Note that the operator equation (1) has been investigated by many authors (see [1, 2, 3, 4] for instance). By using the degree theory, we can obtain existence theorems for the equation (1) (see [1, 2]). This equation may be solved by projection methods or by a special iterative method (see [3, 4]).

ON AN APPROXIMATION METHOD FOR SOLVING QUASILINEAR OPERATOR EQUATIONS

 $\hat{A}u_{n+1} + PF'(x_n)u_{n+1} = PF'(x_n)u_n - PFx_n, \qquad (3a)$

NGUYEN VAN KHAI

where $u_{n+1} \in X_1, v_{n+1} \in X_2$.

Abstract. In this paper the author presents an approximation method for solving quasilinear operator equation Ax + Fx = 0 where A is a bounded linear Fredholm operator and F is a nonlinear operator. Convergence theorems and theorem of rate of convergence of an approximation method are proved. Some numerical examples are given.

Theorem 2.1. Let F be continuously differentiable (in the Fréchet sense) in an

In this paper we consider the following operator equation:

$$\Omega \ni x \text{ lis rol} \quad 0 \ge ||x| + Fx|| \le 0, \quad ||x| + ||x|| \le 0$$

where A is a bounded linear Fredholm operator (index zero), F is a nonlinear operator and A, $F: X \to Y$; X, Y are Banach spaces. It is well known that by the assumption of A, we have: $X = X_1 \oplus X_2$, $Y = Y_1 \oplus Y_2$, $X_2 = \text{Ker } A$, $Y_1 = \text{Im } A$, $\dim X_2 = \text{codim } Y_1 = m < +\infty$, Y_1 is closed in Y and the restriction \hat{A} of A to X_1 has a bounded inverse.

Let us denote by P a bounded linear projection from Y on Y_1 , $PY = Y_1$, Q = (I - P), where I is a unit operator in Y. Then the equation (1) is equivalent to system:

then the sequence
$$\{x_n\}$$
, constructed by (E) do not equation $\hat{A}u + PF(u+v) = 0$, $\hat{A}u + PF(u+v) = 0$. $\hat{A}u + PF(u+v) = 0$.

where $u \in X_1$, $v \in X_2$.

Note that the operator equation (1) has been investigated by many authors (see [1, 2, 3, 4] for instance). By using the degree theory, we can obtain existence theorems for the equation (1) (see [1, 2]). This equation may be solved by projection methods or by a special iterative method (see [3, 4]).

We shall solve (1) by the following approximation method: knowing the n-th approximation x_n (the 0-th approximation x_0 is supposed to be given), we construct the (n+1)-th approximation by the formulae:

$$\hat{A}u_{n+1} + PF'(x_n)u_{n+1} = PF'(x_n)u_n - PFx_n, \tag{3a}$$

$$QF(u_{n+1} + v_{n+1}) = 0, (3b)$$

$$x_{n+1} = u_{n+1} + v_{n+1} \vee MayuoM$$

where $u_{n+1} \in X_1, v_{n+1} \in X_2$.

2. CONVERGENCE THEOREMS AND THEOREM ON THE RATE OF CONVERGENCE

Let us denote by $[PF'(x)]_{X_i}$ a restriction of the derivative PF'(x) to X_i (i=1,2) and $[QF'(x)]_{X_2}$ a restriction of the derivative QF'(x) to X_2 .

Theorem 2.1. Let F be continuously differentiable (in the Fréchet sense) in an open neighbourhood

$$\Omega = ig\{x \in X : \|x - x_0\| < Rig\},$$
 and $ig\|[PF'x]_{X_2}\| \leq lpha, \quad \|QF'x\| \leq eta \quad ext{for all } x \in \Omega.$

Assume that $[QF'x]_{X_2}$ has a uniformly bounded inverse $||[QF'x]_{X_2}^{-1}|| \leq \gamma$ and the restriction $[A+PF'(x)]_{X_1}$ of [A+PF'(x)] to X_1 has a uniformly bounded inverse $||[A+PF'(x)]_{X_1}^{-1}|| \leq M$ for all $x \in \Omega$.

