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A Short Communication

ON THE EXISTENCE OF POSITIVE EIGENVALUES
FOR CONVEX SET-VALUED MAPS *

NGUYEN KHOA SON

This note presents a generalized version of the well-known Krein-Rutman
theorem on the existence of positive eigenvalues of the adjoint linear bounded
operators leaving invariant a positive polar cone in a Banach space. The results
of this kind have a comparatively long history which steamed primarily from the
works due to Frobenius [6] and Perron [9] on spectral properties of positive ma-
trices. These results played an important role to many problems in mathematical
programming, games theory and control theory. In particular, they were applied to
study controllability and observability of control systems, see e.g. [5], [7]. During
the last decade, some attention has been given to these results in the framework of

set-valued analysis. Namely, some theorems on the existence of positive eigenva-
" lues of positive set-valued maps in finite dimensional spaces were proved in Aubin
and Ekeland [2] and Aubin and Frankowska [3]. The existence of eigenvectors for
closed convex processes on cones with compact soles appeared in [4] for character-
izing controllability of convex processes in R™. The infinite dimensional case was
treated in a recent paper due to Phat and Dieu [10] where the above mentioned
Krein-Rutman theorem has been extended to closed convex processes mapping a
cone with nonempty interior into itself.

In this note we shall show that a similar result holds for arbitrary set-valued
maps with closed convex graphs, satisfying a weaker invariantness assumption.
The proof is based on Kakutani-Ky Fan theorem on fixed points for inward set-
valued maps.
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For the sake of convenience, we recall some notations. Let X,Y be Banach
spaces and X*,Y* be their strong duals. The space X* endowed with the weak*
topogy o(X*, X) will be denoted by X;. Let M C X be a nonempty subset, then
the closure and the interior of M are denoted respectively by ¢l M and int M;
the positive polar cone M is defined as M+ = {z* € X* : (z*,z) > 0,Vz € M}.
It is well-known that if M is a closed convex cone then M T is convex and weak*
compact. For a closed convex set M C X, the tangent cone to M at a point z € M
is denoted by Tas(z). By definition,

Trm(z) = clUprso A(M — ).

If M is a closed convex cone, then Tar(z) = cl (Rz+ M) (see, e.g., [3] p.143).

Let F be a set-valued map from X to Y, Dom F := {z € X : F(z) # 0} and
Graph F :={(z,y) € X xY : y € F(z)}. Then F is called strict if Dom F = X
and convex (resp., closed) if Graph F is convex (resp., closed). If Graph F is a
cone then F is called a process. To every closed convex set-valued map F from X
to Y such that 0 € F(0) we associate the adjoint map F*: Y* — X* defined by

t € F*(y") iff (y,y) > {(z",z), ¥(z,y)€ Graph F,
or, equivalently,

(y*,z*) € Graph F* iff (—z*,y*) € (Graph F)™.

It is easy to see that F* is a closed convex process and F'* = G*, where G
is the closed convex process defined by Graph G := Tgraph £(0,0). The following
important property of the adjoint maps was proved in [3].

Lemma 1. Let F : X — Y be a strict closed conver set-valued map with (0,0) €
Graph F. Then Dom F* = F(0)1 and F* is upper hemicontinuous with bounded
closed conver values.

We recall that upper hemicontinuity of F* means that for each z € X the
support function y* — o(F*(y*),z) := SUP-cp-(y~)(T",Z) is upper semiconti-
nuous. It follows from the above lemma that for each y* € Dom F*, F*(y*) is a
convex weakly* compact subset. Moreover, it can be shown, by the same way as
in [1] (Theorem 2, p. 62), that F* is a upper semicontinuous map from Y * to X.

Now, let K be a closed convex cone in Y and F : X — Y be a strict closed
convex set-valued map with (0,0) € Graph F. We say that K is snvariant by F if

Vre K, F(z)C Tk(z). (1)
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Lemma 2. If K 1s invariant by F, then

Vy* € KT, F*(y*)NTk+(y*) #0, (2)
where T+ (y*) is the tangent cone of KT in X} at y*.

