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A Short Communication

BOUNDARY OPERATOR METHOD FOR APPROXIMATE
SOLUTION OF BIHARMONIC TYPE EQUATION *

DANG QUANG A

1. INTRODUCTION

The aim of the paper is to construct effective methods for solving the fol-
lowing boundary value problem

Lu=eA% —aAu+bu= f(z), z€q, (1.1)
u’r, = Wy, (1.2)

du
E‘r =%, , (1.3)

where A is the Laplace operator, {1 is a bounded domain in R™ with sufficiently
smooth boundary I', v is the outward normal to T, € > 0, a > 0, b > 0. This
problem is called the Dirichlet problem for biharmonic type equation. It meets,
for m = 2, in the theory of plates (see [10]). Also, as well known, the solution of
the stationary Navier-Stokes system may be reduced to this problem.

For solving the biharmonic equation, i.e. the equation (1.1) with € = 1,
a = b = 0, using the Dorodnhisyn’s idea Palsev [7, 8] constructed an iterative
method, which reduces the problem (1.1)-(1.3) to a sequence of problems for the
Poisson equation and established an error estimate of order O(1/N), where N is
the iteration number. In [5] Glowinski et al. also proposed an iterative method for
solving the biharmonic equation, but there was not obtained any estimate. In |2,
3] applying an extrapolation technique we have constructed an iterative scheme
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for the same equation, which converges with the rate of geometric progression.

Recently, for the imposed problem (1.1)-(1.3) Abramov and Ulijanova [1]
proposed an iterative method, which works for any €. Unfortunately, the conver-
gence of the method was not proved. Besides, the method has a shortcoming in
realization. That is the multiple use of the Laplace-Beltrami operator, which is
difficult to be computed for an arbitrary boundary in the case m > 3.

In order to overcome the above shortcoming, in the present paper we con-
struct an another iterative process for the problem (1.1)-(1.3), for which some
results on convergence are established. Moreover, we also propose a technique for
improving the convergence rate of the method up to that of geometric progression.
This technique is an extrapolation of the solutions of problems containing a small
parameter in boundary condition. It is efficiently used in our earlier works [2-4].

2. ITERATIVE METHOD

2.1. Reduction of the problem to a boundary operator equation
Assume that a, b are constants, a > 0, b > 0 and a® — 4be > 0.

As in [1] we set

1
& §(a+ a? — 4be) (2.1)
Furthermore we denote
Lov = pAv — b, 2y
faw = She—x (2.3)
7

Now let vy be a smooth function defined on I'. Introduce the boundary operator
B by the formula

Bvo= —| , (2.4)

where u is determined from the problems

Lav =0, 2€/, Y = v, (2.5)
Lin=v9, z€fl, ulp=0

The operator B primarily defined on smooth functions extends by continuity on
whole Ly(T'). It is easy to prove that the opertor B is symmetric, positive and
completely continuous in Lo(I'). Moreover, from the theory of elliptic problems
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[6] it follows that B is an isomorphism of spaces H*(T') and H**t!(T'), s > 0. Due
to the compactness of the imbedding of H**!(T) into H*(T) we get that B is a
completely continuous mapping in H*(I'), s > 0. In particular, B is completely
continuous in Ly(T') = HO(T).

Now we can lead the problem (1.1)-(1.3) to the operator equation

B’Uo = F, (27)

where >

Uz
iU SIS SH) I 2.8
e Jdv Ir (28}
ug is the solution of the problem

Lovs = §, z €], ‘vg’r =4 (2.9)
Llug =V, IE Q, ‘U,2|r. = Ug. (210)

The smoothness of F depends on that of f, ug, u,. Namely, using [6] it is easy
to show that if f € H"4(Q), uo € H" Y*(I), u, € H* 3/2(T), n > 4 then
F € H" 3/2(T'). Therefore, under the above assumptions the equation (2.7) has
an unique solution vy € H"~%/2(T).

Thus, the problem (1.1)-(1.3) has been reduced to the operator equation
(2.7) in the Hilbert space Lo(T).

Remark 2.1. In the case a = b = 0 we put at once eAu = v as done in (2, 3], while
the method of [1] does not work.

2.2, Iterative method

In order to construct an iterative method for solving the problem (1.1)-(1.3)
we use the two-layer iterative scheme for the operator equation (2.7), to which the
problem was reduced. The iterative process is defined as follows

o{EHD _ ()

=a¥ +Bv =F k=0M-1, (2.11)

’U(go) € Ly (P) :

Theorem 2.1. The sequence {vék)} given by (2.11) converges to the solution v,
of the equation (2.7) if

e (2.12)
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Theorem 2.2. The iterative process (2.11) can be realized by the following
Algorithm 2.1.

