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ON THE STRUCTURE OF INVOLUTION
RINGS WITH CHAIN CONDITION

RICHARD WIEGANDT

Abstract. Recent results due to U. A. Aburawash, K. I. Beidar, M. Domokos, P. H. Lee,
N. V. Lot and the author ([1], [2], [3], [7], (8], [10], [14], [15] , [16]) are surveyed on the
structure of rings with involution. Working within the category of all rings with involution
and of all homomorphisms préserving also involution, one has the slight advantage of having
more calculation rules, but one faces the disadvantage of having less homomorphisms. Thus,
to be consistent in describing the structure of involution rings, one cannot work with one-sided
ideals. An appropriate and efficient left - and right - symmetric notion is that of *- biideals.
Imposing chain conditions on *-biideals the involutive versions of the Wedderburn - Artin,
Goldie, Litoff - Anh Ayoub - Dinh Van Huynh theorems can be proved, and also stronger
stgtements than for associative rings, can be achieved (for instance, if an involution ring has
d.c.c. on *-bitdeals, then its Jacobson radical has d.c.c. on additive subgroups). An involution
ring A is semiprime and finate if and only if the polynomial ring over A has d.c.c. on *-biideals.
This latter result can be regarded as a counterpart of the Hilbert Basis Theorem. Also some
open problems are posed.

1. INTRODUCTION

The purpose of this note is to survey the most recent developments in de-
scribing the structure of involution rings satisfying chain conditions. These results
have been published or are being published in the papers [1], [2], (3], [8], [10] [14],
[15] and [16].

An involution ring A is a ring with an additional unary operation * called
involution, subjected to the familiar identities

($+y)* = .'L'* + y*,- (zy)* — y*x*, z** o z, vx,y e A,

The most common and natural examples for involution rings are the real and
complex matrix rings with the usual involution.
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Though involution rings have been intensively investigated in the context of
ring theory with applications to Jordan algebras, Banach algebras and operator
algebras, less attention was paid till recently to the study of involution rings as
such, that is, to their description in terms within the category of involution rings.
While working in the category of involution rings one has the slight advantage of
having more calculation rules, but on the other hand one has less homomorphic
mappings, than in the category of rings: all homomorphisms considered (and so
also embeddings) have to preserve involution too. Thus only subrings are admit-
ted which are closed under involution. Since every one-sided ideal which is closed
under involution must be a two-sided ideal, the term “one-sided ideal with invo-
lution” cannot play any role. As a consequence there is no “module theory” over
involution rings. In the investigation of rings it is quite efficient to impose chain
conditions on one-sided ideals (chain conditions on two-sided ideals are usually too
weak for describing the structure of rings). Since the notion of one-sided ideals is
meaningless for involution rings, an appropriate notion has had to be found which
has generalized that of one-sided ideals and which has worked in describing the
structure of involution rings. It has turned out that such a desired notion is that
of *-biideals. A *-bitdeal B of an involution ring A is a subring such that

BABCB and B® CB

where

B® ={b*€A:bec B}

For rings without involution biideals have been introduced by Lajos and
Szész [13] in 1971, and the first significant application of that notion in describing
‘the structure of rings appeared in the Habilitationschrift of Widiger [19} in 1978.
It was Loi who first used successfully *-biideals in proving structure theorems for
involution rings in his paper [15].

The *-biideal of an involution ring generated by a subset S will be denoted by
(S)*. A principal *-biideal is a *-biideal generated by a single element. Obviously,
the principal *-biideal {a)* of an involution ring A is given by

(a)* = Za + Za"* + aAa + ada* + a*Aa + a* Aa”

where Z denotes the ring of integers. In the ring M, (R) of all n X n real matrices
with the usual involution, let us consider the matrix e;; with a single 1 at the (3, j)
position and 0 everywhere else. As one can easily verify, the principal *-biideal
(esj)* consists of all matrices which have arbitrary real numbers at the (4,1} {5, 7),
(7,%) and (J,7) positions and 0 everywhere else.

In the sequel, a ring will mean, if not specified, an associative ring not
necessarily with 1. If I is an ideal of an involution ring A which is closed under
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involution, then we shall say that I is a *-ideal of A and denote this fact by I<* A.
For descending chain condition and ascending chain condition we shall briefly write
d.c.c. and a.c.c., respectively.

Let A be any ring with involution and A°P its oposite ring. On the direct
sum

C=A@ A°?

we may define an involution *, called the ezchange involution, by the rule

(II},y)* T (y,x) \V_I(»T,y) g o

If the ring A happens to be simple, then the only *-ideals of C' are 0 and C itself.
We say that an involution ring C is *-simple, if C? # 0 and 0 and C are the only
*-ideals of C'. By the above example, a *-simple involution ring need not be simple
as a ring, althoulgh the converse is trivially true.

