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ON THtr SMOOTHIIESS OF GLOBAL SOLUTIOI{S
oF HAMTLTOT\_JACOBT EQUATTOT{S .

NGUYEN HOANG

Abstract. We inuestigate the smathness ol gloful solutions ol Cauchy prcblern lor sorne
H arnilton- J aco bi e qudi ons.

It is well-known that the Cauchy problems for Hamilton-Jacobi equations
do not have classical solutions in general, even if  the Hamiltonians and init ial
conditions are smooth. Most of authors have approached these problems by look-
ing for generalized solutions, usually locally Lipschitz real functions which satisfy
the Hamilton-Jacobi equations almost everywhere or continuous functions which
satisfy some differential inequalities.

- In [7] Subbotin has defined minimax solution for a class of Hamilton-Ja:
cobi equations. He has also proved that a minimax solution of Hamilton-Jacobi
equation is also a viscosity solution [7]. The notion of viscosity solution was intro-
duced by Crandall  and Lions [4]. Moreover, in some cases if  the init ial condit ion
is convex and Lipschitz, then minimax solution is a Lipschitz solution, see [s].Therefore these notions of solutions are equivalent under suitable hypotheses on
Hamiltonians and init ial condit ions.

Nevertheless by the definition', the minimax solutions or the Lipschitz solu-
tions are only continuous or Lipschitz functions so we do not know much about
their differentiability and whether they are classical solutions.

'This paper consists of two s€ctions. In $1 we prove that the Lipschitz so-
lutions are classical solutions basing on Hopf's formula with some appropriate
assrtmptions. In $2 the smoothness of minimax solutions for some concrete I{amil-
ton-Jacobi equations is investigated.
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1. LIPSCHITZ SOLUTIONS OF HAMILTON.JACOBI EQUATIONS

Consider the CauchY Problem

u t * H ( u , )  : 0 ,

u(o,z) --  f  (") ,

with (t,  z) e G : (0, T) x .R.

We denote by Lip G the set of all locally Lipschitz continuous functions u

defined on G. Recall  that a t lassical (resp. Lipschitz) solution of (t),  (z) is a

f u n c t i o n  u € " c t ( G )  ( r e s p .  u € L i p G )  t h a t s a t i s f i e s ( z )  o n { t : 0 ,  r e . R }  a n d ( 1 )

in G (resp. almost everywhere in G ).

In [s], Hopf proved the following theorem

Theorem 1.1. If H is continuous and I is conuer and Lipschitz, then

u(t,r) :  max *J" { l (y) + p(r -  y) -  tn@)} (3)

is the Lipschitz solution of problem (1), (2). Furthermore, u is Lipschitz in t with

the same Ltpschitz constant as f lor all t > O'

Let /*(p) : ^; {na - f  fu)} be the conjugate function of / '

S i n c e / i s c o n v e x a n d L i p s c h i t z s o . f * i s c o n v e x a n d D

{p e n: f .(p) < *-} is bounded [0, p.ts+]. Therefore D is an interval with

finite end-points a, b (a < b) and then

(1 )

(2)

u(t,r): 
;LT "l 'p {/(v) + p@ - a) - tu{p)}

: 
;LS {p" - f .(p) - tH(p)).

We shall prove the following theorem

Theorem 1.2. Suppose that the assumptions of Theorern 1.7 hold, moreouer f 
* 
,

H e C2 (int D) and

f  
. " (p)  + tHtt(p) > o,  V(t ,p)  € (0 '  ?)  x int  D'

Then the Lipschitz solution (S) ;s the classical solution of problem (1), (2)'

(4)

(5)
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The proof of Theorem 1.2 follows the lemma below. For a given function
u  o f  n  va r iab les  ( r r , . . . , z r r ) ,  we  deno te  (u r r ( r ) , . . . , u ro ( " ) )  bv  , , ( r ) ,  where  r  :
( r t ,  . . ' ,  r o )  .

Lemma 1.3 Let V be an open set in R", F be a relatiuely closed subset of V .
S u p p o s e t h a t u e  C ( V ) ) C r ( V  \ F )  a n d  u € C t ( V ) ; " l r :  r l r  a n d  l i m u , ( r ) :

, ' ( y ) ,  Yy  €  F .  Then  u  €  Cr (V )

Proof . Without loss of generality we can assume that u : 0. Let y be a given
p o i n t o f  F .  I f  x € F  t h e n u ( r )  - u ( y ) : 0 .  I f  r € V  \ F ( a n d c l o s e e n o u g h t o y ) ,
we denote by z the point of F n [2, y] nearest to r. From the mean-value theorem
and by assumption, i t  fol lows that

l u ( r ) - u ( y ) l : l u ( r ) - r ( " ) l  <  l l , *  " l l  , , , p  l l u ' ( , * t ( r * r ) ) l l  : , l  l , _  y l l
r€ (o , r )

as  r ' -+  ! .

