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p-GROUPS WITH CYCLIC FRATTINI SUBGROUP

NGUYEN VIET DUC and PHAM ANH MINH

Abstract. Let G be a p-group and let Z(G), ®(G) be. the center and Frattini subgroup
of G. We give cohomological proofs of Hobby’s theorem, which asserts that ®(G) s cyclic
if Z(®(QG)) is cyclic, and of Berger, Kovac’s and Neumann’s result on the classification of
p-groups with cyclic Frattini subgroup.

INTRODUCTION

Let p be a prime number. For every p-group G, let. Z(G) and ®(G) be
respectively the center of Frattini subgroup of G. The purpose of this work is to
give cohomological proofs of Hobby’s theorem [2] (III 7.8 ¢ in [3]), which asserts
that ®(G) is cyclic if Z(®(G)) is cyclic, and of Berger, Kovac’s and Neumann’s
result [1] on the classification of p-groups with cyclic Frattini subgroup.

Following [1], directly and centrally indecomposable groups with cyclic Frat-
tini subgroup can be obtained as follows. First, one gets two factor groups of

2l+l

L = {a, b,c'a =b2 =1, a" = a'H'ZL, o= a1+21, be = eb)

with £ > 1 by setting D+ (2%73) = L/(c?), Q*(2¢*3) = L/(c®.a? ). Secondly, s
has the cyclic group Cpe+2 of order ptt2, the extra-special p—groups of order p3,
and the non-abelian groups with cyclic maximal subgroups of order greater than
p3. The latter consist of

(1) M(p**+2?) = (a, b‘a”t+1 =bP =1, ab = a!*?") for p > 2,

(3 M DY) = o be) © DTYR, S S {a bl DR,
Qf25%2) = la, b} c QT (25%) for p = 2
(especially, D(8) = M(8), S(8) = C4 x Cy).
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As we shall see in Section 1, all these groups can be defined as extensions of Z,
by either an abelian group, or D(2%*!), or D(2%t1) x Cs.

In Section 2 we give a cohomological proof of the following
Theorem A (Hobby [2]). If Z(®(G)) is cyclic, then so 1s ®(G).
Theorem B (Berger, Kovac’s, Neumann [1]). Let G be a p-group with cyclic

Frattini subgroup of order pt. If |G| = p™*t*, then G is isomorphic to one of the
following groups

Charer 1ovalisd - bssilBoX GF 7on ool - B A B XCh 2™
—— —— p
m—1 times m—1 times
N B Exer-rtl, prifth s g Bl s
Pl Ty
m—2 times m—2 times

Here and in what follows, A-B means the central product of A and B with |ANB| =
p, M s one of the groups given by (1) and (2) if £> 1, or an extra-special p-group
f =1, N is either DT (243), Q+(2%t3), D(27%) - 'C; or S(2¢+?) . C4 and

P { (a,bla? = bP = [a,b]P = [a,[a,b]] = [b,[a,d]] = 1) ifp>2
D(8) : if p =12

1. PRELIMINARIES

For every p-group K, let us denote by H*(K) the mod p cohomology algebra
of K. Let a be a generator of the cyclic group Cpe and let ug,, v, be respectively
the 1- and 2-cocycles of C, given by

0, if i + 5 < p*

i1 otherwise.

By valdf)ai) = {

So v, = Pu,, for £ = 1, with § the Bockstein homomorphism. It is well-known
that

Plu,; 1], ifd=12nd% = 2
H*(Cpe) = { W _ e 5 (1.1)
Eluy;1] ® Plv,;2], otherwise.
Here and in what follows, E[z,y,...;1| (resp. P[z,y,...;2]) means the exterior

(resp. polynomial) algebra over .Z, of generators z,y,... of degree 1 (resp. 2.
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Hence, if k is an integer and C, z><C"c basfifalls, | akla1 =i1pPes {ladve
2<1 <k, 1<j<k), byssetting us =g, sv; = va,.,weget

Py . il fl=1andp=12
H*(CpexCF1) =1 Efu1;1]® P[v1;2] ® Plus,...,ux 1], " if€>Tand p=2
Eluy oo 1O Pl v 2], if p> 2.

