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ON THE CON VERGENCE OF TWO-PARAMETER
MARTINGALES AND GEOMETRIC
CHARACTERIZATIONS OF BANACH SPACES

NGUYEN VAN HUNG

Abstract. Let (M) = (Mmn,(m,n) € N?) be a two-parameter Banach - valued
martingale. In this note some interrelations between the almost sure convergence of (M) and
the finiteness of its r-order conditional variation (and its r - order variation) are investigated.
Also the three-series theorem. is given in the presence of geometric characterizations of Banach

spaces.

1. INTRODUCTION

Let (0, F, F,, P), n'= 1,2,..., be a filtration probability, (B, ||||) a Banach
space, Let (M) = (M, F,,) be a B-valued martingale. We define for 1 <'r < 2,
U= Sl ok

n

Bu(r) = Y E(|AMi|"|Fe), (1.1)

k=1

(r-order conditional variation of (M)) and

Va(r) =) I1AM|" (1.2)
k=1

(r-order variation of (M)), where AM,, = M,,; — M,, M, =0.

D. H. Thang and N. D. Tien [10] have studied the interrelation between the
finiteness of By, (r) (Va(r)) and the almost sure convergence of (M) in the present
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of geometric charaterization of B. Some inequalities of Doob’s type concerning
B(r) and V (r) are also investigated. Note that this result appeared earlier in the
real case [1], [4], [6].

The aim of this note is to extend some of these results to the case of two-
parameter B-valued martingales. Our methods are based on results of the one-
parameter case and an idea of Fefforman which was used to obtain such results

.in the real case by Brossord [1]. Note that, as far as we know, this approach
does not allow us to obtain every result which has been done for one-parameter
Banach-valued martingales because of the lack of stopping times. This note can
be regarded as a continuation of [9].

2. NOTATIONS AND PRELIMINARIES

Let N2 = N % N be a set of parameters with the order (z,5) < (m,n) if

t <m, j < n. Let (Q, F, P) be a probability space and let (F,, ) be an increasing

'family of sub-o-fields of F. Throughout (F,, ) are assumed to satisfy the usual
- condition (Fy) (c.f. [2] for definition).

A sequence (X, ,) is said to be adapted if X,, , is Fy, , - measurable for
every (m,n) € N2, :

Given a sequence (X, ,) we set for (my,n;) < (mg,ns),

X[(ml’nl)’ (m2’n2)] = szmz —sz,nx —an’?z +Xm1,n1 o AX(mnm),(mzynz)“

This qué.ntity is called the increment of (X) on the rectangle {(m,n) € N?
: (my,n;) < (m,n) < (mg,nz)}.

Unless otherwiser stated, a sequence (X, ) is assumed to be Bochner in-
tegrable, adapted to o-fields (F,, ) and it takes its values in a Banach space

(B, - 11)-

A L'-integrable adapted sequence (M, ) is said to be a martingale if

E(Mm,an,-,j) = M;; whenever (i,5) < (m,n) € N2,

A Banach space B is said to be p-smoothable (1 < p < 2) if (possible after
equivalent renorming)

s tyll =l = by
p(t) = sup { WA= B ) — g =1}

= 0(¢t?) ast —> 0.
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B is superreflexive if it is p-smoothable for a p > 1. With a B-valued martingale
(M ns Fn n), we denote AM,, 5, (m,n) € N2, for its increments.

In what follows, we shall assume M,, , =0 if m or n =0, i.e. M,, , is null
on the axes, in which condition (M, ) can be written as

m n m n
DR WEPHER
i=1j=1 =1j=

We now present some results which are used very often later on. Their proofs
can be found in [9].

Proposﬂ:mn 2.1. Let B be a separable Banach space and 1 < p' < 2. The
following properties are equivalent:

(i) Every two-parameter B-valued martingale (M,, ,,) satisfying the (Llog* L)-
condition converges a.s. and in L!.

(ii) Every two-parameter B-valued martingale (M,, ,) satisfying the LP-
condition converges a.s. and in LP.

(iii) B has the Random - Nikodym property (RNP).
Recall that a martingale (M,, ,) is said to be satisfiable the (Llog™ L)-con-
dition if
50 E (M08 Mo ) < oo.
It satisfies the LP-condition if
sup E||Mpn||P < 0.

(m,n)

Proposition 2.2. Let B be a separable Banach space and 1 < p < 2. The
following three assertions are equivalent:

(i) B is isomorphic to a p-smoothable Banach space,

(ii) There exists a constant Cp, (only depending on p) such that for every
two-parameter B-valued martingale ( m,n) We have

(sup)EHMm nl|P < Cp ZZEIIAM all?
=1 j=1

(Assauad - Pisier’s inequality)
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(iii) For every two-parameter B-valued martingale (M, ) satisfying the
condition

m n '
YN EAM; ;|1P/(i5)? < o,
t=19=1
m n
we have that the martingale My, , = Y ) AM; ;/ij converges a.s. in the norm
: 1=1)=1
of B.