Thfoughout this paper M, (D) will denote the n X n matrix ring over a
division ring D. Notice that if M, (D) is an involution ring, then so is also D.
Further , K,,(D) will stand for the direct sum K,(D) = M,,(D) & M2?(D)

endowed with the exchange involution.

2. SEMIPRIME INVOLUTION RINGS

As is well-known, a ring A is said to be semiprime, if I < A and I%2 = 0
force I = 0. Correspondingly, an involution ring A may be called *.semiprime,
if I <* A and I?> = 0 imply I = 0. As one can easily prove, an involution ring
A is *-semiprime if and only if A is semiprime, and therefore there is no need to
distinguish these notions.

In [1] Aburawash described the structure of semiprime involution rings with
d.c.c. on *-biideals. Let us recall that a ring is said to be artinian, if it satisfies
d.c.c. on right ideals.

Theorem 1. For a semiprime ring A with involution * the following conditions
are equivalent:

(i) A has d.c.c. on *-biideals,
(ii) A is artinian as a ring without involution,

(iii) A is a finite direct sum
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Corollary 1. Every semiprime involution ring w1th d.c.c. on *-biideals satisfies
also a.c.c. on *-biideals.

For *-simple rings with d.c.c. on *-biideals Theorem 1 reads as follows.

Corollary 2 ([2]). An involution ring A is *-simple and has d.c.c. on *-biideals
if and only if either A is a semisimple ring and A = M, (D) or it is not a simple
ring and A = K, (D).

Theorem 1 and Corollary 2 are, in fact, the involutive versions of the Wed-
derburn Artin Structure Theorems.

Imposing d.c.c. on principal *-biideals is certainly a weaker requirement,
than d.c.c. on *-biideals inasmuch as any infinite direct sum of involution rings
with d.c.c. on *-biideals satisfies d.c.c. on principal *-biideals. As we shall see,
also d.c.c. on principal *-biideals yields fairly good structure theorems.

Chronologically the following theorem of Loi [15] was the first result on
classifying the structure of involution rings in terms of *-biideals and it has become
the starting point of the later investigations.

Theorem 2. A semiprime involution ring A satisfies d.c.c. on principal *-biideals
if and only if A as a ring without involution satisfies d.c.c. on principal right ideals.

Theorem 2 describes completely the structure of A inasmuch as A as a
ring is a discrete direct sum of simple rings of linear transformations of finite
rank of a vector space over a division ring. Moreover, a direct summand of that
decomposition is either closed under involution or not, and correspondingly a
similar, but may be infinite decomposition can be achieved as in Theorem 1 (iii).

3. INVOLUTION RINGS WITH RADICAL

Given a Kurosh-Amitsur radical p of rings the question arises as whether
the radical p(A) of an arbitrary involution ring A is closed under involution. To
solve this problem, a very easily testable criterion was given in [14].
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Theorem 3. For a Kurosh-Amitsur radical p of rings the following two conditions
are equivalent:

(i) the radical p(A) is a *-ideal in every involution ring A,
(ii) p(R) = R implies p(R°P) for every ring R.

In particular, the Baer (that is, prime) radical #(A), the Jacobson radical
J(A) as well as the other classical radicals (the Levitzki, Kéthe’s nil, the Brown-
McCoy radical) are *-ideals in every involution ring A. ;

Let us recall that the maximal torsion subgroup of an involution ring A
forms a *-ideal T, called the mazimal torsion ideal of A.

Theorem 4 ([16]). If A is an involution ring with d.c.c. on principal *-biideals,
then

B(4) = U(4) S T.
In particular, if an involution ring with d.c.c. on *-biideals is torsionfree, then it

is Jacobson semisimple.

Applying Theorems 2 and 3 also the following splitting theorem was proved
in [16].

Theorem 5. Let A be an involution ring and T' be its maximal torsion *-ideal.
If A satisfies d.c.c. on pricipal *-biideals, then A decomposes into a direct sum

A=TeF

where F' is a uniquely determined torsionfree *-ideal. Moreover, F is semiprime
and has d.c.c. on principal *-biideals.

The statement of Theorem 5 can be considered as the involutive version of
the splitting theorem of Christine Ayoub 6] and Dinh Van Huynh [9].

Imposing d.c.c. on *-biideals, also the structure of non-semiprime involution
rings can be described.

Theorem 6 ([8]). If A is an involution ring with d.c.c. on *-bijdeals, then its
Jacobson radical J(A) satisfies d.c.c. on additive subgroups and J(A) is nilpotent.
If, in addition, J(A) is reduced (that is, it has no divisible additive subgroup), then
J(A) is finite. KX,

A relatively easy consequence of the not so easy Theorem 6 is
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Corollary 3 ([8]). An involution ring A has d.c.c. on *-biideals if and only if A
is an artinian ring and so is J(A).

