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A Short Communsication

MINIMAX SOLUTIONS OF THE CAUCHY
PROBLEMS FOR SYSTEMS OF FIRST-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS *

TRAN DUC VAN and NGUYEN DAC LIEM

In this note we are concerned with the Cauchy problem for systems of non-
linear first-order partial differential equations

S, lt, z)

= + Hi(t, z,u(t, z), Vour(t, z)) =0, (1)
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W(T,2) = u(z), zER™ 2)
Here u = (uy,...,umm) : @ — R™ represents the unknown function, H = (Hy, ..., H,,) :
G xR™xR" - R™u® = (49,..,ul) : R® — IR™ are given functions,
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Since a classical solution of the nonlinear problem (1), (2) can fail to exist
even in the cases where Hj and u° are analytic functions, we need to introduce
concepts of generalized solutions. In recent years a new approach has taken shape
in the theory of nonlinear differential equations, based on replacement of the equa-
tion by a pair of differential inequalities (see, for example, M. G. Crandall and P.
L. Lions [1], M. G. Crandall, H. Ishii and P. L. Lions [2] for the viscosity solutions
and A. L. Subbotin (3], N. N. Subbotina [4] for the minimax solutions...).
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Our primary aim here is to give a definition of minimax solutions for the
problem (1)-(2) and to announce an existence and uniqueness result for these
solutions. The case m = 1 was considered in a great detail in Subbotin [3], [4]
(see, references therein).

We use the following notations. Denote

S :={p € R ||p||n = 1},
B:={peR",||p||ln <1},

where ||« ||, is the Euclidean norm in R™. For r = (ry,...,7m),8 = (81,...,8m) €

IR™ we write r < s if ri < si for allk =1,...,m. For functions u,v: G — R™ we
alsowrite u <vin Gifur <vginGforallk=1,..,m.

We first assume that the function H(t, z,r,p) = (H1(t, z,7,p), ..., Hm(t, z,7,p))
is continuous and positive-homogenous with respect to the variable p:

Hylt,z,r,0p) = alli{t,z,r,p), 02 0,k=1_..m

and satisfies the following conditions:

a) for any bounded subset D C G, there exists a number A > 0 such that
forallre R™,p€ S, (¢,z),(t,y) € D:

[H (t, 2,7, p) = H(t, 4,7, p)|lm < Allz = yl|s.
b) for all (¢,z) € G,r € R™ the Lipschitz condition with respect to p holds:
sup{||H(t,z,r,p) — H(t,z,7,9)|lm = |lp — d|l».L(z)|p € B,g € B} <0,

where L(z) = k(1 + ||z||,),% is a constant;

c) the function H(t,z,r,p) satisfies the quasi-monotonicity condition with
respect to r, i.e. if (r1,...,rm) =r < 8= (S1,..:;8m) and rx = s, then

Hk(t,Z,T,p) SHk(t,.’E,S,p),(t,it) EG’pE]R-m - (3)

d) the function H(t,z,r,p)(k = 1,...,m) is nonincreasing with respect to
rk, i.e. if rp < si then

Hk(t’ TyT1yeeesTk—15TksTk+1, --"rmap)
Z Hk(t’ LyT1yee9sThk—19SksThk+1s+3Tm; p)

(4)
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Define the set
F(z) :={f €e R"| ||f|ln < V2L(2)},

FP@t,z,r,q) =1 € F(z)| <[,¢> 2 Hilt,z.1.0)},
FkH(t,z,r,p) ={f¢€ F(z)| < f,p > < Hi(t,z,r,p)}.