Furthermore, assume that $\|PF'x - PF'y\| \le L\|x - y\|$ for all $x, y \in \Omega$.

$$If q_{0} = M \left[\alpha \beta \gamma + \frac{L}{2} (1 + \gamma \beta) \delta_{0} \right] < 1,$$

$$\delta_{0} = (1 + \gamma \beta) M ||Ax_{0} + PFx_{0}|| + \gamma ||QFx_{0}|| < (1 - q_{0})R,$$
(5)

$$\delta_0 = (1 + \gamma \beta) M \|Ax_0 + PFx_0\| + \gamma \|QFx_0\| < (1 - q_0)R, \tag{5}$$

then the sequence $\{x_n\}$, constructed by (3) converges to a solution x^* of equation (1), and

$$||x_n - x^*|| \le Rq^n.$$

Proof.

We may choose t > 1 such that $||\mathbf{u}|| = + ||\mathbf{u}|| = |\mathbf{u}|| = |\mathbf{u}|| = |\mathbf{u}||$

bus
$$q = M\left[\alpha t \gamma \beta + \frac{L}{2}(1 + t \gamma \beta)\delta\right] < 1,$$
 (2) $0 \le \alpha$ is not ladd emuse. (7)

$$\delta = M(1 + t\gamma\beta) ||Ax_0 + PFx_0|| + t\gamma ||QFx_0|| < (1 - q)R.$$
 (8)

For $n \geq 0$ let us define $x_n = u_n + v_n$, $\overline{x}_n = u_{n+1} + v_n$,

$$\Omega_n = \left\{x \in X : \|x - \overline{x}_n\| \le r_n\right\}, \quad S_n = \left\{v \in X_2 : \|v - v_n\| \le r_n\right\}, \ \lambda_n = u_{n+1} - u_n; \quad \mu_n = v_{n+1} - v_n; \quad r_n = t\gamma \|QF\overline{x}_n\|; \ G(v) = QF(u_{n+1} + v).$$

We first observe that $u_{n+1} + S_n \subset \Omega_n$ and

It can be verified that
$$G_n'(v) = \left[QF'(u_{n+1} + v)\right]_{X_2}$$
 hence there exists $x_1 = x_1 + x_2 + x_3 = x_4 + x_4 + x_4 = x_4 =$

We will show by mathematical induction for n the following relations:

The conditions (9)-(15) are proved by mathematical induction for
$$n \geq 2$$
.
(e) ume that there exists $x_n = u_n + u_n$, then $0 \leq n$, $0 \leq n$

$$\|\lambda_0\| \le M\|Ax_0 + PFx_0\|,\tag{10}$$

$$\|\lambda_n\| \le M \left[\alpha \|\mu_{n-1}\| + \frac{L}{2} (\|\lambda_{n-1}\| + \|\mu_{n-1}\|) \|\lambda_{n-1}\|\right], \ n \ge 1,$$

$$\|\lambda_n\| \le q\|\lambda_{n-1}\|, \quad n \ge 2,$$

$$\overline{x}_n \in \Omega, \quad n \ge 0,$$
 (12)

$$||QF\overline{x}_0|| \le \beta ||\lambda_0|| + ||QFx_0||, \quad 1 \ge ||AU|| = ||AU - 1 + AU||$$
(13)

$$||QF\overline{x}_n|| \le \beta ||\lambda_n||, \quad n \ge 1,$$

$$\Omega_n \subset \Omega, +n \ge 0. \quad \leftarrow n + n = n \quad \leftarrow n \quad \leftarrow n \quad \leftarrow n \quad \Rightarrow \text{ otherwise}$$

$$(14)$$

Indeed, assume that for $n \geq 1$ such that $x_n \in \Omega$, then

 $\|\lambda_n\| = \|u_{n+1} - u_n\| \le M\|(A + PF)x_n\|.$ that $[PF^t(x)]_{X_2} = 0$ and the norm in X satisfies the inequality $C||x|| \ge ||u||$ for x = u + v, $v \in X_1$, $v \in X_2$ and C > 0 is a constant, then the seques rolerand

