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A CHARACTERIZATION OF ARTINIAN MODULES

NGO SI TUNG

Abstract. It is shown that if every essensial submodule of a module M 1is a direct sum of an
M -injective module and an artinian module, then M 1is a direct sum of a semisimple module
and an artinian module. In this case, if M is finitely generated or finitely cogenerated, then
M s artinian. This result considerably improves [5, Theorem 8.1, Corollary 8.2].

Throughout this note rings R are associative with identity and all R-modules
are unitary. For a module M, Soc (M) denotes the socle of M. If M = Soc (M),
M is called a semisimple module. For the definitions and properties of M-injective,
M-projective modules we refer to [1] and [6].

By Chatters [2], a ring R is right noetherian if and only if every cyclic right
R-module is a direct sum of a projective module and a noetherian module. The
module theoretical version of this result can be stated as follows

Theorem A. A right R-module is a direct sum of an M-projective semisimple
module and a noetherian module if and only if every factor module of M s a direct
sum of an M-projective module and a noetherian module. In this case, if M or
Soc (M) is finitely generated, then M 1s noetherian.

Proof. The if part has been established in [4, Corollary 14.3].

Now assume that M = S@® N where S is a semisimple M - projective module
and N is noetherian. Let U be an arbitrary submodule of M. If SNU = 0, then
U is embedded in N, so U is noetherian. Hence U + N is noetherian. It follows

the direct decomposition
M=T& U+ N)

for some submodule T of S. Hence

M/U=T@& (U+N)/U
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is a direct sum of an M-projective module T and a noetherian module (U+N)/U.
IfV =SnU +#0, then we consider M’ = M/V. It is clear that

M N

where S’ is M-projective, semisimple and N’ = N. Let U’ be the image of U in
M. Then U'NnS’ = 0'. Hence by the previous argument, M'/U’ is a direct sum of
an M-projective module and a noetherian module. Since M/U = M'/U’ it follows
that M /U has the desired property. The last statement is clear.

Suggested by ”duality” we obtain the following theorem

Theorem B. Let R be any ring and M an R-module. Then the following state-
ments are equivalent

(1) M is a direct sum of an M-injective semisimple module and an artinian
module.

(1t) Every submodule of M is a direct sum of an M -injective module and an
artinian module.

(111) Every essential submodule of M s a direct sum of an M -injective module
and an artinian module.

In this case, if M s finitely generated or finitely cogenerated, then M 1is
artinian.

Proof. (i) =(iii): Let M = S @ A, wherc S-is an M-injective semisimple module
and A is an artinian module. If C is an essential submodule of M, then it is easy
to see that S C C. Therefore C = S @ B, where B = C N A and B is an artinian
module. =

(iii) = (ii): Let U be a submodule of M. Then there exists a submodule X
of M such that U @ X is essential in M. By hypothesis,

UpX=SoA,

where S is M-injective and A is artinian. Let 7' = U NS, then there exists a direct
summand 7"’ of S such that T is essential in 7’. Hence T' is M-injective. Let
m: X @®U — U denote the canonical projection. Then T’ = 7(T"). Hence n(T') is
an M-injective submodule of M. Since 7(T”) is also U-injective, we have

U=n(T)oB

for some submodule B of U. It is easy to see that BN S = 0, and since B is
a submodule of A @ S, B is isomorphic to some submodule of A. Thus B is an
artinial module, proving (ii).
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(ii) =(i): Let M be an R-module such that every submodule of M is a direct
sum of an M-injective module and an artinian module.

Firts we show that Soc (M) is essential in M. Let C be a submodule of M
such that C NSoc (M) = 0. Then Soc (C) = 0. This together with the hypothesis
shows that any submodule of C is M-injective and hence C-injective. It follows
by [6, 16.3] that any submodule of C is a direct summand of C, showing that C
is semisimple. Hence C C Soc (M), therefore C = 0, proving that Soc (M) is
essential in M. Using this we next consider two cases:

a) Soc (M) is finitely generated. Then M has a direct sum decomposition:
M:Ml @@Mn,
where each M; is indecomposable. Hence, by hypothesis, each proper submodule

of M; must be artinian. It follows that each M; is artinian. Thus M is artinian.

b) Soc (M) is infinitely generated. By hypothesis,
Soc (M) =S @ B,
where S is M-injective and B is artinian. It follows that
M=S¢A

for some submodule A of M, since S is an M-injective submodule of M. Therefore
Soc (M) = 8 @ C, where C = Soc (M) N A, and so C = B, in particular, C is
finitely generated. Moreover, it is clear that C' = Soc (A) and C is essential in A.
Hence we may use a) to show that A is artinian.

The last statement is clear.
The proof of Theorem B is complete.

Theorem B shows in particular that the assumptions (P;) and J(M) < M
in [5, Theorem 3.1] as well as the semi-perfectness of rings in 5, Corollary 3.2 can
be removed.

Corollary. Let M = S @ A be a direct sum of an M -injective semistmple module
S and an artinian module A. If M is quasi-projective, then S and A can be chosen
to be fully invariant submodules of M.

Proof. A submodule U of a right K-module N is called fully invariant, if for each
f € Endgr(N), f(U)CU.

By hypothesis, we may assume that all minimal submodules of A are not
M-injective. Hence there is no non-zero homomorphisms from § to A, this implies
f(8) C S for all f € Endg(M). Now, assume that M is quasi-projective. Then
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each submodule of S is M-projective. Let © be a homomorphism from A to 9,
then A/Ker ¢ is isomorphic to a submodule of S, and so A/Ker ¢ is M-projective
and semisimple. Moreover A is M-projective and, since A is artinian, A/Ker p is
finitely generated. Hence by [6, 18.3] the exact sequence

0 Ker o — A— AlKer o —.0

splits, i.e. A = Ker ¢ @ U for some submodule U of A with U = A/Ker p. In
particular, U is an M - injective semisimple submodule of A. But we assumed
above that each simple submodule of .4 is.not M-injective, hence U = 0, i.e.
©(A) = 0. From this we easily derive that for each f € Endgp(M), f(A)C A.

The proof of Corollary is complete.

Note that by the same argumeht we can show that Theorem B remains true
when we replace ”artinian module” by "module with Krull dimension at most a”
for some ordinal a.

We would like to ask the question of whether a module M is the direct sum
of an M-projective semisimple module and a noetherian module if every factor
module of M by its small submodule is a direct sum of an M-projective module
and a noetherian module.
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