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ON THE SMOOTHNESS OF GLOBAL SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS -+

NGUYEN HOANG

Abstract. We investigate the smoothness of global solutions of Cauchy problem for some
Hamalton-Jacobi equations.

It is well-known that the Cauchy problems for Hamilton-Jacobi equations
do not have classical solutions in general, even if the Hamiltonians and initial
conditions are smooth. Most of authors have approached these problems by look-
ing for generalized solutions, usually locally Lipschitz real functions which satisfy
the Hamilton-Jacobi equations almost everywhere or continuous functions which
satisfy some differential inequalities.

In [7] Subbotin has defined minimax solution for a class of Hamilton-Ja-
cobi equations. He has also proved that a minimax solution of Hamilton-Jacobi
equation is also a viscosity solution [7]. The notion of viscosity solution was intro-
duced by Crandall and Lions [4]. Moreover, in some cases if the initial condition
is convex and Lipschitz, then minimax solution is a Lipschitz solution, see [3].
Therefore these notions of solutions are equivalent under suitable hypotheses on
Hamiltonians and initial conditions. '

Nevertheless by the definition, the minimax solutions or the Lipschitz solu-
tions are only continuous or Lipschitz functions so we do not know much about
their differentiability and whether they are classical solutions.

‘This paper consists of two sections. In §1 we prove that the Lipschitz so-
lutions are classical solutions basing on Hopf’s formula with some appropriate
assumptions. In §2 the smoothness of minimax solutions for some concrete Hamil-
ton-Jacobi equations is investigated.
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1. LIPSCHITZ SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

Consider the Cauchy problem
we+ H(us) =0, (1)

| u(0,2) = (), o
with (¢,z) € G = (0,T) x R,

We denote by Lip G the set of all locally Lipschitz continuous functions u
defined on G. Recall that a classical (resp. Lipschitz) solution of (1), (2) is a
function u € C(G) (resp. u € Lip G) that satisfies (2) on {t =0, z € R} and (1)
in G (resp. almost everywhere in G ).

In (5], Hopf proved the following theorem

Theorem 1.1. If H is continuous and f is convez and Lipschitz, then
wits ¥) = max mgn {f(y) + p(z —y) —tH(p)} (3)

is the Lipschitz solution of problem (1), (2). Furthermore, u is Lipschitz in z with
the same Lipschitz constant as f for allt > 0.

Lietsft (p) = max {py — f(y)} be the conjugate function of f.
y

Since f is convex and Lipschitz so f* is convex and D= PDemifios
{p € R: f"(p) < +oo} is bounded [6, p.134]. Therefore D is an interval with
finite end-points a, b (a < b) and then

u(t,z) = max ;réig {f(y) + p(z —y) — tH(p)}

L I;Peal))( {pz — f*(p) — tH(p)}.

(4)
We shall prove the following theorem

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 hold, moreover f*,
H € C?*(int D) and

F"(p) + tH"(p) > 0, V(t,p) € (0,T) x int D. (5)

Then the Lipschitz solution (38) is the classical solution of problem {1l (e
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The proof of Theorem 1.2 follows the lemma below. For a given function
u of n variables (z,,...,z,), we denote (u, (z),...,u;,(z)) by u'(z), where z =
CaTEe SR

Lemma 1.3 Let V be an open set in R™, F be a relatively closed subset of V.
Suppose that w € C(V)NCY(V \ F) and v € CY(V); ulp = v|p and lim u/(z) =

zZ—yY
z€EV\F

v'(y), Yy e F. Thenuc C(V).

Proof.  Without loss of generality we can assume that v = 0. Let y be a given
point of F. If r € F then u(z) —u(y) = 0. If z € V \ F (and close enough to v),
we denote by z the point of F N [z,y] nearest to z. From the mean-value theorem
and by assumption, it follows that

[u(z) — u(y)| = Ju(z) — u(z)| < ||z —z|| sup ||u'(z + t(z — 2))]] =0tlr¥yil
te(0,1)
ASEL = 1.