Here (t,z) € G,p € P,q € Q, P and Q are some nonempty sets such that {ap | p €
P,a >0} ={ag| g€ Q,a >0} =R". For example, we can take P = Q = S.
It is easily seen that the sets introduced above are nonempty, convex, compact,
and the multivalued function (t,z,r) — F2(t,z,r,q),(t,z,r) — FH(t,z,r,p) are
continuous in G X R™ for p€ P,¢ € Q, k = 1,...,m. From (3) and (4) we have

i)if r,s e R™,r < s and r = si then

F,cB(t,z:,r,q) B F,?(t,:z:,s,q),
FH(t,z,r,p) C F(t,z,r,p).

ii) if rx < sk, then

B B

Fk (ta TyT1yeeesTh—15TksThk+1s--3Tm;, Q) = Fk (t,xarla ey Th—158k, Tk+1, "-,rm’q)’
H H

Fk (t,.’E, T1seoesTh—15sTks Tk+1, -"’Tmap) ) Fk (t) ZyT1yeeeyTh—15SksThk+1, ““arm’p)-

It can be shown that F2 (¢, z,r,q)NF (t,z,r,p) # Bforall (t,z) € G,r e R™,p€e
P,qe Q,k =1,...,m. Then we obtain easily the equalities

H(t,z,r,w) = sup min Sho>
qEQ fEFkB (tszar)Q)

= inf max sdhwz,
PEQ feFH (t,z,r,p)

for all (t,z) e G,r e R™,w € R".

We say that the vector-function u(t,z) = (u1(t,2),...,um(t, 7)) is lower (up-
per) semicontinuous in G if its every component (t,z) — ux(t,z) is lower (upper)
semicontinuous in G,k =1,...,m.

For fixed (to,zo) € G denote
u(t,a:,to,a:o,k) T (’U,]_(t, .’I)), ...,‘U,k_l(t,z),‘U.k(to,220),‘Mk+1(t,$), wdiy um(t,z)).
Further, for a function v : G — IR! we define

#'s) = leilrglsup{v(y)! |2 = yllns1 < 6,y € 5}
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and
v(2) := liminf{v(y)] ||z = ylln+1 < &y € G},

for z € G. We note that v* and v, are upper and lower semicontinuous functions,
respectively, on G with values in R' U {£o00} and v, < v < v* in G.

For a functionu : G — R™ we write u* = (uj,...,u},) and Uy = (B9i7.5 958),
and u*,u, are upper and lower semicontinuous, respectively, on G.

Let u = (u1,...,um) : G — IR™ be a locally bounded function and (to,zo0) €
G. Denote by XP (to, zo, u,q) and X (to, zo, u,p) the sets of absolutely continuous
functions [0,T] 5t — z(t) € R", satisfying for almost all t € [0, T] the differential
inclusions

iii:( t) € F (t,2(t), u.(t, 2(t), to, 2o, k, q))
and
% (1) € FF (t,2(t), *(t,2(0), to, 0, )

respectively and also the condition :c(to) = zo. It is known that by the proper-
ties of the multivalued functions F?, Ff' and in virtue of Theorem II 3 in [3],
XE(to, zo,u, g) and X{ (to, zo,u,p) are nonempty compact sets in c([o,T],R"™).

Definition 1. Let u : G — IR™ be a locally bounded function. We call u a
minimax supersolution of Problem (1), (2) if for all t € [0,7),7 € (¢,T],z € R"
and k = 1,...,m, then

sup min {uk(r,z(7)) — uk(t,z)} <0,
qEQ X (t,z,u,q)

u(T,z) > u°(z),z € R™.

Definition 2. Let v : G — IR™ be a locally bounded function. We call u a
minimax subsolution of Problem (1), (2) if for allt € [0,T),7 € (¢,T],z € R" and
k=1,...,m, then

£ — uk(t,z)} >0,
2 o i) -l 2 5

u(T,z) < u’(z),z € R™.
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The sets of supersolutions and subsolutions will be denoted by Solp and Soly
respectively.

Definition 8. Let u : G — IR™ be a locally bounded function. We call © a min-
imax solution of Problem (1), (2) if u is simultaneously a minimax supersolution
and a minimax subsolution of the same problem.

The basic results of this note are the following

Theorem 1. Suppose that w € C1(G,R™) N C(G,R™) is a global classical solu-
tion of Problem (1), (2). Then u is also a minimaz solution of the same problem.

Theorem 2. The minimaz solution w of Problem (1), (2) satisfies the equation
(1) at each point (t,z) where u is differentiable.

Theorem 3. Suppose that the conditions a) - d) are satisfied and u°(z) is conti-
nuous. Then there erists a unique minimaz solution for the Cauchy problem (1),

(2).

Proofs of Theorems 1-3 will be published elsewhere.
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