A Short Communication

MINIMAX SOLUTIONS OF THE CAUCHY

PROBLEMS FOR SYSTEMS OF FIRST-ORDER

NONLINEAR DIFFERENTIAL EQUATIONS *

TRAN DUC VAN and NGUYEN DAC LIEM

In this note we are concerned with the Cauchy problem for systems of nonlinear first-order partial differential equations

$$\frac{\partial u_k(t,x)}{\partial t} + H_k(t,x,u(t,x),\nabla_x u_k(t,x)) = 0, \tag{1}$$

$$(t,x) \in G = (0,T) \times \mathbb{R}^n, \quad k = 1,...,m$$

 $u(T,x) = u^0(x), \quad x \in \mathbb{R}^n.$ (2)

Here $u=(u_1,...,u_m):\Omega\to {\rm I\!R}^m$ represents the unknown function, $H=(H_1,...,H_m):$ $G \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m, u^0 = (u_1^0, ..., u_m^0) : \mathbb{R}^n \to \mathbb{R}^m$ are given functions, $\nabla_x u_k = \left(\frac{\partial u_k}{\partial x_1}, ..., \frac{\partial u_k}{\partial x_r}\right).$

Since a classical solution of the nonlinear problem (1), (2) can fail to exist even in the cases where H_k and u^0 are analytic functions, we need to introduce concepts of generalized solutions. In recent years a new approach has taken shape in the theory of nonlinear differential equations, based on replacement of the equation by a pair of differential inequalities (see, for example, M. G. Crandall and P. L. Lions [1], M. G. Crandall, H. Ishii and P. L. Lions [2] for the viscosity solutions and A. I. Subbotin [3], N. N. Subbotina [4] for the minimax solutions...).

^{*} This work is supported in part by the National Basic Research Program in Natural Sciences, Vietnam

Our primary aim here is to give a definition of minimax solutions for the problem (1)-(2) and to announce an existence and uniqueness result for these solutions. The case m=1 was considered in a great detail in Subbotin [3], [4] (see, references therein).

We use the following notations. Denote

$$S:=\{p\in\mathbb{R}^n,||p||_n=1\},\ 0>y\mid po\}=\{0<\infty\}$$
 , the grant of $B:=\{p\in\mathbb{R}^n,||p||_n\leq 1\},\ define a grant of the second of the secon$

where $||\cdot||_n$ is the Euclidean norm in \mathbb{R}^n . For $r=(r_1,...,r_m), s=(s_1,...,s_m) \in \mathbb{R}^m$ we write $r \leq s$ if $r_k \leq s_k$ for all k=1,...,m. For functions $u,v:\overline{G} \to \mathbb{R}^m$ we also write $u \leq v$ in \overline{G} if $u_k \leq v_k$ in \overline{G} for all k=1,...,m.

We first assume that the function $H(t, x, r, p) = (H_1(t, x, r, p), ..., H_m(t, x, r, p))$ is continuous and positive-homogenous with respect to the variable p:

$$H_k(t,x,r,lpha p)=lpha H_k(t,x,r,p), lpha \geq 0, k=1,...,m$$

and satisfies the following conditions:

a) for any bounded subset $D \subset G$, there exists a number $\lambda > 0$ such that for all $r \in \mathbb{R}^m$, $p \in S$, (t, x), $(t, y) \in D$:

$$||H(t,x,r,p)-H(t,y,r,p)||_m \leq \lambda ||x-y||_n.$$

b) for all $(t, x) \in G, r \in \mathbb{R}^m$ the Lipschitz condition with respect to p holds:

$$\sup\{||H(t,x,r,p)-H(t,x,r,q)||_m-||p-q||_n.L(x)|p\in B, q\in B\}\leq 0,$$

where $L(x) = \kappa(1 + ||x||_n), \kappa$ is a constant;

c) the function H(t, x, r, p) satisfies the *quasi-monotonicity* condition with respect to r, i.e. if $(r_1, \ldots, r_m) = r \leq s = (s_1, \ldots, s_m)$ and $r_k = s_k$, then

$$H_k(t,x,r,p) \le H_k(t,x,s,p), (t,x) \in G, p \in \mathbb{R}^m$$
(3)

d) the function $H_k(t, x, r, p)(k = 1, ..., m)$ is nonincreasing with respect to r_k , i.e. if $r_k \leq s_k$ then

$$H_k(t, x, r_1, ..., r_{k-1}, r_k, r_{k+1}, ..., r_m, p)$$

$$\geq H_k(t, x, r_1, ..., r_{k-1}, s_k, r_{k+1}, ..., r_m, p).$$
(4)