The following lemma is then obvious.

Lemma I.2. Let0 # X € H?(CpexCF~1). Assume furthermore that Res((a’i’tv1 )s
Cpe X C’I’f‘l)X = U peti if £ > 1. Then X can be reduced by an automorphism of
b

Cpe X Ck_1 to one of the following forms

i) Z Ugi—1 * U2, u1 -} Z Ugi—1 * Uz, ul +u +up-ug+ Z Ugi—1 - U of
=2 =2
=12 and Z =y

m
1) Advy + puy cug+ > ugiqcug tf £>1 0r p>2, withu=0 or 1, and

152

8 f£> 1
A:{ o

O or ‘1) otherwise.
Hence, if Res((a), Cpe x CE=1)X # 0, for every a € Cpe x C;’f_l, then k = 1.
Note that the factor sets of the central extensions

0-—->Zp—+sz+1 —>Cpe—>1,
0—>Zp—>G—+szxCp—+1

with G = E, Q(8) (for £ = 1), M(p**2) are respectively
Vy,° U “Us, uf+u§—|—u1-u2, v+ up - u2

(see e.g. [4] or [5], [6], [8]). We have

Lemma 1.3. Let 0 —» Z, - G — Cpe X Ck_l — 1 be a central extension with
factor set 0 # z € H2( C"" 1) havmg one of the forms given in Lemma 1.2
Then G is tsomorphic to one of the following groups

Chesvi ... - EXCy=¥mH | M. E: | -ExCk2m,
S i T W p

m—1 times m—1 times
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Analogous results can be stated if we replace C,¢ by D(2¢). Recall that
D(2Y'= (a,b|ozzl_l By, WYl B ).

Let u,, up be elements of H!(D(2%) given by u,(a*t’) = i, up(a’t’) = j for
0<1i<210<j<2 and 2z € H*(D(2%) be the factor set of the central
extension 0 — Z — D(2%t!) — D(2%) — 1. The following is due to Quillen [7]
and Mui [6].

Lemma 1.4. H*(D(2%)) = P[ua,ub,Zg]/(uZ + ug - up). Furthermore, we have:
(1) Bzy = up - 22

(i1) if A= (a2t_2, a'b) is a mazimal elementary abelian subgroup of D(2%),
with 0 <1 < 271, then Res(A, D(2%))z = U2yems F Ugat-a gy

Let ¢ be a generator of Cy. Set I' = D(2%) x C,, we have

-2

Lemma 1.5. Let X € H?(T) with Res((azt eTiX = “Zzt—r Then X can be
reduced by an automorphism of T to one of the following forms

2g+,uuf, zg+uz+uuf, 2g+u§, zg+ug+ua-uc+;mz
with u € Z,.

Proof. Note that H?(T) is generated by 2y, uZ, u?, u2, u, - u., up - u,. The proof is
trivial if X is free of ug-uc and up-uc. Since u2+u? = (ug+up)? = u? in H%({a, ab)),
we can assume that X is free of u? + u?. By Lemma 1.4, Res((b,c -a® ),T)
(ze + up - u.) = 0, so we also assume that X is free of uy - u.. It remains only to
consider the following cases:

2!—2

(i) X = zg4+uq-ucor zg+u?+ug-uc.+u?, then X is reduced to zg+u2 +ug -u,
or zg + u2 + ug - uc + u? by the automorphism (a, b, ¢) — (a, be, c).

(i1) X = 2o+ uq - uc + uf, then X is reduced to 2, + uZ + Uq - U, ot-2 by
(a,b,c) — (a,abc-a? ", c- azt_z).

(iii) X = z¢+uf +uqs-uc, then X is reduced to zp+u +ug-u_ -2 +u? .,

by (a,b,c) — (a,abc,c - azl_z). The lemma is proved.