Note that from (iii) and Kronecker’s lemma (cf.[10]) we get

(1/mn) i f: AM;; — 0 as.

1=17=1

s

The following lemma (due to Brossord [1]) is used to get Theorem 3.1.

Lemma 2.1. Let A be an even and apy,n = E[lAIFm,n]. Set B = inf apn >

1—a, a € (0,1]. Then we have B C A a.s. and P (B°) < c¢P(A°), where 14
denote the indicator function of the set A, C is a constant not depending on «
snd B =0\ B, A*=10\A. :

3. THE MAIN RESULTS
Let us define, for (m,n) € N?,

M* = sup [[Mpnnl)

(m;n)

Bma(p) =) ) E(|lAM,;|?|F.;),

(p-order conditional variation of (M)),
m n
Vm,n(p) == Z Z ”AM':,J'HP’
Soel juel

(p-order variation of (M)).

: Denote B(p), V(p) for Boo(p), Voo(p). Note that if p = 2, we have the Hilbert
space case and By, n, Vin,n have been used in [1] to pursue the same purpose here.
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Theorem 8.1. Let B be a p-smoothable Banach space, 1 < p < 2 and (M,, )
be a B-valued martingale. For every A > 0 we have the folllowing inequality:

P(M* > ) < C,{P(BY?(p) > )) + (1/A")E[B(p); B?(p) < A]}.  (3.1)

Proof.
Set A = Bl/”(p) < A, B and am,, being defined as in Lemma 2.1 with
a=1/3 ie B= (inf)am,n > 1/2.
m,n

We have for an arbitrary fixed A > 0

P(M* > )) < P(B°) + P(M* > ); B).

In view of Lemma 2.1, to obtain (3.10) we only have to dominate P(M* >
A; B). :
Now we observe that M,, , coincides with the martingale

n

m
Myn=2, ). lo; ;AM; ; on B. Thus
i=1j=1
P(M*> X; B) < P(M*'> )
< (1/A%)E(M™P)
(Chebyshev’s inequality)
< (Cp/AP) sup E||Mpp,n|?

(Doob’s inequality)

S(CANE{ > lan.>123|AMmal?P}
(m,n)eEN?2

(Assauad-Pisier’s inequality)

< (Co/AE{ Y E(|AMpallP | En)-
(m,n)EN?2
Yo n21/2} | AMpm o7}

< (2C,/W)E{ D E(|AMpm,al?|Frnn) am,n}

‘ (m,n)EN?
= (2C,/N") E[B(p); aco]
= (2C/AP)E[B(p); B(p) < A] QE.D.
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Note that By putting p = 2 in the above theorem we obtain Theorem 2.1 in

[1].

Theorem 3.2. Suppose that B is a p-smoothable Banach space, 1 < p < 2. Then
we have the following facts

(i) {B(p) < 0o} C {M,n converges a.s.} a.s.
(ii) M; 00, Mco,; and Moooo exist a.s. on the set { B(p) < oo}
(iii) For each0 < r < 1

E(M*)™*' < C,,E[B(p)| )77, (3:2)

Proof.

The proof of (i) and (ii) are similar to that of Theorem 2 in [1], and so we
omit them. ‘

Now we prove (iii). Note-at first that

o =/A'P(M* > A)dA.
0
Multiplying two sides of (3.1) with A" and taking integration in A from 0 to
0o, we get
E(M*) ! < c,,{ / ATP(M* > A)d)
0

+/,\'—PE[B(p);'B(p) < A]d,\}

0

% C,,{E(B('“)/P(p)) +/,\'—Pd,\/x1’—1P(Bl/P(p) > z)dz}

. 0
= C,,,,{E(B(’“)/P(p)) _
+/,\'-Pd,\/zp—1P(Bl/P(p) > x)dz/A'“pdA}
0 0 0

- c,,,,{E(B(’“)/P(p)) + / z"P(BY/?(p) > z)dz |
0
= CprE(BU+Y/?(p)).  Q.E.D.
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Remarks. 1) Taking r = 0 in (3.2) we get

E(M") < G,E(BY*(p). (3.3
Inequality (3.3) is useful in the one-parameter case (cf. [1],[2]).

2) Taking r + p — 1 in (3.2) we obtain &

B < CE(B(). (3.4)
Inequality (3.4) was found by Brossard ([1], Theorem 1) in the real case.

We now deal with the case in the presence of Vi, (p).

Theorem 3.3. Suppose that B is a separable Banach space and 1 < p < 2. The
following assertions are equivalent: '

(1) B is isomorphic to a p-smoothable Banach space,

(2) For every two-parameter B-valued martingale (M, n, Fy, ) we have

{Boo(p) < oo} c {Mm,n converges a.s“} a.s.

(3) for every two-parameter B-valued martingale (M, n, Fin ) satisfying
the condition E(M*)? < co we have

{Voo(p) < oo} C {Mm,n converges a.s.} a.s.

To prove this theorem we need the following lemma which is an extension
of Theorem 2.1 in [7].

Lemma 3.1. Let (u; ;) be a non-negative real-valued sequence of two-parameter
random variables such that u; ; is F; ; - measurable.