Define the set a xsminim to nothinfleb a evin of all ered mis visming au

$$F(x) := \{f \in \mathbb{R}^n ig| \ ||f||_n \le \sqrt{2}L(x)\},$$
 where $F_k^B(t,x,r,q) := \{f \in F(x) ig| < f,q > \ge H_k(t,x,r,q)\},$ $F_k^H(t,x,r,p) := \{f \in F(x) ig| < f,p > \le H_k(t,x,r,p)\}.$

Here $(t,x) \in G$, $p \in P$, $q \in Q$, P and Q are some nonempty sets such that $\{\alpha p \mid p \in P, \alpha \geq 0\} = \{\alpha q \mid q \in Q, \alpha \geq 0\} = \mathbb{R}^n$. For example, we can take P = Q = S. It is easily seen that the sets introduced above are nonempty, convex, compact, and the multivalued function $(t,x,r) \to F_k^B(t,x,r,q), (t,x,r) \to F_k^B(t,x,r,p)$ are continuous in $G \times \mathbb{R}^m$ for $p \in P, q \in Q, k = 1, ..., m$. From (3) and (4) we have

i) if $r,s \in \mathbb{R}^m, r \leq s$ and $r_k = s_k$ then $r_k =$

$$F_k^B(t,x,r,q)\supset F_k^B(t,x,s,q),$$
 and smallest settle where $F_k^H(t,x,r,p)\subset F_k^H(t,x,r,p).$

ii) if $r_k \leq s_k$, then

$$F_k^B(t,x,r_1,...,r_{k-1},r_k,r_{k+1},...,r_m,q) \subset F_k^B(t,x,r_1,...,r_{k-1},s_k,r_{k+1},...,r_m,q),$$

 $F_k^H(t,x,r_1,...,r_{k-1},r_k,r_{k+1},...,r_m,p) \supset F_k^H(t,x,r_1,...,r_{k-1},s_k,r_{k+1},...,r_m,p).$

It can be shown that $F_k^B(t, x, r, q) \cap F_k^H(t, x, r, p) \neq \emptyset$ for all $(t, x) \in G, r \in \mathbb{R}^m, p \in P, q \in Q, k = 1, ..., m$. Then we obtain easily the equalities

which was a sum of
$$H_k(t,x,r,w)=\sup_{q\in Q}\min_{f\in F_k^B(t,x,r,q)}< f,w>$$
 (a.4) He folds
$$=\inf_{p\in Q}\max_{f\in F_k^H(t,x,r,p)}< f,w>,$$

where $L(x) = \kappa(1 + ||x||_n)$, κ is a constant;

for all $(t,x) \in G, r \in \mathbb{R}^m, w \in \mathbb{R}^n$.

We say that the vector-function $u(t,x) = (u_1(t,x), ..., u_m(t,x))$ is lower (upper) semicontinuous in \overline{G} if its every component $(t,x) \to u_k(t,x)$ is lower (upper) semicontinuous in $\overline{G}, k = 1, ..., m$.

For fixed $(t_0, x_0) \in \overline{G}$ denote $(a, b, x, x) \in \overline{G}$ denote

$$u(t,x,t_0,x_0,k):=(u_1(t,x),...,u_{k-1}(t,x),u_k(t_0,x_0),u_{k+1}(t,x),...,u_m(t,x)).$$

Further, for a function $v: \overline{G} \to \mathbb{R}^1$ we define

$$v^*(z) := \limsup_{\epsilon \downarrow 0} \sup \{v(y) ig| \ ||z-y||_{n+1} < \epsilon, y \in \overline{G} \}$$

The sets of supersolutions and subsolutions will be denoted by Soln and bas

$$v_*(z) := \lim_{\epsilon \downarrow 0} \inf\{v(y) \big| \ ||z-y||_{n+1} < \epsilon, y \in \overline{G}\},$$

for $z \in \overline{G}$. We note that v^* and v_* are upper and lower semicontinuous functions, respectively, on \overline{G} with values in $\mathbb{R}^1 \cup \{\pm \infty\}$ and $v_* \leq v \leq v^*$ in \overline{G} .

