

Therefore X(®) = X — x(1) — X(2) is an outward martingale. The uniqueness of
the above decomposition, if for instance we assume that EXg'= EXél), follows
from the representation (1.5). q.e.d.

From the relation (1.8) we have immediately

oo n—1

/ Goitsilv =3 " 5 Auhl ) (1.9)

n—=2"k=]
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Suppose that u = {u;,0 <t < 1} is a square-integrable measurable process and
that for every 0 <t <1,

u; = Buy + i L, (fu(t]))) -
n=1
The space L!'? (resp., L??) consists of all such processes u verifying
|l , ::/ (Eug)?dt + Z / n(fn(t])?)dt < 400, (1.10)
(resp.,
ull3 2 == / (Bug)?dt + Z / n(fn(t])?)dt < +o0), (1.11)

see [6].

A square-integrable Wiener functional

6 =FE¢f+ Z In(fn)
n=1

is said to be smooth if and only if (see [6])

(e 0]

IDE| i= D (n — 1)An(f3) < +o0.

=1

Proposition 1.3. Suppose that X; = fot uwdW = 6(u-1p,4),0 <t < 1, where
u € L*?, and let X3) and ¢ be defined as in Theorem 1.2. Then

/ ¢2,dudv < +oo0. (1.12)

Proof. We use the presentation (1.6).
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In [4] the following relation has been obtained for the function A, , appearing

in (1.7)

1
/ An(fn(t])?)dt = An(Ri o+ (Ana = hno)? + o 4 (Bnpn — hnn1)?). (1.13)
0 _ 3

On the other hand

Bn(hne) < (k+ 1)An(R o+ (hnyt = Bn0)? + oo+ (hnk — hnp_1)?)

oraibk=1...n~1.

Hence

Therefore, (1.9) implies
et 3 T
E/ ¢ ,dudv < }: —2—/ An(falt])?)dt.
T n=2 .

Since u € L??,

oo 1
il T :
Z/ (fa(t1)2)dt < +oo

and so we get the desired conclusion
E/ ¢3’vdudv < +oo0. q.e.d.
T

An integrable process M = {M,;,0 <t < 1} is said to be an S-quasimartingale if
and only if

m
SUPZEIE{Mr;H ~ M| %, v FLomul ) oo,
T i=0

where the supremum is taken over all finite partitions0 =75 <7y < ... < Takng =1
of [0,1]. The following theorem specifies some properties of an S-martingale X
implied by condition (1.12).

Theorem 1.4. Suppose that X is a square-integrable S-martingale with decom-
position (1.4), such that (1.12) holds. Then
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1) X has a Skorohod integral representation, i.e., there exists a unique process
u € L2([0,1] x N) such that u.ljpy is Skorohod integrable for all t and

X, =6(u-1lpy), (0<t<1). (1.14)

Moreover,

m 1
lim E( S X,j)z): E/ u?ds. (1.15)
7=0 .

|7|—0
2) X2:={X?, 0<t<1}isan L'- continuous S-quasimartingale.

Proof.
1) For s <t we have

B(X; — X,)? < 3E{(Xx{V) — x4 (xP) - x()? + (%7 - x)?}
= 3B{(XM)? — (X102 + (XxP)2 — (x4 () - (X))}

On the other hand,

2 dudv + E/ 12wdudv}.

[0,8]x[1—t,1—s]

B((x®) - (x)? < z{E /{

s,t]x[0,1—1]

Therefore, for any partition 0 = 79 < 71 < ... < Tm41 = 1 of [0,1] we have

E{Z(an —Xf,-)z}ssE{(X?))Z+(Xé2’)2}+1w / 62 dudv.  (1.16)
T

=0

From Proposition 2.3 of [4], it follows that X has a Skorohod integral representa-
tion, i.e., there exists a unique process u € L?([0,1] x ) such that (1.14) holds.
In this case, it is easy to see that

m

lim E (Z

gl £ XY
J=0

1
(er+1 e XTJ')Q): E/ uﬁds.
0

2) For any s < t, we have
BiX; - XFEvF )=

E{(X: — X.)2|F, v F1 71} + 2B{(X; — X,)(X, - E{X,|%, v F* '} %K v 71T}
Therefore
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E|E{X? - X2|F,v F1-1}|]
< E(X: - X,)2+2E|(X; — X,)(X, — E{X.|%, v F1-t})|
< 2E(X: ~ X,)* + B(X, - E{X,|% v F171})2. (1.17)

On the other hand,

S hE v Y
n=2k

1
In(h'n,k 3 l{tk <8<tpy4, <t})'
1

Hence

1

Pl

P EBRAE VT = Y KO
n=2%k

Il

1

Let 0 = 70 < ... < 7jy41 = 1 be a partition of [0,1], and put
Bl k=41, ooty €T,

such that there exists 1 : ¢y < 7; < tgy; < 7i41}. We have

D E(Xr, — E{X;| %y v 71 ))? ZZ hek 1B(nk)

g—0 k=1

3
—

i Z / ¢, dudv.