Thus u is differentiable at y and ut(y) - 0, Vy € F. Hence, u € Cr(V).

Proof  o f  Theorem 7.2.  Let  c( t , r ,p)  :  r *  f  
* ' (p)  - tH,(p) ,

Then
( t , r , p )  €  G  x  i n t  1 f  .

Fr  :  { ( t , " )  e  G l  Vp€ in t  D  :  c ( t , r ,p )  <  0 } ,
F2  *  { ( t , " )  €  C l  Yp€ in t  D  :  c ( t , r ,p )  >  0 }

are closed in G. Moreover F1) F2 : 
0c '

bv  ( s )  

o reove r  F1 )F2 :  $  s ince  
*  

( t , , , p ) :  _ f  * , ' ( p ) - tH , , (p )  <  o

wepu t  F :  F rUF i .  Fo r  ( t , r )  e  G \F ,  i t  i seasy  tosee tha t  t he func t i onp  - -+
pr  -  f . (p)  - tV(p)  at ta ins i ts  maximum at  one unique point  p :  F( t , r )  e  in t  D.
Then c( t , r ,p( t , " ) )  :0 .  Apply ing the impl ic i t  funct ion theorem on the funct ion
( t , r ,p)  -+ c( t ,z ,p)  we deduce that  p  :  F( t , r )  is  cont inuously  d i f ferent iabre in
G \ .F'. Therefore the solution (4)

u ( t ,  z )  :  rF ( t ,  
" )  

-  f .  ( p ( t ,  r ) )  -  tH  (p ( t ,  r ) )

is continuously differentiable in G \ F.

According to the lower semicontinuity of /* *" see that i t  \  * / ,  then
a € D a n d

V( f  ,  r )  €  F1  :  u ( t , r )  =  a r  -  f .  ( " )  -  tH (a ) .
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Analogously, if f'2 t' $, then b e D and

V( t , c )  e  F2  u ( t , r )  :  b r  -  / . ( b )  -  tH (b ) .

Let  ( ts , ro)  €  F1.  We shal l  prove that  p . ( f ,  r )  - '  aas G\F )  ( t , ' )  - *  ( t6 ,26) '

I n d e e d ,  i f  p ( t , x )  n  o t h e n l e  )  0  ( r .  ? ) , V n €  N ,  1 ( t n , n n )  €  G \ F :

I t n - t o l + l r ^ - r o l  <  j  a n d  b 2 p ( t " , r ^ ) )  a * e .

The sequence q( f , . ,  r , . )  :  min{p( t r , r . ) , * }  is  bounded,  so there ex is ts

a srrbsequence denoted also by q(tu r,") tending to a' € la*,,* l '  From the

inequalities
c ( t n , r n , q ( t n , r n ) )  )  o ,  V z  €  N ,

passing r?. --+ oo, we obtain c(t6,r,6,o') > 0 ) c(f6, r,6,a*0). This contradicts with
0 c .
; : ( t o , c6 ,p )  (  0 ,  Vp  €  i n t  D .
op

Now,  l e t  u ( t ,  r )  :  o r  -  f . ( " )  - t v (a ) , ,  u  €  c t (G  \  r r ) .  some s imp le

calculations show that

u 1 ( t , r ) :  - H ( F U , " ) )  *  - H ( " )  - -  u 1 ( t 6 , r s ) ,

u r ( t , x )  :  F ( t , r )  - -  a :  u r ( t , r ) ,

as  G  \  F  )  ( t , r )  -+  (16 ,16 ) .

Applying Lemma 1.3 we immediately deduce that z € Cr(G \ F'r) '

By an analogous argument, we also see that u € ct(c\rt).  Hence z €

c '  (c ) .n

Rernark 1.l .

1. M. Bardi and L.C. Evans proved that formula (S) is the classical solution of

problem (1), (2) in (0, T)x R" under a strong assrlmption that / is Lipschitz,

lD, f | € Le (R), and, moreover, both I/ and / are convex.(cf. section 4,

t2 l ) .
2. We consider the following example. The problem

u 1  - ( u , ) 2  : 6 ,

z(o , r )  :  l r l ,

in G possesses a Lipschitz solut ion, by formula (3),

u ( t , r ) :  l c l  *  t .

