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ON AN APPROXIMATI9N METHOD
FOR SOLVING QUASITINEAR

OPERATOR EQUATIONS

NGUYEN VAN KHAI

Abstract" Inthispop,rtheouthorprclentsonapporimationmethdforsohingquasilinmr
op.rd,or equation Ax + Fx : O wherc A is a boundd linmr Fre&tolm op,rotor and F

' rs a nonlinenr op,rator. Conaergence theorems and theorem of rvte of conuergence ol on
appoxirnation rnethd arc prcued. Sorne numericol etamples are giaen,

1. INTRODUCTION

. In this paper we consider the following operator equation:

A r  *  F x  : 0 ,  ( l )

where ,4 is a bounded linear Fredholm operator (index zero), F is a nonlinear
operator and .4, F : X - Y; X, Y are Banach spaces. It is well known that by
the  assumpt ion  o f  , 4 , .we  have :  X :  X r@Xz,Y  :Y t@Yz ,  Xz :  Ke r .A ,  y r :
Im.A, dim& : codimYr : tm 1*oo, Yr is closed in Y and the restriction .4 of ,4
to X1 has a bounded inverse.

Let us denote by P a bounded linear projection from Y on }!, py : yt,

Q: (I - p), where.I is a unit operator in Y. Then the equation (f) is equivalent
to system:

A u + P F ( u * u )  : Q ,  
e )Q F ( u + u )  : s .

w h e r e u € X 1 , a € X 2 .
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Note that the operator equation (1) has been investigated by many authors
(see [1, 2, 3, 4] for instance). By using the degree theory, we can obtain exis-
tence theorems for the equation (l) (see [], 2]). This equation may be solved by
projection methods or by a special iterative method (see [3, a]).

We shall solve (1) by the following approximation method: knowing the
ru-th approximation r,, (the oth approximation cs is supposed to be given), we
construct the (z + l)-th approximation by the formulae:

Aun* ,  *  PF t ( r * )un* r :  PF t ( rn )un  -  PFrn ,

QF(un+ t  *  u , .+ r )  : 0 ,

I n * t : U n + t * U n + t

where unlr  € Xr,  uo+L € Xz.

(su)
(3b)

2. CONVERGENCE THEOREMS AND THEOREM
ON THE RATE OF CONVERGENCE

Let us denote by lPFt(r)]*, u restriction of the derivative pFt(r) to &
(f :1,2) and IQF'(*))x" a restr ict ion of the derivatlve eFt(r) to X2.

Theorem 2.L. Let F be continuously differentiable (in the Fftchet sense) in an
open neighbourhood

o : { s € X :  l l " - " o l l  < R } ,
and lllrr'r1*,ll < ", llOr,rll S O for arr c € o.

Assume that [QF'r]21" has a uniformly bounded inverse llAF,rlx:ll < ,y
and the restriction[A+ PFt(r)]x, of IA+ PFt(r)) to Xl has a uniformly bo,unded
inverse ll[.4 + PF'(r)];:ll S tvt for alt r € O.

Furthermore, a.ssume that llPFtx - PF,yll 3 Lll" - yll for all z,A e n.

I f  qs :  Mlogt+ * t t  + r f )6o]  < 1,  (4)L  '  
2 '

66 : (1 + $)MllAno * pFxoll + r l ler"ol l  < (r - qo)R, (s)

then the sequence {rn}, constructed by (S) convetges to a solution tr* of equ4tion
(t), and

(6)l l r " - r . l lSRq"
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Proof .

We may choosi t >,1 such that

q : M l a t t \ * * O + f i p ) 6 1  < 1 ,'  z '
6 : M(r + t1p)ll/"o + pflr6ll + 4ilQFsoll < (t - q)R.

For z ) 0 let us define on : rtrn * un, in :'ttrnir * un,

O o  :  { r e X '  l l " - z , l l  S r " } ,  S , ,  :  { u  e X 2 ,  l l r - u * l l  5 r , ] ,
) n  :  u n * l  -  u n l  F n :  a n t r  -  u n i  r " :  t l l l Q F t " l l ;

G ( u )  :  Q F ( u ^ a 1 *  u ) .

We frrst obr"ri"'that urral + ,9o c Oo and

, G',(r) '= 
[eF'(u^+r * u)]*,.

I

We will show by mathematical induction for rz the following relations:

r r .  €  O ,  n )  O ,

l l ro l l  < Ml lAxs+ PFxsl l ,

l l r , l l  <  Mlo l lp . - r l l  +  ! ( l l r , - , l l  +  l lp , - , l l ) l l I " - , l l l , ,  t  1 ,

l l ) " l l  S  q l l ) "_ r l l ,  n )  z ,
e , "  €  O r '  n )  o ,'  
l lQrzol l  < Fl l roi l  + l lQrr6l l ,
l lQFr -USBl l ) " l l  ,  n lL ,
O ,  C  O ,  n l O .

Indeed, assume that for n ) L such that
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(7)

(8)

(e)
(10)

(r t)
(1  2 )

(13)

(14)

zr, € O, then

Therefore

P Ftrn-1(un - 
","-, ) l l ,

I
n f

S Ml l  I  PF ' l rn - ,
i l J

o

l lA" l l  ;  l lu"+r -  o" l l  < Ml l(A + PF)%ll .

l l ) " l l * t (rn -  
""- t) ]  

(rn -  rn-1)dt -
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l l ) , l l  s  Mlol lp , - r l l  + ! ( l l l , - , l l  +  l lp"- , l l ) l l r , - , l l l .