Step 1. Given a starting approzimation vc()o) € Ly(T).

Step 2. Knowing vék), (k =0,1,...), solve the problems

Lgv®) = £, zenq, U(k)‘r = vék),

Llu(k) — v(k), €], u(k)|r =t

Au (k)
v II‘ :
Step 4. Compute the approrimation

Step 3. Compute

(k)
k41 k du
vé+):vé)—r( v ‘P_u'/>'

Corollary 2.1. For the sequence {u(k)} generated by Algorithm 2.1 we have
lu® — ullgerz () — 0

as k — oo, where u is the solution of the original problem (1.1)-(1.3).

3. ACCELERATED ITERATIVE METHOD

In order to construct a faster iterative method for solving the problem (1.1)-
(1.3), following to the extrapolation technique in [2-4] we consider the correspon-
ding perturbed problem

Lus = eA%us — aAus + bus = f(z), z€q,

u6l[\:u01
€ dusg
s, .
M i IF T le T =

where 6 is a small parameter, § > 0.

This problem may be reduced to the following operator equation

(B+6Nvso = F, (3.4)
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where vgg = (—E—Au5 - ug) and B, F are defined in Section 2.
l,[,

s

Theorem 3.1. Let f € H" *(Q), uo € H*Y2(T), uy € H*3/3T), n > 4.
Then for the solution of the problem (3.1)-(8.3) there holds the asymptotic expan-
sion

N :
u5:u+25iwi+6N+125, € Q) "0 <'N'< n—5/2,

=1

where u ts the solution of (1.1)-(1.3), w; (¢ = 1,N) are functions independent of
6, w; € H* (), 25 € H* N (0) and

|25l sz () < Ch,

C1 being independent of 6.

Now we construct an approximate solution U¥ of the problem (1.1)-(1.3) by

the formula
N+1

e Z Vits fi
=1

where
(_1)N+1—iz-N+1

A N i~

us/; is the solution of (3.1)-(3.3) with the parameter §/7 (+ = 1, N + 1).
Theorem 3.2. Under the assumptions of Theorem 3.1 we have the estimate
||UE = UHHs/z(Q) < 025N+1,

where Cy 15 a constant independent of 6.

For solving the operator equation (3.4), as is usual, we use the two-layer

scheme
v(k+1) (k)

80 (k+1)v60 + (81 + B)v(g’;)‘ =F k=0M—1 (3.5)
Ts

vigh€ Ls(T);
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where {75(10“)} is the Chebyshev collection of parameters [9], defined by the for-
mulae

(0)
(0) _ 2 s = ek 2k — 1
Tl oy Tp s@eg1oVion Sjggiugns 40 Tgpprfh i
(1) :
It Ko Ve (1) (2)
pPs = ) 55: 2) Vs :6) Ts :6+||B”
koplEs ’7§ )
In the case of the simple iteration T(gk) =ok5 6= T, 2,8 o Weget
k 0
IvSe) = vsoll < (0s)*llvo’ — vsoll- (3.7)

The iterative process (3.5) can be realized by the following

Algorithm 3.1.

Step 1. Given a starting approzimation vg)) € Lo(T).

Step 2. Knowing vgg), (k =0,1,...) solve the problems

Ly =f zeq,
k k

Uz(s )Ir e ”g‘o)’

Llugk) = vgk), i)

U((Sk) 'F = Ug.

Fylk)
v |F'
Step 4. Compute the approzimation

Step 3. Compute

(k+1) _ (k) dul”
Haose Hoaa T “(W‘p T ““)’

(k)

For ug ' we obtain the error estimate
k
Hue(: )~ u5HH5/2(Q) < C(P&)ks borei}yR, 2, ]

where C = const and ps is given by (3.6).

Therefore, in order to obtain an approximate solution of the original problem
(1.1)-(1.3) with the given accuracy §* we have to choose §, such that §¥N+1 = §*,
where NV is defined in Theorem 3.1 and then solve N + 1 problems (3.1)-(3.3) with

parameter 6/¢ (1 = 1, N + 1) by Algorithm 3.1 with the accuracy 6.
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4. NUMERICAL EXPERIMENTS

For the equation (1.10) with @ = 1, by experimental way we chose the
iterative parameter 7 = 2./, ensuring the convergence of Algorithm 2.1. When
fixing € with this selection of 7, the numerical results show that the number of
iterations slightly depends on b. For the accelerated method the computation time
on sequential computer required by Algorithm 3.1 usually does not exceed 90% of
the computation time required by Algorithm 2.1. The Algorithm 3.1 will show its
advantage over Algorithm 2.1 if each perturbed problem is solved independently
on its individual processor of parallel computer.
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