It can easily be seen that x^* is a solution of the equation (1). The estimation

$$\|\lambda_n\| \leq M \|\int_0^1 PF'[x_{n-1} + t(x_n - x_{n-1})](x_n - x_{n-1})dt - PF'x_{n-1}(u_n - u_{n-1})\|,$$

hence

$$\|\lambda_n\| \le M \left[\alpha \|\mu_{n-1}\| + \frac{L}{2} (\|\lambda_{n-1}\| + \|\mu_{n-1}\|) \|\lambda_{n-1}\|\right].$$

Assume that for a $n \geq 0$, (9)-(14) are true. Then $(u_{n+1} + v) \in \Omega_n \subset \Omega$ and

(8)
$$|G'_n(v)^{-1}| \le \gamma \text{ for all } v \in S_n. + 1)M = \delta$$

If
$$||QF(\overline{x}_n)|| > 0$$
 then $r_n = t\gamma ||QF\overline{x}_n|| > \gamma ||G_n(v_n)||$ for $t > 1$.

It follows readily from the theorem of Hadamard of local topological isomorphism (see [5], p.139) that there exists $v_{n+1} \in S_n$ so that $G_n(v_{n+1}) = 0$, and

$$\|\mu_n\| = \|v_{n+1} - v_n\| \le r_n = t\gamma \|QF(\overline{x}_n)\|.$$
 (15)

If $QF(\overline{x}_n) = 0$, we take $v_{n+1} = v_n$. Then $G_n(v_{n+1}) = 0$ and condition (15) is true for $\|\mu_n\| = r_n = 0$.

It can be verified that (9)-(14) are true for n = 0, hence there exists $x_1 = u_1 + v_1$ by (3). Direct computation shows that (9)-(14) are true for n = 1, hence there exists x_2 such that the condition (15) is true.

The conditions (9)-(15) are proved by mathematical induction for $n \geq 2$. Assume that there exists $x_n = u_n + v_n$, then

$$||u_{n+1} - u_n|| = ||\lambda_n|| \le M \left[\alpha t \gamma \beta + \frac{L}{2} (1 + t \beta \gamma) \right] ||\lambda_{n-1}|| = q ||\lambda_{n-1}||.$$

Hence $\|\lambda_n\| \leq q^{n-1} \|\lambda_1\|$

$$||v_{n+1} - v_n|| = ||\mu_n|| \le t\gamma\beta ||\lambda_n|| \le t\gamma q^{n-1} ||\lambda_1||.$$

Therefore
$$u_n \to u^*$$
, $v_n \to v^*$, $x_n = u_n + v_n \to x^* = u^* + v^*$.

It can easily be seen that x^* is a solution of the equation (1). The estimation (6) is true.

1. The estimation x^* is a solution of the equation (1). The estimation x^* is a solution of the equation (1).

Theorem 2.2. Assume that hypotheses of Theorem 2.1 hold. In addition assume that $[PF'(x)]_{X_2} = 0$ and the norm in X satisfies the inequality $C||x|| \ge ||u||$ for x = u + v, $u \in X_1$, $v \in X_2$ and C > 0 is a constant, then the sequence (x_n) , constructed by (3), converges to x^* at quadratic rate:

$$\|(x_{n-1} - x_n)\| \le M \| \|x_{n-1} - x_n\| \le h \|x_n - x_{n-1}\|^2.$$

$$\|x_{n+1} - x_n\| \le h \|x_n - x_{n-1}\|^2.$$
(16)

Proof.