We see that all the conditions of Theorem 1.2 hold except for (5) and it is

clear that this solution is not differentiable on (0, T) x {0}. So the condit ion

(5) is significant.
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2. SMOOTHNESS OF MINIMAX SOLUTIONS OF CAUCHY

Let a, p be posit ive numbers such that a-l + p-t - 1,
consider the problem

u t  - t  (1  +  l z , l " ) '  -  o ,

l n l 9
u (T , r ) :  

7 ,
wi th  ( r ,  r )  e  G:  (0 ,  ? )  x  ^R.

The function
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We have

* t r , r , t ) :a l '
and

r  + I Q  -  r ) ( 1  +  l , l ' ) ] * t  -

PROBLEMS

T > L . W e n o w

(6)

(7 )

(e)

l l l l l " - l s g n  / ,  ( 1 0 )

u( t , r ) :  max  ( , ,  -  $  *  ( r  -  q ( r  +  1 r1 "y * )  (8 )t € R  \  o  \  " ,  
/

is the minimax solution of the problem (6), (T), (see [7, p.14 and p.rrz]). Therefore
u e C ( [ o , " ]  x n ) .

Now we state the main result of this section.

Theorem 2.1. For a > I the minimar solution (8) is continuously d,ifferentiable
onG \  ( (0 , r -  1 l  x  {0} )  and is  not  d i f ferent iab le at  any point  o f  (o , , r -  r )  x  {0} .

P roo f .  Fo r  ( r , z )  e  [0 ,7 ] x  R , l  e  R ,  we  pu t

l I d
s ( t , x , t )  :  t r -  ?  +  g  - , ) ( t  +  l l l " ) * .

we see that  
,  

l im g( t ,x , l )  :  - - ,  Y( t , , r )  €  [0 ,  
" ]x .R.  

Thus the funct ion g( t , r , . )

attains a global maximum at some | -- [(t ,r) e .R. Moreover, since g(1, r,.) €
Ct(R) i t  fol lows that

ufia,r,[(t,")) : o.

u; t t , r , t )  :  l , l " - ' (
( r  +  ; t ; " ; z - *

-  r ) ( "  -  r ) , t  *  o .  ( r1 )
T - t

The proof is divided into the following cases
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C a s e  I .  i €  ( I . -  1 , T ) ,  n  €  R . '

A 2 n

In this case we have 
ffi(t, 

r,l) <

uniquely determined. Furthermore, if z

implicit function theorem and from (9),

Consequently the function

Nguyen Hoang

o,Vl * 0. Therefore I(t,c) satisfying (0) is

I 0 then [(t, r) I 0. -Hence by virtue of the

we  see  tha t  I  €  C r  ( (T  -  L ,T )  x  (R  \  {0 } ) ) .

u(r, r i  = t(t ,  z)r - ' !+f + (r -
d

is continuously differ, 'nt iable on (T - I ,T) x (n \

On the other hand

(12)

( 1 3 . a )

(13 .b )

can be

P2{t ,  r , l1l , ( t , r) :- f f i f , i i :(o - r)l[l'-z(Gfr+=T - 1) '

and

Then in (?
computed as

l s ( t , r )  :

x (n \ {o})-  1 , ? )
follows

u  r ( t ,  r )

l/-l sgn f(I + Itl")

:  I ( t ,x )  +  r f ,  -  l l ( t , " ) i " - r t  sen I

- t  (T  , ) (1  +  l t ( t , r )1 " ) * - ' 1 I1 t , " ; l ' - ' L  sgn  l ,

(1  +  [ , - l ' ) i - t l t -1 " [ ( r  - , ) (1  +  l l - i ' ) *  1 -  1 ]

(7 ' -  t )  -  ( r  +  l l - l ' ) ' - '  
'

the part ial  der ivat ives rLz(t ,r) ,wt(t ' , 'x)

-  (r  + l r l ' )* .  (r4.b)

( t+ .a )

and

u{t,r) -- xlt  -

From (e) and (t0)
1,f). Therefore by

( "  -  r ) t ( r  - , ) (1  + l , -1" )* -1  -  1 l

i t  fol lows that I(1, r) * o when (t,r)
(rs) and (14) we have

u,,(t,r) ---,  o, and u,{t,r) --r -1

*  ( t 6 ,0 ) ,  V ro  €  (?  -

when ( t ,z)  - -  ( to ,o)

Now le t  u( t ,x)  :  T -  t ,  ( t , r )  e  ( r  _  1,T)  *  R,  we easi ly  see that  wi th

V = (T-  1,?)  x  g '  F :  {T -1,?)  x  {0} ,  the funct ions u,u sat is fy  the hypotheses

of Lemma 3.1. Consequently a € Ct ((f - 1, T) x "R).
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C a s e 2 .  t € ( 0 , ? - t ) ,  r € R .

We have s( t ,o , / )  :  -$  + Q -  t ) ( r  +  l /1 . ) * ,  then

g ( t , x , l ) :  r l  +  g ( t , 0 , / ) .

