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EXTENDED FIRST ORDER STOCHASTIC
AVERAGING METHOD FOR A CLASS
. OF NONLINEAR SYSTEMS '

NGUYEN DONG ANH

Abstract. An extended first order stochastic averaging procedure is-proposed Jor a class of
single-degree-of-freedom systems which can not be investigated by using the classical first order
averaging method. As an illustration a system with nonlinear damping is considered.

1. INTRODUCTION

Over the past years the well-known averaging method, developed by Bogo-
liubov and Mitropolski [1] has proved to be a very useful tool for solving determin-
istic nonlinear vibration problems. The advantage of this method is that it reduces
the dimension of the response coordinates. An extension of the averaging method
to the field of random vibrations was originally introduced by Stratonovitch (2]
and then developed by many authors. .~ . o3 HE g '

¢ # It>should be noted that although the general higher order'averaging proce-
dure was already described for deterministic differential equations (3], principally
only the first order averaging has been applied in practice. It is well known, how-
ever, the effect of some nonlinear terms such as cubic stiffness is lost during the
first order averaging procedure. '

It implies that the first order averaging method is not sufficient to describe
the effect of these nonlinear terms. A

The aim of this paper is to propose an extended first order averaging pro-
cedure for a class of single-degree-of-freedom systems with random excitation. In
the first paragraph, we recall some well known facts for the classical case. The
main result of our extended method is given in the second paragraph. In the last
paragraph, an application to systems with nonlinear damping-is'shown.
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2. CLASSICAL FIRST ORDER STOCHASTIC AVERAGING

Consider a single mode system described by an equation of the type

2 +w g ks sf; (a:, z) +”ezfg(wf«~:z:) s evf("t) (1)
where w is the natural frequency of the correspondlng lmear system (e =.0),¢eis
a small positive parameter -and ¢ is a‘c’onstant fi'and” fg are functions in z and
&. The random excitation £(t) is assumed to be a Gaussian white noise with unit
intensity, i.e. the It derivative of a standard Gaussian process, with

E(£(t)) =0, E(E®&E+7) =5(r), (2)

where E denotes the expectation operator. The equation (1) may be considered
as the following system of 1td stochastic defferential equations

p da:() A(Cdt i <l = 2 | 5 - (3)
SRR G S e, T @

where W (t) is a standard Wiener process:

EW(H)W ()] = min{t,t'}. ' (5)
The solution of "@H{_;ineai;;ys‘t'em- (1)*; '(e sjo), higs the_fér‘ng“
where d and 0 are consta.‘ﬁts hl thé ‘case 'where'e £ d a.cco‘rdmg to the cla:’éslc%ii

averaging method, the state coordinates (z, ) are to be tra.nsforfne& to the’ inhr of
(a,0) by thechange (6). Thus, thesystems (3) (4) are rewritten in/the following

form, (see:[5]). sups | ! bsails =sw s1ub
1A How 8i da eKi(a,qo)dt—— —O"’smtde(tf) o lz1fl o yin
d0 & c-:Kg(a <p)dt - iwacos gadW(t) g1igE19Y o jeif
where '
omors 1akan BEL haladxe [ geaaoxyof @ raaes] aids Jo mis o'l
Kl‘(av W) = 2(1(4) cos SD 5 [—fl(afﬂo) o —"fZ(aafVD)]._ Sm‘P, : s
Kzfa, ) b 2€: 3. sm2go - —fl(a,,tp) cosgp —-’———fz(a go) coscp, e (8)

fifay ) Sfilz= acosgo,z—hawsmlp) ¢ qizadi@oilags ns dgergsisq
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The Fokker-Planck (FP) equation; written for the probability densxty func-
tion p(a, 0,t) of system (7) is given as follows:

dp %
o == gmikin) 55 Kap) [auz(m“’)”aaaa("””” az(Knp)]}
where _
Ku(a,sa) —sm b, Kulep) = —gHinpeosp;
eo? cos? 7}
Enltel s 9]

Using the stochastic ‘averaging method [4] the FP equatron (9) is approxlmately
replaced by the averaged FP one :

%2 _ e[ xip )+ —(‘\'-KZ)P)'