Set, for all (1,7) € N? and (m,n) € N2,

bij = E(uij|Fi1,j-1),
b;; =0ift orj =0,

Vm n
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i g E(sup(m’") Um,n) < 00, then we have

{V(p) < 00} = {B(p) < o0}.

Proof.
We have at first the following observations:

(1) Vin,n(p) and By, . (p) are non-negative and B,y »(p) are F,, , - preditable.
(2) We always have for all (m,n) € N? that

where k = min(m,n), r = max(m,n).

" The two above facts let us see that it suffices to prove the conclusion in the
one-parameter case, precisely in the diagonal. Hence the rest of the proof can be
proceeded as Theorem 2.1 in [7]. Q.E.D.

Proof of Theorem 8.83. We shall prove Theorem 3.3 as the following implications:
(1) = (2) = (3) = (1).

(1) = (2) is a consequence of Theorem 3.2.
(2) = (3)

(3) = (1).

condition

follows from Theorem 3.2 and Lemma 3.1.

Suppose that (Mm,n, Fn,5) is B-valued martingale satisfying the

ZZE”AMiJ”p/(U)p < oo. (3:5)

1=1 =il

Consider the following B-valued sequence

Yin = (1/mn)AMy, n,  (m,n) € N2,

Ymn =0if morn=0.

m n
Clearly, (Nm,n =3 3 Yig Fm,u) is a B-valued martingale and
=1 3=1
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N) =33 | AN;|7/(i5)P

1=17=1

= AN P 627

=i =1
E sup ||AMp.||F = Esup ||AMp .||

(m;n)
< YD ElAM P/ (5)?
s=1y=1
by (3.5).
Thus, E[V (p, N)] < co and

E sup ||AM, || < oo.

(myn)
From (3) we get that the martingale (M n, Fm n) converges a.s. Hence the con-

clusion follows from an application of Proposition 2.2. Q.E.D.

Now the above results can be applied to obtain the conditional version of
the three series theorem in Banach space for two-parameter martingales.

Recall that the three-series theorem holds on a Banach space B if for every

m n

B-valued sequence (Mm,n 2 T T AMi,J‘,Fm,n) we have that M,, , converges
1=1y=1

a.s. on B provided the following conditions hold:

(i) Z Z E(AY" |F;,;) converges a.s.,
i=1j=

I

(ii) (|| E(Y, C’ s lIP IF,,) is finite a.s.,

(iii)
15=1

where Y; ; = AM; ; and

,.
Il
ot

<,

M3
'M i M:

(”Yi,j” > C’Fi,j) <00,

-,
il

ity { AM.; i [AMy ] <«
0l 7

0 otherwise,

¢ being an arbitrary constant.
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Theorem 3.4. (The three-series theorem)
The following three assertions are equivalent:
(1) B is isomorphic to a p-smoothable Banach space,

(2) For every B-valued martingale M,, ,, if the condition Bu,(p) < oo a.s.
holds then we have that M, , converges a.s.,

(3) The three-series theorem holds on B.

Proof.
(1) = (2). This implication is a conclusion of Theorem 3.2.
(2) = (3). Suppose that we have (2) and

(M =Y Y- 80015 = 33 %)

i=1j=1 i=lj=1
is an arbitrary B-valued martingale.

Now the condition By (p) < oo a.s. and the second condition (ii) of three-
series theorem imply that

53 (¥ - B(vama)

i=1j5=1

converges a.s. and, by the first condition (i) of the three-series theorem,

m n

€
bR B
=] g

converges a.s.

The condition (iii) of the three-series theorem and Borel-Cantell’s lemma
end the proof of (2) = (3).

(3) = (1). We again use Proposition 2.2. Suppose that (M, ») is a B-valued
martingale satisfying the condition (3.5). Put

Ympn = (1/mn)AMy ., (m,n) € N?,
Ymn =0ifmorn=0.

It is easy to see that (Y, ,) are adapted to o-fields (an) Further we observe
that
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P(”Ym,n” & chm,n) .. ICEHAth,n)HP/(mn)p, ; (3.6)
(Chebyshev’s inequality). :

1 el
E|E(Y(n,m)| Frmpn) |l = %EHE(AMm,nl{nAMm;"|1>cm..}k|Fm,n)||

1
< LB E(AMomn 1AM ai[56ma)) |

| b} sgeqT
= Cl me”AMm,n” (;1—71,_) 1{”AMm,n”>Cm"}
. B g
< O Bl [AMml, 5.7)

E(I¥5 = BY 5 Frnin) |7 | Finin) < 2P E(1%551°{Fins)

1
P E(||AMpmnl|P|Fran)-

From (3.6), (3.7), (3.8), and (3.5) we conclude that the conditions (i), (ii)
and (iii) of the three-series theorem hold for the sequence (Y, ). Hence, according

m n .

to (3), we get that the martingale M,,, , = > 3 AM; ; converges a.s.. Finally
1=17=1

Proposition 2.2 ends the proof Q.E.D.
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