Thus u is differentiable at y and u'(y) = 0, Vy € F. Hence, u € C1(V).
O

Proof of Theorem 1.2. Let c(t,z,p) = z— f*'(p) —tH'(p), (t,z,p) € G xint D.
Then :

Fy = {(t,z) € G/ Vp€int D: c(t,z,p) <0},
F, = {(t,z) € G/ Vp€int D: c(t,z,p) > 0}

15)
are closed in G. Moreover F1NF; = ¢ since a—;(t,x,p) =—1"(p) tH  p) < 0

by (5).

We put F' = FyUF;. For (t,z) € G\ F, it is easy to see that the function p—
pz — f*(p) — tH(p) attains its maximum at one unique point p = p(t,z) € int D.
Then c(t,z,;p(t,z)) = 0. Applying the implicit function theorem on the function

(t,z,p) — c(t,z,p) we deduce that § = p(t,z) is continuously differentiable in
G \ F. Therefore the solution (4)

u(tv't) <} Iﬁ(t’z) B - f*(ﬁ(t’ .’IZ)) =z tH(ﬁ(t’I))

is continuously differentiable in G \ F.

According to the lower semicontinuity of f* we see that if F} # &, then
a € D and
Vit,z) € Fy : u(t,z) = az — f*(a) — tH{a)
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Analogously, if Fy # ¢, then b € D and
Yit,z) e’ Fy 1 Cult z) = bz — f(b) = tH(b).

Let (to, zo) € F1. We shall prove that p(t,z) —» aas G\ F > (t,z) — (to,z0)-
Indeed, if p(t,r) » a then e > 0 (e < %E)N’n CRED0 Ot o e SR
ltn —to| + |Zn — Zo| < L and b > p(tn,zn) 2 a + e

The sequence q(tn,zn) = min{p(tn,zn), “—;—g} is bounded, so there exists
a subsequence denoted also by ¢(t,,z,) tending to a’ € [a+¢, “TH) . From the
inequalities

C(tna In, Q(tnazn)) 20y V&N

passing n — oo, we obtain ¢(to, zo,a’) > 0 > ¢(to, Zo, a+0). This contradicts with
dc
—5—p(to,:co,p) <0, Vp€int D.

Now, let v(t,z) = az — f*(a) — tH(a), v € C'(G\ Fz). Some simple
calculations show that
ug(t,z) = —H(p(t,z)) = —H(a) = vi(to, zo),
uslt, z) = plt, 2} — a = v i, 2,
as G\ F 3 (t,z) — (to, o).
Applying Lemma 1.3 we immediately deduce that u € CY{G\ Fy). :
By an analogous argument, we also see that u € CYG \ F,). Hence u €
Ccl(G).0 '
Remark 1.4.

1. M. Bardi and L.C. Evans proved that formula (3) is the classical solution of
problem (1), (2) in (0,T) x R™ under a strong assymption that f is Lipschitz,
|D?f| € L*(R), and, moreover, both H and f are ¢onvex.(cf. Section 4,

[2]).

2. We consider the following example. The problem

wh e ()2 edio;
w02} =\ja},
in G possesses a Lipschitz solution, by formula (3),
ult, z) =qo| %

We see that all the conditions of Theorem 1.2 hold except for (5) and it is
clear that this solution is not differentiable on (0,7) x {0}. So the condition
(5) is significant.
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2. SMOOTHNESS OF MINIMAX SOLUTIONS OF CAUCHY PROBLEMS

Let «, B be positive numbers such that a=! + g=1 = 1, T > 1. We now
consider the problem

wp 4 (14 [ug*) s =0, (6)
st s = w (7)
| : -
with (¢,z) € G = (0,T) x R.
The function
u(t,z):rlréalg( <lz—’l£+(T—t)(1+]l[°‘)§) (8)

is the minimax solution of the problem (6), (7), (see [7, p.14 and p.112]). Therefore
u € C([0,T] x R).