(1.18)

IA

Therefore, from (1.16)-(1.18),
> BIB{X2 - X2 |7, v Fl-tis}|
7=0
e ZE(XTJ'+1 e XTJ')2 + E/ ¢12Lvdudv
: T
=0

<6E{(X")2 4 (x{")1 +25E/ $2 dudy.

The right side of the above inequality does not depend on the choice of the parti-
tion, and so X? is an S- quasimartingale.

To show L!-continuity of X2, we first note

EIX? = X2| < (B(Xy — X.)%)V% 18 Wieasits) 9042, (1.19)
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Moreover,

B(X:+X,)? <2E(X}+ X)) <4 ((E‘Xo)2 - i i An(hﬁ,k)) e = 1o

n=1 k=0

If we define X, ; = ) (Z Ll ge 1A';(t))> , then

E(Xp:— Xp,s)? <4 i f: Aul(RE 1) (1.21)

Thus, the left side of this inequality tends to zero as p — oo, uniformly in s and
t. On the other hand

B P =B - X0+ 4

where
A=E(X; - Xp: - X+ X ,3)2

p—1 n
< Z(n +1)- (}: An(hl - 1Ag(s)AAg(t))>
=1 k=0

which tends to zero as p fixed and (t — s) — 0, since the Lebesgue measure of the
symmetric difference A¥ (s)AA%(t) tends to zero as (t—s) — 0. The L'-continuity
of X2 now follows from (1.19) —(1.22). q.e.d.

Let us now consider the particular case of a constant. process X; = &,
(0<t<1), where { € L?(0). According to Theorem 1.2, we have

(1.22)

xM = B{¢|7},
X8 = E{g|717%) - E¢,

X§3) == Z In(hn 4 1U:;:A’,‘,(i)) = Z In(hn 3 1{t1 <t<tn})a
n=2

n=2

(1.23)

where

¢=Et+ ) In(ha)

Y1

is the Wiener chaos expansion of €.
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Conversely, given a square-integrable S-martingale
(o] n
Xe=EXo+ ) > In(hni laggy), 0<t<1,
n=1rk=0

the existence of a random variable £ € L2 such that X®) is given by (1.23) is
clearly equivalent to

hn,l = hn,g = o = hn,n—l(:: hn)
foralin=223. .. and
Y Au(h2) < +oo.
=2

This implies the following characterization of smooth Wiener functionals:

Corollary 1.5. Let
/ GuudW,dW' (0<t<1)
Rt\l—t

be the process X3) associated to £ € L? via (1.28). Then € € DY? if and only if
EfT 2odudv < +00, and we have

||D¢|)? = E/chiududv.

Let us now show that the process X(®) associated to

E=Et+ Y IL(h.) €L’
n=1
can be represented as a Skorohod integral (1.14):
X =§(ulpy) O<t<1).

In fact, define

hn+1(t,t1,...,tn) if < ty
Wt antn) = 3 ~hapilty, oita, 0] it <

0 otherwise
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and put
o0
§ Afaltl)), o<1

Then u - Ijoq is Skorohod integrable, and (1.14) holds. Moreover, we have

1
[ Aaln (et = 28na (02.1)

Therefore, v € L2 if and only if £ € DV2, and this is equivalent to

E/ $2, dudv < +o0.
;s

Thus, we get a class of examples where u € LY2\L%2 but nevertheless we have
(1.12).

In [5] we proved that if e 3 X, = fot udW,, 0 <1 <1 alid | i@
function of class C? with an uniformly continuous and bounded second derivative
then f(X) is an S- quasimartingale. Moreover, in that case, f(X) has a Doob-
Meyer decomposition

f(Xt):Mt+At, Oﬁtfl,

where the variation part, (A¢)o<t<1, is given in an explicit form.

In the following, based on Theorem 1.2, we shall show that f(X) is still
an S-quasimartingale even if function f is only supposed to belong to the class
C? with bounded second derivative. However, in this case, we could not have an
explicit representation for the variation part (At)o<t<t-

Theorem 1.6. Suppose that X is a square-integrable S-martingale with decompo-
sition (1.4), such that (1.12) holds and f is a function of class C? with a bounded
second derivative. Then (f(X:), 0 <t < 1) is an S-quasimartingale.
Proof. Let m be a positive real number such that

[f(z)] <m

for all z € R. For s < t, we denote

Ra=XWpxBex®
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Clearly, X is 7, v ¥!~t-measurable.