Let us remind the reader that the structure of artinian rings with artinian
Jacobson radical has been fully described by Kertész and Widiger [12] (cf. also
[11] Theorems 65.2 and 67.4): an artinian ring A with artinian Jacobson radical
is the direct sum of finitely many matrix rings over infinite division rings and of
a ring C which satisfies d.c.c. on additive subgroups (also the structure of C is
fully determined, J(A) C C and C/J(A) is a finite direct sum of matrix rings over
finite fields).

4. INVOLUTION RINGS WITH D.C.C.
ON PRINCIPAL *-BIIDEALS

In Theorems 2, 3 and 5 we have already seen results on the structure of
involution rings with d.c.c. on principal *-biideals. Here we shall present mniore
results on that area.

Let us recall that the structure of a simple ring possessing a minimal right
ideal is described by the Litoff-Anh Theorem [4]. We say that A is a strongly
locally matriz ring if there exists a division ring D such that every finite subset F
of A can be embedded into a biideal B of A such that B is isomorphic to a matrix
ring M, (D) over D for some n > 1. The Litoff-Anh Theorem asserts that A is a
simple ring with minimal right ideal if and only if A is a strongly locally matriz
ring. (In [4] Anh used Steinfeld’s quasi-ideal (cf. [11] or [18]) for biideal but in
our context these notions coincide.) Moreover, a simple ring has a minimal right
ideal if and only if it has d.c.c. on principal right ideals, and hence it is a ring of
linear transformations of finite rank of a vector space over a division ring.

The involutive version of the Litoff-Anh Theorem has been proved in [2].
Following Aburawash [2| we say that an involution ring A is a *-strongly locally
matriz ring over a division ring D, if every finite subset F' of A can be embedded
into a *-biideal B of A such that B & M, (D) whenever A is a simple ring, and
B = K,,(D) whenever A is not simple as a ring (the number n or m depends on

F).

Theorem 7 ([2]). An involution ring A is *-simple and possesses a minimal

*.biideal if and only if A is a *-strongly locally matrix ring.

In Theorem 7 the *-simple involution ring A is, of course, semiprime, and
has d.c.c. on principal *-biideals. Thus, in view of Theorem 2, the structure of
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semiprime involution rings with d.c.c. on principal *-biideals has been completely
determined also in terms of *-strongly locally matrix rings.

In the description of involution rings having nonzero Baer radical (or Ja-
cobson radical), demanding only d.c.c. on principal *-biideals seems not to be
sufficient, also d.c.c. on *-biideals on the Jacobson radical is needed.

Theorem 8 ([3]). For an involution ring A the following conditions are equivalent:
(i) A has d.c.c. on principal *-biideals and its Jacobson radical J(A) has
d.c.c. on *-biideals,
(ii)) A as a ring without involution has d.c.c. on principal right ideals and
J(A) is an artinian ring,

(iii) A is a discrete direct sum

A=> °®ByeC,
A€A

where each B) is a *-strongly locally matrix ring over an infinite division ring
D with involution, such that J(A) C C and C/J(A) is a discrete direct sum of
*-strongly locally matrix rings over finite fields with involution.

Let us mention that the non-involutive version of Theorem 8 concerning
rings with d.c.c. on principal right ideals and with artinian Jacobson radical has
been given by Anh in [5].

5. A.C.C. ON *-BIIDEALS

The results of this section have been proved in [8].

Before going to present results on involution rings with a.c.c. on *-biideals,
we illustrate the connection between a.c.c. on right ideals (that is, being right
noetherian) and a.c.c. on biideals on rings without involution.

Even for commutative rings, a.c.c. on biideals is a stronger requirement than
being noetherian. Namely, for a commutative ring 4 the following conditions are
equivalent:

(i) A has a.c.c. on biideals,

(i) A is noetherian and for every ideal I of A the additive group of I/1%is
finitely generated, :

(iii) A4 is noetherian and for every ideal I of A the additive group of the Baer
radical §(A/I) of A/I is finitely generated.
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A not necessarily commutative but associative ring A has a.c.c. on biideals if
and only if A is left and right noetherian and for every subring G of A the additive
group of the factor ring G/((G) NG) is finitely generated where (G) stands for the
biideal generated by G.

In the case of involution rings there exist an involution ring A such that A
is left and right noetherian as a ring but A does not satisfy a.c.c. on *_biideals.
We can state also \

Theorem 9 ([8]). If an involution ring A has a.c.c. on *_biideals, then for every
*_.subring G of A the additive group of the factor ring G/((G)* N G) if finitely
generated. If an involution ring A is left anf right noetherian as a ring and for
every *-subring G of A the additive group of G/({(G)* N G) is finitely generated,
then A has a.c.c. on *-biideals.