Now we state the main result of this section.

Theorem 2.1. For a > 1 the minimaz solution (8) is continuously differentiable
on G\ ((0,T — 1] x {0}) and is not differentiable at any point of (0,T — 1) x {0}.

Proof. For (t,z) € [0,T] x R, € R, we put

[ i
g(t,z,l) =lz — % + (T =)+ |I|7)-.
We see that : li:rtn g(t,z,l) = —o0o, V(t,z) € [0,T]x R. Thus the function g(t,z, ")

attains a global maximum at some [ = I(t,z) € R. Moreover, since g(t,z,.) €
C'(R) it follows that

dg - =
~a-l—(t,x,l(t,z)) =0 (9)
We have 2 :
S Ho0 =2+ [T =0+ %) * " — 1= sgn (10)
and o o
A TN B e SR e SRR VNS L 11
o (.2 0) = [l <(1+ma)2—: Ja=1),1# (11)

The proof is divided into the following cases
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CaseLicte (I1=1,T),iz €'R:

In this case we have le (t,z,1) <0,Vl #0. Therefore I(t, z) satisfying (9) is

uniquely determined. Furthermore, if z # 0 then [(t,z) # 0. Hence by virtue of the
implicit function theorem and from (9), we see that I € C'((T —1,T) x (R {0})).
Consequently the function

MOV L (1 — )+ [i(t, 2)[*)* (12)

is continuously differentiable on (T'—1,T) x (R \ {0}).
On the other hand

= 53}2‘3_1 s x [) 1
iz == T = A (13.a)
Htr Dy bl s i 7ol

LZ’
- W

and & o -
= ! 1+ |I]™
o s U e
- =ftirr
Then in (T — 1,7) x (R \ {0}) the partial derivatives u,(t,z),us(t,z) can be
computed as follows

(13.b)

ug(t,z) = I(t, z) + =l — |I(t, 2)|*~ Y, sgnl

" Elg 2 = (14.a)
4+ (T =) (1 + |t z)|*)" |l(t,z)|°‘_llr sgn [,

and

 rssair. bl IR = O b gt
e s L

From (9) and (10) it follows that I(t,z) — 0 when (t,z) — (t0,0), Vto € (T —
1,T). Therefore by (13) and (14) we have

ug(t,z) = 0, and wut,z) — ~1

when (t,z) — (t0,0).

Now let v(t,:r:) =T—t, (t;z)€ (T -1,T) x R, we easily see that with
V=(T-1,T)xR, F=(T—1,T) x{0}, the functions u, v satisfy the hypotheses
of Lemma 3.1. Consequently we CY(T —1,T) x R).
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Case 2. te (0,T-1), z€R.
We have ¢(¢,0,!l) = —EQ'L’ + (T = t)(1 + |I|*) =, then

g(tsz, ) = =l &+ 9(¢,0,0.

2

a a 1 !
The equation bl—g = 0 has two roots l; 2 = £[(T —t)7a=T — 1]=, and if & > 2 it

0
a—‘(l](t,o,l) = 0 has three roots

has one more /o = 0. The equation

: a &
ll,2 =H{{T'= )51 = 1=,

and 1 =
It is easily seen that I3 <1, <0<, <}, and g(t,0,1) attains its maximum
at [7,13. Clearly, u(t,0) = g(¢,0,l;) = g(¢£,0,13).
A
For z #0,t € (0,T — 1) the equation —a—‘(l}—

each interval (—oo,l3), [l3,11], (I, +00). In accordance with the sign of %(t, z,l)

we see that the function g(t,z,.) does not attain its maximum on [I;,l,]. Now, in
the case £ > 0, we have

(t,z,l) = 0 has at most one root in

sup g(t,z,l) > g(t,z,17) = g(t,0,03) + 11z = g(t,0,13) + iz
le(ll,+00)
> ¢(t,0,13) > sup (g(¢,0,0) +1z) = sup gt peydls
le(—o0,lz) le(—o0,l2)

So g(.t, z,.) attains the global maximum at a unique point [+ € (l1,400). Arguing
similarly to the case 1, we have u € C'((0,T — 1) x (0, +00)). By such a way we
also see that u € C*((0,7~1) x (—00,0)). Therefore u € C1((0, T —1) x (R\ {0})).