——-[::((KH)P)-P 6 60 )) go‘iuKn)P)]}’ (11)

where () is the averaging operator'with respect to'gr

X SE4id TG OR { 15 35 11

I L% 51;/( .)ds?- / (12)

Thus, the coefﬁc1ents in (1 1) are obtained by averaging of the corresponding
coefficients in (9). It is seen from (8) that, in the case where the function f; has
the property

(f1 (a, p) sinp) = (f1 (a,0) cospp) = (13)

the influence of the term fl (a, ) will be lost in the averaged FP equation (11)
due to the averaging. On the other hand, the expressxon of the solution (6) does
not contain any effect of nonlinear terms.

It follows that, in the case of (13) the classical first order stochastic averaging
method is not sufficient to describe the effect.of the term f,(z, ). So an adequate
extension is required. { ~—

Ezample Consider the followmg system

i+wir= e(az®z®™ +efs(z, 7)) % eo€(t). 4 (14)
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In thls case fi(z;z) = az??z?™,; (a, m;m = const). Itis an easy matter to
show that ‘ & aviy : 193zve H % ple notd |

2%

. ;<f-1 { sm(p > o) f (u+m)w2ncoszm¢§!n ’ﬁ{ }d‘P i
cos p 2 cos (p o
0 ! \

Hence, in order to investigate the effect of the term fi(z,z) in (14) one needs
an extended averaging method 3

3. EXTENDED FIRST ORDER STOCHASTIC AVERAGING

Suppose that the nonlinear system (1) exh'blts the property (13) Now, :
instead of (6) we consider the following change, purposely,

z(t) = acosp + E.,_tl,(dﬂp)g.;\ 130 P | : (15)

% oy

o =wt +0. (16)

A suitable expression of the function u(a; ) will be determined later using
the property (13). In order to obtain the amplitude and phase Itd differential
equations let these equations be written in the form

(17)

i

where a, B, ik, 4 are unknown functions of a and p. For a given ‘functnon F(t a, ©)
the 1t5 differential rule [5] gives'

oF

e

+(l+ Lg)F] i + G FaW (), (8)

where the operators £1, £z, £3 denote

e sabaiiatll s il
R T deds el ]
2% 902 TP 3605 T2 57 19)
a d

'¢3=ﬂ8a+’7&p
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Differentiating (15) with respect:to-the time and using (18) yields

2} A

.t La(acosp +eu)dW(t). Pl gy OB

Substituting (16) into (3) gives

T

Further, differentiating&(m) with respect to ¢t and using (18) yields

.+v(£1 + £2) (a cos + e%)] dt

)dW(t) {3 \ (22)

dz(t) = [ awsmgo+e‘;2

ou,

+"£3( a,wsmfp + s

Comparing now (20) with (21), and (22) with (4), and noting that o = wt + 8, we
" obtain the following relations

(¢, + lg)(a cos p + eu) 0, f3(acosp +eu) =0,

(£1+£2)( a.wsm<p+e%)-e[f1(a,@) w( 327';)]

(23)
+ e2Fy(a,p) + €°%.. -
L pr Eoyans ot i
ts( —awsinp +€5f) = €0,
where
o caneas s DA (SO L afy, D ' ,
Riferd) =falep) + (550 5 “’as«o)’| s
The function u(a, ) will be chosen such as
f1(a ) = (u+—-—-—) 0. (25)

Assuming that we have (13) and expanding f1(a, ¢) into a Fottier Séries

fi(a,0) = (f1(a;0))
+2 E {(f1 a, go) smngo) smntp + (f; (a go) cosmp) cosmp}

n=2
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we get from (25) ‘the following expression for u(e,p) -
3 :
u(a,0) = = {(f1(a,10))
+2 nz:‘z =

! adn

Hence, the system (23) can be rewrltten in two separable systems
| : = Eh gy
L3 (a.cos<p+eu)—0 £3( awsmgo+ew%)=ea
and

ti(acosp +eu) = ~Ly(acos o+ cu),

& o
4 ( — awsinp + ew—a—u) = —Lp(—awsinp + Ew%) +e2Fy(a,p) + €3..

dp
Applying (19) to (27) we have,

(cosgo + e—)ﬂ+ (— asinfp +Eg—;)7 =0’ ;

2,

8%y _ Whet . R s
( wsmp+ew )ﬂ+(?“aw008§0+eg;;)‘7=ea.