Let k be an integer and let {ai,...,ax—1} be a base of C’;‘_l. Set ¥, =
D(2) x CE2, then

H*(V,) = Plug, up,uy,... ,uk_l,zg]/(ui + ug - up).
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We get

Lemma 1.6. Let X € H%(¥,) with Res((azl_z),\llg)X b U’Zzl—2 . Then X can be
reduced by an automorphism of W, to one of the following forms

m—1
2o+ pul + v(1 = p)ui + Z Ugi—1° U2i,
=1

m—1
ze-i—u + Ug - U1 +IW1 E Ugi—1 * U2d,
=2

=

2
Ze+ua+ua'u1+u2+§ Ugi_1 * Uz,
i=2

with u, v € Z,.

Proof. By the proof of Lemma 1.5, we can suppose that X =Y + = Plij Ui Uy
1<i<<k—1
7>1
with Y being given in Lemma 1.5. If X is not free of ug-u; and py; # Qfori > 1,
then ug -y + 4y - u; = uy - (ug + 4;) = u1 - 45 in H?({a - a;,a1,a;)), so we can
assume that u,; = 0for 3 > 1. By appropriate changes of base of ¥,, we can show
that X is reduced to one of the required forms. For example if X =zp+uZ+u,-

iy =k u3 = ‘QL4 + u3 - ug, then X = 2 + Ug.q, * Ua, + ub.a.4 + Upoa?t=2 " Y5 0,082
-2

. -2
by the automorphism (a, b, a1,a3,a4) — (a-a1,b-a4,a1,a3-a®> ,a3-a4-a® ).

The lemma follows.
Since the factor sets of the central extensions
B = Bl 3, D25} — 1,

0-27Z,—>H—-T-1

with G = D(2¢+1), §(2)), Q(2%4!) and H = D*(2¢+?), Qt(2%+?) are respec-
tively

ze, ze+ul, ze+ul, zetultua-ui, zetultug-ur+uf
(see e.g. [6]), we have
Lemma 1.7. Let 0 » Z3 — G — Wy — 1 be a central extension with factor

set 0 # z € H?(Wyy1) having one of the forms given in Lemma 1.6, then G 1s
tsomorphic to one of the following groups

M'E-.,,~ExC§—2m+l, N'E'a-.°EXC§~2m+2,
T L N

m—1 times m—2 times
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D ) A0 E wustoBt e i
N —

m—2 times

2. PROOFS OF THEOREMS A AND B

Our proofs are based on the following

Proposition 2.1. Let (J) 0 > Z — J — K — 1 be a central extension with
Z = Zy and with factor set z € H*(K). Then Z C ®(J) iff z # 0 in H*(K).
Furthermore, 1f z # 0, then ®(J)/Z = ®(K).

Proof. Tt is obvious that z = 0 implies that J = K x Z,s0 Z ¢ ®(J). Conversely,
assume that Z ¢ ®(J), then there exists a maximal subgroup H of J such that
Z ¢ H. Hence J = H-Z = H X Z, so the extension (J) splits. This implies z = 0.

For z # 0, since J/®(J) is elementary abelian and J/®(J) = J/Z/®(J)/Z =
K/®(J)/Z, we have ®(K) C ®(J)/Z. On the other hand, let L be normal in J
with L/Z = ®(K), then J/L = J/Z/L/Z = K/®(K). Since K/®(K) is elemen-
tary abelian, we have ®(J) C L. Hence ®(J) = L, so ®(J)/Z = ®(K).

With the assumptions of Proposition 2.1, let {E,(J)} be the Hochschild-
Serre spectral sequence for the central extension (J). So E5(J) = H*(K)® H*(Z).
We suppose that z # 0 in H?(K). Following (1.1), set

H*(2) = { Plu; 1], ifp=29

Elu;1] ® Plu;2], if p> 2.
Since dy(u) = 2z, we have

Es(J) = H*(K)/(2) ® Zy[Bu]
® Anng-(k)(2) ® Zp|fu]u

(see e.g. [4] or [5]), and there is a bijection
H*(J) = EXX(J) © By (J) @ E3°(J), =+ o+ FIH1H(J),

with ¢ the degree of Hochschild-Serre filtration of z, 0 < 7 < 2.
We also have .