For $n \geq 2$ we have $||x_{n+1} - x_n|| \leq q(1 + t\gamma\beta)||\lambda_n||$. Since $[PF'(x)]_{X_2} = 0$, it follows that $\alpha = 0$; hence ||x|| = 1.

$$X_{2} = Y_{2} = \{\cos \left\| \lambda_{n} \right\| \le M \frac{L}{2} (1 + t\gamma \beta) \|\lambda_{n-1}\|_{-\infty} = 2Y = 2X$$

Therefore $||x_{n+1} - x_n|| \le h||x_n - x_{n-1}||^2$ where $h = C^2 M \frac{L}{2} (1 + t\gamma \beta)^2$.

Remark: By our algorithm we can get a quadratic convergence rate different from [4] in which the rate is linear.

Theorem 2.3. Let F be continuously differentiable in an open neighbourhood of a solution x^* of (1). Assume that $QF'(x^*)_{X_2}$ has a bounded inverse and the restriction $[A + PF'x^*]_{X_1}$ of $[A + PF'x^*]$ to X_1 has a bounded inverse and

$$||[A + PF'(x^*)]_{X_1}^{-1}|| ||[PF'x^*]_{X_2}|| ||QF'x^*|| ||[QF'x^*]_{X_2}^{-1}|| < 1.$$
(17)

If the initial approximation x_0 is sufficiently close to x^* , then the sequence $\{x_n\}$, constructed by (3), converges to a solution of (1).

Consider the following periodic boundary-value problem: $(1)_{1+n}u = (0)_{1+n}u = (0)_{1+n}u = (0)_{1+n}u$

$$\ddot{x} + \sin\frac{1}{4}x + 5(e^{\ddot{x}} - 1) = 0, \quad 1 + a^{3} + 1 + a^{3} = 0$$

$$x(0) = x(1), \quad \dot{x}(0) = \dot{x}(1). \quad 1 + a^{3} + (1) + a^{3} = (1) + a^{3} = 0$$

$$(18)$$

The problem (18) may be reduced to the form (1) by introducing the following spaces and operators:

$$X = \left\{ x \in C^{2}[0,1] : \ x(0) = x(1), \ \dot{x}(0) = \dot{x}(1) \right\}$$

$$Y = C[0,1], \ \|x\|_{X} = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |\dot{x}(t)| + \max_{0 \le t \le 1} |\ddot{x}(t)|,$$

$$\|y\|_{Y} = \max_{0 \le t \le 1} |y(t)|$$

$$X_{1} = \left\{x \in X : \int_{0}^{t} x(t)dt = 0\right\}, \quad Y_{1} = \left\{y \in Y : \int_{0}^{t} y(t)dt = 0\right\} \text{ will } t$$

$$X_{2} = Y_{2} = \{\text{const}\}, \quad Ax = \ddot{x}, \quad Fx = \left(\sin\frac{1}{4}x + 5(e^{\ddot{x}} - 1)\right).$$

It can be verified that problem (18) has the solution $x^* \equiv x^*(t) \equiv 0$, $\forall t \in [0,1]$, $[A + PF'(0)]_{X_1}$ has a bounded inverse, $[QF'(0)]_{X_2}$ has a bounded inverse and $\|[A + PF'(0)]_{X_1}^{-1}\| \leq \frac{50}{11}$, $\|[QF'(0)]_{X_2}^{-1}\| \leq 4$, $\|[PF'(0)]_{X_2}\| = 0$.