On the other hand, for every sufficiently small z, (|z] < ak? — k + 1, with
dg
al

and If — U}, I — [5 when z — 0.

Since g(t,z,l) = g(t,—z,—1) V(¢ z,l) € G x R, therefore

k = [T - t]7=T), equation (t,z,1) = 0 has exactly three roots I < I < I}

ulh, ) = t,z,l) = b -z, +1) = u(t, —z).
u(t, ) = max g(t,z,1) = max g(t, ~z, ~I) = u(t, ~z)

This means for fixed ¢, w = u(t,.) is an even function and as shown above, w €

CH(R\{0}).
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Now we assume that w is differentiable at £ = 0. Then it is obvious that
w’(0) = 0. The Lagrange Theorem gives us

wiz) ~ w8 o uke) = wlt ey £ < (0, 2).

x

A direct computation similar to the case 1 shows that
Ve (0, T £1), u.(t,z) =il #0,asz > 0.
Consequently,

w'(0%) = lim M =" lim w Al &) =1 #w il

z—0t T z—0t

This contradiction shows that u.(t,0) = w’(0) does not exist. Therefore u(t, ) is
not differentiable at (¢,0), ¢t € [0,T - 1).

Case 3. T—t=1.
2

: d%g v’y
In this case W(T—l,x,l) <0, 1#0and W(T—l,x,l) — 0 when | — 0.

0
It follows that the equation 5%(T —1,z,l) = 0 has a unique root Iy # 0

if £ # 0and ly = 0if z = 0. Using the argument analogous to the case 1, we
conclude that u(t,z) is differentiable on (T — 1,z), z # 0.

Theorem 2.1 has been proved completely. O

e
N

Fig.1. The level curves of minimax solution (8)

o
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Remark 2.2.

1.

For o = 2, the differentiability of solution u(t,z) has been mentioned (with-
out proof) in [7].
We notice that u(t,z) is not a classical solution of (6), (7). Thus by the

uniqueness of minimax solution, the problem (6), (7) does not have classical
solution.

By the proof of case 1, we see that if T € (0,1) then minimax solution of
(6), (7) is the classical solution.

The function u(¢, z) is not a quasi-classical solution of (6),(7) since it is not
differentiable on [0,T — 1) x {0}. (The definition of quasi-classical solution
was introduced in [8])

Acknowledgement. I would like to thank my supervisor, Prof. Dr. Tran Duc
Van for his help and encouragement. Thanks are also due to Dr. Nguyen Duy
Thai Son for many useful suggestions.

1.

REFERENCES

J. P. Aubin and H. Frankowska, Set-valued analysis, Birkhauser, 1990.

M. Bardi and L.C. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobs equations, Nonlinear
Anal. Theory, Meth. and Appl., 8 (1984), no. 11, 1373-1831.

S. H. Benton, The Hamilton Jacobs equation, a global approach, Academic Press, New York, 1977.

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. AMS,
277 (1983), no. 1, 1-42.

E. Hopf, Generahzed solutions of nonlinear equations of first order, J. Math. Mech., 14 (1965),
951-974.

Rockafellar, Convez analysis, Mir, 1983 (Russian Transl.).

A. I. Subbotin, Minimaz inequalities and Hamilton-Jacobi equations, Nauka, Moscow, 1991 (Rus-
sian).

Tran Duc Van and Nguyen Duy Thai Son, Uniqueness of global quasi-classical solutions of the
Cauchy problems for nonknear PDEs of first order, to appear in Differential Equations (1994).

Department of Mathematics Received February 25, 1993
Hue Teachers’ Training College Revised January 29, 199/
Hue, Vietnam