Lemma 2.2. Let (L) be a central extension 0 — Zy e L5 J— 1 with
factor set 0 # 2' € H?(J). Then
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: a) Every extension of a subgroup of ®(J) N Z(J) by 1Z, ts contained in
Z(®(L));

b) If 62’ € E3'(J), then EQ*(L) = 0;

c) If 62' € E;’O(J), then the extension of Z by 1Z, 1s Z X 1Z,, and 1s a
subgroup of ®(L) N Z(L).

Proof.

a) Let a € ®(J) N Z(J) and b € L such that n(b) = a. For g, h € L, since
[9,5] and [h, b] belong to iZ,, we have [¢P,b] = 1 and [[g,h],b] = 1 in iZ,. a) is
then proved.

b) If 62’ € E;’I(J), then 0z’ is of form z ® u, with z € H!(K). Let g be an
element of K such that z(g) # 0 and (D) the central extension 0 — Z, — D —
(g) — 1. Then Res(D, J)z' — z® u € EL!(D). Hence 82’ — z ® fu € EL*(D)
which is non-zero. Since £ ® Bu is not of form y -z ®u with y € H'({g)), it follows
that B2’ = d3(Bu) # 0. This implies E%*(J) = 0.

c) Obvious from the definition of the Hochschild-Serre filtration on Bar
cochains.

From Lemma 2.2 a) and c), we obtain

Lemma 2.3. With the assumptions of Proposition 2.1 and Lemma 2.2, assume
that Z(®(L)) is cyclic, then ®(J) N Z(J) 1s cyclic and 82’ € E%2(J).

Lemma 2.4. With the assumptions of Proposition 2.1 and Lemma 2.2, assume
that ®(L) N Z(L) 1s cyclic and E2*(L) # 0, then ®(J) N Z(J) is cyclic and
0z' € EQ2(J).

Proof. Consider the extention (K), with Z an arbitrary subgroup of ®(G) N Z(J)
of order p. Since ®(L) N Z(L) and E%?(L) # 0, it follows from Lemma 2.2 that
0z' € E2%(J). So Res(Z,J)z' = fu. By Lemma 1.2, ®(J) N Z(J) is cyclic. The
lemma follows.

Proof of Theorem A. Let |G| = p"**¢ and |®(G)| = p*. By Lemmas 2.3 and 2.4, we
get a sequence of central extensions (G;) 0 —» Z, - G; —» Gi41 — 1,1 <1 < L,
with G; = G, Ge¢y1 = C}, and the factor set z; of (G;) satisfies 2; € EQ?(Giy1),
Bz¢ = 0. Hence ®(Gy), ®(Ge-1),...,®(G1) are cyclic. The theorem is proved.

In order to prove Theorem B, we need

Lemma 2.5. If K is not elementary abelian, then ®(J) is cyclic iff ®(K) s cyclic
and z — av € EY?(J) with 0 # a € Z,,.
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Proof. By Proposition 2.1, we have the central extension 0 — Z — ®(J) —
®(K) — 1. So ®(J) is cyclic iff ®(K) is cyclic and Res(®(K), K)z # 0. The

lemma follows.

Lemma 2.6. Let K = Cpe X C}f‘l or D(2%) x Cf_l and J be one of the groups
given in Lemmas 1.8 and 1.7. Then EQ?(J) # 0 iff J = Cpe+1 xCF~1 or D(2441) x
3l

Proof. It is obvious that EQ%(J) # 0 iff Bz = 0 (mod z) in H*(K). This fact is
equivalent to z = v; or z = Z,. The lemma follows.

Proof of Theorem B. We proceed by induction on £. The theorem is clearly true
for £ = 1. Assume that it holds for £ — 1 (£ > 2). Let Z be the subgroup of
®(G) of order p. By Lemmas 2.5 and 2.6, ®(G/Z) is cyclic, G/Z = Cpe x C2~! or
D(2%) x C7~! and the factor set for the central extension 1 — Z — G — G/Z — 1
is of one of the forms given in Lemmas 1.2 and 1.6. The theorem follows from
Lemmas 1.3 and 1.7.
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