Using Theorem 2.3 we obtain the following result. il al also and daidw ni [4]

Theorem 3.1. If the initial approximation x_0 is sufficiently close to $x^* \equiv x^*(t) \equiv 0, \forall t \in [0,1]$, then the sequence $\{x_n\}$, constructed by the formulae:

$$\ddot{u}_{n+1} + \frac{u_{n+1}}{4} \cos \frac{x_n}{4} + \ddot{u}_{n+1.5e} \ddot{x}_n - \int_{0}^{1} \left(\frac{u_{n+1}}{4} \cos \frac{x_n}{4} + \ddot{u}_{n+1.5e} \ddot{x}_n\right) dt$$

$$= \frac{u_n}{4} \cos \frac{x_n}{4} + \ddot{u}_n.5e^{\ddot{x}_n} - \int_{0}^{1} \left(\frac{u_n \cos \frac{x_n}{4} + \ddot{u}_n.5e^{\ddot{x}_n}}{4}\right) dt$$

$$- \left[\sin \frac{x_n}{4} + 5(e^{\ddot{x}_n} - 1) - \int_{0}^{1} \left(\sin \frac{x_n}{4} + 5(e^{\ddot{x}_n} - 1)\right) dt\right], \qquad (19)$$

$$u_{n+1}(0) = u_{n+1}(1), \quad \dot{u}_{n+1}(0) = \dot{u}_{n+1}(1),$$

$$\int_{0}^{1} \sin \frac{u_{n+1} + v_{n+1}}{4} + 5(e^{\ddot{u}_{n+1}} - 1) dt = 0,$$

$$x_{n+1}(t) = u_{n+1}(t) + v_{n+1} \qquad (1) = 0,$$

converges to a solution of (18).

It is to be noticed that the approximation method developed by Pham Ky Anh in [4] for problem (18) at the solution $x^* = x^*(t) = 0$ is not applicable.

Aknowledgement. I express my deepest gratitude to Prof. Nguyen Minh Chuong and Prof. Le Dinh Thinh for their help and encouragement.

REFERENCES

- 1. L. Nirenberg, Topics in non-linear functional analysis, Russian transl., Moscow, 1977.
- 2. P. M. Fitzpatrick, Existence results for equations involving noncompact pertubation of Fredholm mappings with applications to differential equations, J. Math. Anal. Appl., 66 (1978), 151-178.
- 3. G. W. Reddien, Approximation methods and alternative problems, J. Math. Anal. Appl., 60 (1977), 139-149.
- 4. Pham Ky Anh, On an approximation method for solving quasilinear operator equations, Dokl. Akad. Nauk USSR, 250 (1980), 291-295 (Russian).
- 5. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Russian transl., Moscow, 1975.
- 6. V. I. Gorbachuk, Boundary value problems for differential operator equations, Naukova dumka, Kiev, 1984 (Russian).

Abstract. Let (Φ, Ψ) be a pair of Young's functions and (φ, ψ) their density functions such that

Institute of Mathematics
P.O. Box 631, Bo Ho
10000 Hanoi, Vietnam

Let $\{X_n\}$ be an integrable martingale. Then, the following maximal inequality holds:

$$E\left[\left. \xi \left(\sup_{1 \le k \le n} |X_k|/\rho ||X_n||_\Phi \right) \right] \le \frac{1}{\rho - 1}$$

where p > 1 is a constant and | . | \(\phi\) denotes the Luxemburg's norm.

1. INTRODUCTION

Throughout this paper we shall work with a fixed probability space (Ω, A, P) and a sequence of σ -fields $\mathcal{B}_0 \subset \mathcal{B}_1 \subset \cdots \subset \mathcal{B}_n \subset \cdots \subset A$, such that $\bigvee_{n=1}^{\infty} \mathcal{B}_n = \mathcal{B}_n \subset A$.

The martingales or submartingales are always supposed to be adapted to the sequence of σ -fields $\{\beta_n\}_{n\in\mathbb{N}}$.

For a pair of Young's conjugate functions (Φ, Ψ) , we shall denote by φ (resp. ψ) the density function of Φ (resp. Ψ), and we shall set by ξ the increasing function from R_+ to R_+ defined by

$$\xi(u) = u\varphi(u) - \Phi(u) = \Psi[\varphi(u)]. \tag{1}$$