The proof is similar to that of Proposition 1.12 in [3]. Suppose that (2) fails
to hold, then by the Hahn-Banach theorem, there exist constants ¢ and €, € > 0,
and a nonzero zo € X such that

. BuUp ' (2 . rg) nbt—g<ES inf 12" 2g) (3)
zreF*(y") 22 €Ty + (y*)

for some y* € K*. Since Tx+ (y*) = cl, (Ry* + K ), this implies ¢ = 0, (y*, zo) =
0 and zp € K** = K. Since Tk (zo) = cl (Rzo + K) and y* € K™, it follows that
y* € (Tk(z0))*. On the other hand, for the closed convex process G : X — Y,
defined by

Graph G = Tgraph 7(0,0),

it is easy to verify that F* = G* and

Vi € K, © (&) '€ Fi'(3).

Therefore, (Tk(z0))™ C (G(zo))t, and thus we have y* € (G(zo))", or
equivalently, inf,cq(z,)(y*,y) > 0. Then, in view of (3) and Proposition 2.6.4 in
[3] we can write

0< WY =S "sup =~ (27, 2d) = "Reup | [R5, < —¢,
y€G(z0) z*€G* (y*) z €F*(y*)

a contradiction.

We are now in a position to prove the main result of this note.

Theorem. Let F be a strict closed convez set-valued map from a Banach space
X 1into itself such that 0 € F(0). Let K C X be a closed convez cone such that
K # X and int K # 0. If K is invariant by F then the adjoint set-valued map
F* has an eigenvector z; € Kt, z} #0, associated with nonnegative eigenvalue
A>C, te.

Azg € F*(zg).

Proof. Since K # X, Kt # {0}. It follows from (1) that F(0) C Tk (0) = K and
hence K* C F(0)* = Dom F*. Thus, for each y* € K+, F*(y*) is a nonempty



112 Nguyen Khoa Son

convex weakly* compact set, by Lemma 1. Taking z¢ € int K and letting o > 0
be so small that zg — ae € K for all e in the unit ball of X, we readily verify that

(z*,%0) 2 e, Yz € S (4)

Define
B=fc Kz 55 -0}

Then H is a nonempty convex and weakly* closed set, and by (4), ||z*|| <
1, Vz* € H. Therefore, by Alaoglu’s theorem, H is weakly® compact.

For each z* € H, we define the affine operator f(z*) by putting
f(z%)g =z + 9 — ((9,20)/ )z, (5)
for ¢ € X*. Then, since H ¢ KT C Dom F*, by virtue of Lemma 1, the set-
valued map Q(z*) := f(z*)F*(z*) is upper hemicontinuous with nonempty convex
weakly* compact values for z* € H. We shall show that @ has a fixed point in
H, by using the generalized Kakutani-Ky Fan theorem for inward set-valued maps
(see, e.g. [3], Theorem 3.2.5, p.87). To this end, let us calculate, for z* € H, the

tangent cone Ty(z*), H being regarded as a subset in X;. Since, by definition,
H=Ktn{y*e X*:(y*,z0) = a} we have

Tu(z*) C Tg+(z*) N{y" € X" : (y°, z0) = O}.

On the other hand, if (y*,z0) = 0 and y* € Rz*+ KT, then either y* = 0 or
y* = —({g9,z0)/a)z* + g for some nonzero g € K. From the latter case it follows
that y* € UxsoA(H —z*). Therefore Ty (z*) D Tx+ (z*) N {y* : (y*, o) = 0} and,
consequently,

Tu(z*) = T+ (z*) N{y* € X* : (y*, z0) = 0}. (6)

Now, for each z* € H and y* € Rz*+ K™, we have obviously that (f(z*)y* —
z*,z0) = 0 and f(z*)y* — z* € Rz* + K, and hence, by (6), f(z*)Tk+(z*) C
Tuiz") + 2. Binee [ F*'(z*) N Ty (z*)) C flz)F* {2\ N [z Teule") C
Q(z*) N (Tu(z*) + z*), it follows from Lemma 2 that

Q(z*) N (Tu(z*) + z*) #0, Vz*e H.

Thus Q: H — X* isaninward upper hemicontinuous map from convex
weakly* compact subsets of H. By the mentioned Kakutani-Ky Fan theorem, there
exists z;, € H such that z§ € Q(z5). By the definition of @, it follows that there
exists y5 € F*(z}) such that

1‘5 = 1‘8 o ys = (<y8,fﬁo>/a)$8,

which implies y5 = ((y3,z0)/a)zy € F*(z3). Thus = is a nonzero eigenvector of
F* with eigenvalue é(yo,xo) > 0 and z§5 € K*. The proof is complete.
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