For a function $u: \overline{G} \to \mathbb{R}^m$ we write $u^* = (u_1^*, ..., u_m^*)$ and $u_* = (u_{1*}, ..., u_{m*})$, and u^*, u_* are upper and lower semicontinuous, respectively, on \overline{G} .

Let $u=(u_1,...,u_m):\overline{G}\to\mathbb{R}^n$ be a locally bounded function and $(t_0,x_0)\in\overline{G}$. Denote by $X_k^B(t_0,x_0,u,q)$ and $X_k^H(t_0,x_0,u,p)$ the sets of absolutely continuous functions $[0,T]\ni t\mapsto x(t)\in\mathbb{R}^n$, satisfying for almost all $t\in[0,T]$ the differential inclusions

$$rac{dx}{dt}(t)\in F_k^B(t,x(t),u_*(t,x(t),t_0,x_0,k,q))$$

and

$$rac{dx}{dt}(t)\in F_k^H(t,x(t),u^*(t,x(t),t_0,x_0,k,p))$$

respectively and also the condition $x(t_0) = x_0$. It is known that by the properties of the multivalued functions F_k^B, F_k^H and in virtue of Theorem II 3 in [3], $X_k^B(t_0, x_0, u, q)$ and $X_k^H(t_0, x_0, u, p)$ are nonempty compact sets in $C([0, T], \mathbb{R}^n)$.

Definition 1. Let $u: \overline{G} \to \mathbb{R}^m$ be a locally bounded function. We call u a minimax supersolution of Problem (1), (2) if for all $t \in [0,T), \tau \in (t,T], x \in \mathbb{R}^n$ and k=1,...,m, then

$$\sup_{q\in Q} \min_{X_k^B(t,x,u,q)} \{u_k(au,x(au)) - u_k(t,x)\} \leq 0,$$

$$u(T,x) \geq u^{\scriptscriptstyle ext{O}}(x), x \in {
m I\!R}^n.$$

Definition 2. Let $u: \overline{G} \to \mathbb{R}^m$ be a locally bounded function. We call u a minimax subsolution of Problem (1), (2) if for all $t \in [0,T), \tau \in (t,T], x \in \mathbb{R}^n$ and k=1,...,m, then

$$\inf_{p\in P}\max_{X_k^H(t,x,u,p)}\{u_k(au,x(au))-u_k(t,x)\}\geq 0,$$

$$u(T,x) \leq u^{0}(x), x \in \mathbb{R}^{n}.$$

The sets of supersolutions and subsolutions will be denoted by Sol_B and Sol_H respectively. $\{\emptyset \ni y, y > y_{HB} | |y - y| |y - y|$

Definition 3. Let $u: \overline{G} \to \mathbb{R}^m$ be a locally bounded function. We call u a minimax solution of Problem (1), (2) if u is simultaneously a minimax supersolution and a minimax subsolution of the same problem.

The basic results of this note are the following

Theorem 1. Suppose that $u \in C^1(G, \mathbb{R}^m) \cap C(\overline{G}, \mathbb{R}^m)$ is a global classical solution of Problem (1), (2). Then u is also a minimax solution of the same problem.

Theorem 2. The minimax solution u of Problem (1), (2) satisfies the equation (1) at each point (t,x) where u is differentiable.

Theorem 3. Suppose that the conditions a) - d) are satisfied and $u^0(x)$ is continuous. Then there exists a unique minimax solution for the Cauchy problem (1), (2).

Proofs of Theorems 1-3 will be published elsewhere.

REFERENCES

- 1. M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
- 2. M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
- 3. A. I. Subbotin, Minimax inequalities and Hamilton-Jacobi equations, Moscow, Nauka 1990 (Russian).
- 4. N. N. Subbotina, The method of Cauchy characteristics and generalized solutions of the Hamilton-Jacobi-Bellman equation, Soviet Math. Dokl. 44 (1992), 501-506.

Institute of Mathematics P.O. Box 631, Bo Ho 10000 Hanoi, Vietnam

Received February 1, 1994

 $u(T,x) \le u^0(x), x \in \mathbb{R}^n$