A 2 n
The equat ion f r  :0  has two roots  l r ,2 :  +[ ( f  -  t ) r#r  -  l ] * ,  and

d l "  
1 o

has one more  /o :0 .  The equat io t t  ] ( f ,O, l )  :0  has  th ree  roo ts
d t '  

'
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I i , z :  * [ ( r  -  t ) t : r  -

and /[ :  g.

It  is easily seen that l i  < l ,  < 0 < /,  < / i ,  and g(1,0,/) attains i ts maximum
a t  l i , / i .  C l e a r l y ,  u ( t , O )  :  g ( t , 0 , / i )  :  g { t , O , l ; ) .

For r + o, t  € (0, ? - t) the equation 
f iU,r, l)  

:0 has at most one root in

each  i n te rva l  ( -oo ,  l z ) , l t r , , / r ] , ( / r ,+ - ) .  I n  acco rdance  w i th  the  s ign  
" f  #Q, r , l )we see that the function g(t,r, .) does not attain i ts maximum on l lr , tr l .-Now, in

the case c ) 0, we have

, - . : "p  . s ( t , r , t )  2  s ( t , r , l i )  :  s ( t , a , t )  +  t ; r :  e ( t , o , t | )  +  I i r
l € ( l r , * o o )

> s ( t ,a , l ; )  >  sup (s ( r ,0 ,  l )  +  t r )  :  sup

1 l * ,

i f c r > 2 i t

g ( t ,  r , , l )  .
l € ( - o o , I z ) l € ( - o o , l z )

so 9(f ,  r,  .) attains the global maximum at a unique point l+ e (11, +*). Arguing
s imi lar ly  to  the case 1,  we have u € c t ( (O,"  -  1)  x  (0 ,+m)) .  By such a way we
a lso  see  tha t  u  €  c l ( (0 ,  T - r )  x  ( -oo ,0 ) ) .  The re fo re  z  e  c r ( (0 , " * l )  x  ( r? \ i 0 ) ) )

On the other hand, for every suff iciently small , ,  ( lr l  < akz - k + 1, with

t r :  l t '  -  t ]a*:; ,  equation 
f iO,r, l )  

-  0 has exactly three roots / j -  < /J- < l l
and /f -r'ri, $ - /i when r --+ O.

Since  o { t , r , l )  :  g ( t , - r , - l )  y ( t , x , l )  e  G  x  f t ,  t he re fo re

'  
u( t , r )  :  

Tp;  s( t , r , / )  :  T,Ztg ( t , - r , - / )  :  u( t , -x) .

This means for f ixed t ,  n):  u(t , . )  is an even funct ion and as showl above, 1.r  €
c ' (R  \  { o } ) .
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Now we assume that u is differentiable at .r : O. Then it is obvious that

trl'(0) :0. The Lagrange Theorem gives us

tr,'(r) - u(0) :  . '  ( € )  :  u , ( t ,  € ) ,  {  e  (0 ,  c ) .
t

A direct computation similar to the case 1 shows that

Vt € (o,r -  1) ,  u,(t ,r)  -  t i  f  o, as r --  o*

Consequently,

.'(o+) : 
"[T.

:  
" l jpr"(t, 

€) : l i  I  w'(o).

case 3 .  ,  - ,  
; )  i i z , ,

In  th is .u , ru  # (T-  1 ,  r ,1 )  <  o ,  I  +0  and "ur rg  -L , t , l )  +  0  when I  +  0 .
d l o

I t  fol lows that the equation 
Ht, 

- l ,r , l)  :  O has a unique root 16 f 0

if  r l0 and lo : 0 i f  r :  0. using the argument analogous to the case 1, we

conclude that u(l,c) is differentiable on (? - l ,r),  r * O.

Theorem 2.1 has been proved completely' n

This contradiction shows that ur(tr0) : ' '(o) does not exist' Therefore u(t' r) is

not differentiable at (t ,0), t  € [0,? - 1).

u(r) - ur(o)

Fig.1. The level curves of minimax solution (8)
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Remark 2.2.

l. For a : 2, the differentiability of solution u(t,x) has been mentioned
out proof) in [7].

2. we notice that u(t,r) is not a classical solution of (o), (z). Thus by the
uniqueness of minimax solution, the problem (o), (7) does not have classical
so lut ion.

3. By the proof of case 1, we see that i f  T € (0,1) then minimax solution of
(6), (7) is the classical solution.

4. The function u(t,r) is not a quasi-classical solution of (6),(Z) since it  is not
differentiable on [0, ? - 1) x {0}. (The definition of qrrrri-.lurrical solution
was introduced in [8])
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