Hénce, 3 5o s
B(a,p) = —Easintp-f-ez.., v(a, p) =‘;,——iocosgo+c-:2..
Substituting (30), (19) into (28) yields

2,2

elo
2aw?
%y

y d%u :
(—wsmgp+ewﬁ)a+ (—aweesgo+e’5;é—2)p

(cos +E'8u) +(= " inp + au) =
© aaﬂa, asingp EBg'p, b=

e2a?

2aw

sinpcos?p+ e fg(a,sa)-i-e

From (31) one gets

2.2 2
elo o s RN
2002 cos?p — ;Fz (a,0)sinp+ €3, -

a(a,p) =

) - { B o 8202 CperaiR (¢ 6'2 ;; 4 N
e i = Jaig1 Sin2p - o 2(a,0)cospt €2

1 - [( fi(a, ) sin nip) sint ne + (fi(a, p)cos nyp) cos ntp] }
= )

7 cosp(1 +sin’ p) + €3..

(27)

(29)

(30)

@)

(32)
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Hence, the amplitude and phase differential equations’(17) are ready defined where
a(a,v), B(a,¥), u(a,p), 7(a,p) are given in (32) and (30). The averaged FP
equation,; wntten for probablhty demsxty functlon p(a 0, t) of system (17) takes
the'form -

3 8 3 (dep B ok ot
;.§=e {%« a)p) + 55 (W)p) = 5[5 ((8%)p)
' A Rt oY) | S (33)

It is seen from (24) and (32) that the coefficients a(a, ), u(a,p) contain the
' derivatives of the function f(z, z). So, the effect of the nonlinear term f, (=,2)

may be investigated by using the averaged FP: equa.tlon (33) and also the expression
of solution (15), (16). ' \

4. SYSTEM WITH NONLINEAR DAMPING

The proposed extended first order stochastic averaging method will be used
for investigating a system with nonlinear damping. We note also that since the
first order averaging is used the terms of €™ (n > 3) will be neglected in the FP
equation. Consider the nonlinear system described by the following equation

£+ wlz = —efz? - 2e%hi + eof(t), Z = (34)
where k, 3 > 0. So one has the equation (1) in which ~
fi(@,2) = —B&®, fo(m#)=-2hi. . (35)

It can be shown that the condition (13) is satlsﬁed Substltutmg (35) lnto (25)
yields :
B

: (a; (p)r*.—‘:f —-—&2—- -ﬂi-’ll-2 cos2p. _ E,r STRILD (36‘)

Hence, using (15), we see that the solution of equatlon (34) takes the form
2ol
Z = acos tp:—-'e-ﬂ*% (1 + 3 cos 2@) : (37)

Using (35), (36) one gets from (24)

it : 4 ¥ 3y t §
F3(a,p) = —2hawsinp + Eﬂzaawz sin? o cos . (38)
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Substituting (38) into (32) gives -

2

g LB 4 oF, D B golde cpl Bggdgid . igl i }
afe,p) =¢ {Za,w2 cos” p — 2hasin® p Sﬂ a°wsin® psin2p ¢. (39)

So, one gets from (39) and (30)

, o 2,2 .
(a(a,0)) = M oy = hafy (B (a)) = S (40)

Substituting (40) into (33) yields

! Ih? | “
pla) = ——aexp { — a2} (41)
From (41) one gets
2
" o
Using (37) and (42) yields the following mean value of the displacement
‘. ﬂ' .2 20 €ﬂ02 2 3 . ;
E(z) = —s'—E(-a y+etis v s g 10 (48)

In the absence of the nonllnear damping —&fz? (i.e. B = 0), one has E(z) = 0. So,
the expression (43) implies that the nonlinear damping —efz? reduces the mean
value of the displacement.

Conclusion. The well-known stochastic averaging method has been extended to ’
study a class of nonlinear systems, which can not be mvest1gated by using the
classical first order stochastic averaging.
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