By the Taylor decomposition theorem we have
(Xt} = f(Xar) = P X (Xe — Xot)| € = (X — X2 (1.24)
and
F(X) = S (Xat) = ' (Xa) (Xs = Xa) | < 2 (X, = X
On the other hand,
E{Xt~Xu|ZV 717"} = B{X, - Xa|F,vFt} =0.
Therefore, from (1.24) we get the following estimation

BIE{f(Xe) = (X)|% v 77 < TE{(X, - Xo)? + (Xe - X)) (1.25)

Meanwhile,

B LR e / bupdWo dW®
[¢,t] x[0,1—¢]

and

8

XK = LBy / bup AW, AW
[0,8] x[1—¢,1—3s]
Thus, from a property of one-parameter martingales we have

E{(X: = Xot)® + (X, — Xa)?} < 2B{(X{V)? - (x(V)? + (x)? — (x{P)2)

+ E/ ¢5Ududv.
{[s,t]x[0,1—t]U[0,8] X [1—¢,1—s]}
(1.26)

Now suppose that 1 = {0 =75 < 7] < ... < Tpyy = 1} is a partition of [0,1]. From
(1.25) and (1.26) it yields that

S BRI A, v 7y
1=0
~(1)y2 (2)\2 2
SmE{{X, )+ (X ) + 2/ ¢ipdudv}.
T
In particular, f(X;), 0 <t <1, is an S-quasimartingale. qg.e._.

Corollary 1.7. Suppose that v € L*? and f a function of class C? with a
bounded second derivative. Then f(fot udW), 0 <t <1, is an S-quasimartingale.

Proof. It follows immediately from Theorem 1.6 and Proposition 1.3. q.e.d.
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2. A MOMENT INEQUALITY FOR S-MARTINGALES’

Consider a square-integrable S-martingale with decomposition as in Theo-

rem 1.2,
X XN X )

Since X and X(®) are one-parameter Brownian martingales, it is well-known
that both of them have continuous version.

To study the existence of a continuous version of a square integrable S-
martingale X, it is therefore enough to consider the case of an outward martingale,

Xt:/ b dWedW?, 0<t<1.
Rtl v

Let (A;)%2, be a partition of T into rectangles A; = [a;,b; | with b; = (t;,1 —t;)
and A?ﬂAJOZQ)forallz#]

Put i
K(X) = inf(A‘,)ZE{ / ¢2,dudv ; 2}, (2.1)
=

where the infremum is taken over all such partitions.

Note that from Jensen’s inequality it follows that

K(X) <inf(a, i(/A E?, dudv)

1/2

As we have defined the two-parameter process
Xt = / ¢uudwudwv7 (S,t) = T, '
Rnf

and now we put

X ="sap X,
2T

Theorem 2.1. There exists an universal constant C such that for any outward
martingales X = {X;,0 < t < 1} whose corresponding process X = { Xt s:(8a8)€
T} is sample continuous the following inequality holds

BX g GoiK ()3
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Proof. Let (A;)2°, be a partition of T into rectangles such that

{/4&2 dudv /2}< +00. (2.2)

From the Burkholder-Davis-Gundy inequality for two-parameter continuous mar-
tingales ([1]) it follows that there exists an universal constant C so that for any
B N e

: 1/2
E{sup |AX][a;, 2]} < C’E(/ ¢uududv> ‘
2& A A;

where A; = [a;,b;] and AX]a;, 2| denotes the increment of X on the rectangle
\a;, z|. Therefore, from (2.2)

F{SuplAX[al,z]|}<C {/¢2 dudv }<+oo.

The desired inequality now follows from the following fact

o % Z sup |AXla;,2]|  as. q.e.d.

Corollary 2.2. Suppose that X is a square integrable S-martingale with decom-
position (1.4) such that K(X®)) < +oo0. Then X has a continuous version.

Proof.  Without loss of generality we can assume that X = X®) that means X is
an outward martingale.

From K(X) < +o0o, we can suppose that (A, )52, is a partition of T into
rectangles such that (2.2) holds.

For any n = 1,2,... we define a new process {Xﬁ")}, z € T as follows

xM = / GuvdW dW?".
ol AL

Clearly, X(") n > 1 are continuous-paths processes. From the above Theorem 2.1,
we have for all n < m

Efsup | X\™ - X)) « E{ Y sup ;AX[ai,zj}

2eT ZEA,

1=n+1

S i E(/ 62 dudv>l/2.
A;

i=n+1
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The above estimation ensures that P-almost surely {X(") n = 1,2, ...} is Cauchy
sequence in the space C(T) and its limit clearly is a continuous version of
ez 1 ~qed.
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