Assume that for an) 0, (9)-(14) aretrue. Then (rrr+t *u) e O,, c O and

l lC'"(r)-t l l  < r for al l  u € Sn.

If llQF(i.)ll > 0 rhen r," : tillQrr,ll > rllc,(u,)ll for t > 1"
It follows readily from the theorem of Hadamard of local topological iso-

morphism (see [5], p.139) that there exists un+r e ,S," so that G,n(u,,+r) : 0,
and'

l lp" l l  :  l l r "+t  -  , " l l  1rn:  t l l lQF(r") l l . (  15 )

It QF(i"): 0, we take u,.al :  nn. Then Gn(r,.+t) :  o and condit ion (15)
is true for llp.^ll : "," 

: 0.

It can be verified that (O)-(14) are true for rz : 0, hence there exists 11 :
u1*a1bV (g). Direct computation shows that (9)-(14) are true for n:1, hence
there exists 12 such that the condition (15) is true.

The conditions (9)-(15) are proved by rnathematical induction for n ) 2.
Assume that there exists tn : 1trn * un, then

l l r ,*,  -  u^l l :  l l , \ ,  l l  S rrt lottg + f,O +t| i l l l l , - , l l  :  ql l)"-,11.

Hence l l r " l l  S q"- t  l l l r  l l

,  l l r , ,+, - r" l l  :  l lp^l l  S t.ypll l , l l  Sttq"- t l l f  r l l .

Therefore un + u*, un --+ t)*, xn i ttrn * un --+ fi* = rL* * u*.

It can easily be seen that o* is a solution of the equation (l). The estimation
(6) is true"

Theorem 2.2. Assume that hypotheses of Theorem 2:7 hold. In addition a,ssume
that IPF'(")]*, :0 and the norm in X satisfres the inequality cll"ll ) llull for
n : rL I u, u € Xt, u € Xz and C ) 0 is a constant, then the sequence (rn\,
constructed by (3), converges to r* at quadratic rate:

(16)11","+t - 
""l l  S hll""- ","-t l l '"
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Prool.

.  For  n)  2  we have l lc ,+r  -o" l l  S q( l  + t1 i l l l ) " | | .  S ince l f f '12; ]x ,  :0 ,
it follows that a :0: hence

l lr, l l S u Lrtt + t1il l l)"-, l l.

Therefore ll",*, - ,*ll < hllr'- - rn-Lll2 where h : C2 M+$ + t1B)2 .

Remark: By our algorithm we can get a quadratic convbrgence rate different from

[ ] in which the rate is linear.

Theorem 2.3. Let F be continuously differentiable in an open neighbourhood
of a solution E* of (1)" Assume that QFt(r*)x" has a bounded inverse and the
restfiction ld+ f f'r*1x, ,f fe+ ff'"-] to X1 has abounded inverse and

l l lA + pF'(r.)l; l l l l l lrr '"-lr,l l l lep'r'. l l l l ler,"-l;l l l . r. (12)

If the initial appracimation rs is sufficiently close to fr*, then the sequence {"r"},
constructed by (3), convetges to a solution of (1).

3. AN EXAMPLE

Consider the following periodic boundary-value problem:

. 1i + s i n i r + 5 ( e ' - 1 )  : 0 ,

z(o)  :  s11; ,  (18)

r(o) :  r(1).

The problem (f8) may be reduced to the form (1) by introducing the fol-
lowing spaces and operators:

X :  { ,  e  C2 lo ,1 ]  :  r (o )  :  r (1 ) ,  t (0 )  :  i (1 ) }

59

y : c[o,l], ll"ll* : o?,?, lu (r)l + o?,?, lr(r)l + o?r?, lr(r)1,
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llvll" : ,?ru,, lv(t)l

, l \ r i )x r :  { "  e  x  :  
J  

r ( f i a t :  o } ,  \ :  {u  €Y  ,  J  v@at :  o }
0 0

Xz :Y ,  :  { cons t } ,  A r :  t ,  Fx :  ( r i r ,  } "  *  S {e i  -  1 ) )
4

It can be verified that problem (fS) has the solution s* = n*(t) : O, Vt e [0,1],
lA+ PF'(0)]26, has a bounded inverse, [QF'(O)]x, has a bounded inverse and

l lh + pr,(0)l;1il s ff , ll[qr,(0)];ll l < 4, ll[Fr,(o)]x,ll : o.
Using Theorem 2.3 we obtain the following result.

Theorem 3.1. If the initial approximation xs is suffciently close to r* : n* (t) =
0, V, e [0, t], then the sequence {ro}, constructed by the formulae:

un#L rn .. i / un*r frn \i ln+t  t  
t  

cos 
; :  

*  un+t.sei"  -  
J ( f  cos 

7 
- t  i in+L s" i") .dt

o

l tn  rn  - ' ;  i  , u .  t r l  -  ;  \-  - . c o s i  * { i n . \ e " -  -  
|  ( t ' . o . 7  + i i n . S e ' " ) d t

4  4  /  \ -

I

-  f  . i '?  +s(ei^  -  r )  -  /  ( , t "  ? +s(ei .  -  r ; )ar l ,  (1e)L 4 
J  

.  4  '  ' , l  J ' ,

, "+ r (0 )  :  u r ,+ r (1 ) ,  , i "+ t (0 )  :  d r r+ r (1 ) ,
I

[ "in%!tll-tt * b(eo'*, - r)dt : o,
J 4 \
o
zr+r  ( t )  :  un+L( t )  *  an+r

converges to a solution of (18).

It is to be noticed that the approximation method developed by Pham Ky
Anh in [a] fo1 problem (fa) at the solution r*: c*(t) :0is not applicable.
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