The connection between a.c.c. on biideals (a.c.c. on *-biideals) and other
chain conditions seems to be a delicate question and far from being settled. In
this context we repeat the problems posed in [8].

Problem 1. Does a semiprime involution ring with a.c.c. on *_biideals satisfy
a.c.c. on biideals ? '

Problem 2. Does there exist a prime non-artinian ring with a.c.c. on biideals ?

Concerning the Baer radical we have

Theorem 10. If an involution ring A has a.c.c. on *-biideals, then its Baer radical
B(A) is nilpotent and the additive group of 8(A) is finitely generated.

The strong effect of a.c.c. on *-biideals is exhibited by the following sur-
prising result which has been recently proved by Beidar [7]: if an involution ring
A has a.c.c. on *-biideals and A is an algebra over an infinite field, then A is
a semiprime artinian ring. Also the corresponding assertion holds true for rings
without involution. In view of Theorem 1 and Corollary 1 Befdar’s result 7] can
be formulated as

Theorem 11. Let A be an involution ring as well as an algebra over an infinite
field (with the same addition and multiplication). A satisfies a.c.c. on *-biideals
if and only if A is semiprime and satisfies d.c.c. on *-biideals.

This result can be regarded as a partial converse of Corollary 1 and a partial
sharpening of Theorem 10. 5
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Considering the polynomial ring A[z] over an involution ring A, the invo-
lution * of A may be extended to A[z] by defining either z* = = or z* = —rz.
Speaking of a polynomial ring A[z] over an involution ring A, we assume in the
sequel that the involution of A is extended to A[z] in one of these two possibilities.

Imposing a.c.c. on *-biideal on the polynomial ring A[z] has a very strong
effect on the involution ring A, as we see it in the following

Theorem 12. An involution ring A is semiprime and finite (hence a finite direat
sum of matrix rings over finite fields) if and only if the polynomial ring Alz] has
a.c.c. on *-biideals.

Theorem 12 can be considered as a counterpart of the Hilbert Basis Theorem
which states that a ring A with identity is right noetherian if and only if the
polynomial ring A[z] is right noetherian.

Let us mention that in [8] Theorem 9 has been proved for not necessarily
associative rings (with necessary modification of the definition of a *-biideal) and
Theorem 12 is valid also for a not necessarily associative ring A with an extra
condition imposed on A in terms of fields of rational functions.

6. GOLDIE’S THEOREMS

In the classical structure theory of rings a very important major branch is
Goldie’s theory of rings of quotients (cf. for instance [11] or [17]). In this theory
again chain conditions on certain one-sided ideals play an important role. So it is
natural to ask for involutive versions of Goldie’s Theorems formulated in terms of
left and right symmetric conditions. This job was done recently by M. Domokos
[10].

As is well-known, a ring Q is said to be a right (classical) ring of quotients
of its subring R, or in other words, the subring R is a right order in the ring Q if
the following three conditions hold:

(i) @ has an identity 1,
(i) each elements s € S(R) is a unit in Q (that is, s has a multiplicative

inverse in Q) where S(R) denotes the set of all cancellative elements (that is,
non-zero devisors) of R,

(iii) to every element z € Q there are elements a € R and s € S(R) such
that z = as~! holds. ‘

Left ring of quotients and left order are defined correspondingly. We say that
Q is a ring of quotients of R (or R is and order in Q), if Q is both a right and a
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left ring of quotients of R. The involution makes the situation symmetric as seen
from the next assertion.

Proposition 1. An involution ring has a right ring of quotients if -and only if it
has a left ring of quotients, and they are isomorphic.

Thus we may speak only of rings of quotients of involution rings.

Proposition 2. If R is an involution ring and Q is a ring of quotient of R, then
there is a unique involution on Q which extends that of R to Q.

In accordance with our terminology, a *-subring will mean a subring closed
under involution. We say that an involution ring Q is a *-ring of quotients of its
*-subring R (or R is a *-order in Q), if @ is a ring of quotients of the *-subring
R. Proposition 2 shows that an involution ring R has a *-ring of quotients if and
only if R has a ring of quotients, further, the *-ring of quotients of R is uniquely
determined up to isomorphism.

The right annihilator rg(G) of any subset G of a ring R is a right ide-
al, and the left annihilator £g(G) is a left ideal. One has clearly the relation
rr(G)*) = £x(G™), furthermore, the intersection r(G) Nrg(G)™*) is a *-biideal
of the involution ring R. A *-biideal B of the involution ring R is called an anni-
hilator *-biideal, if there exists a subset G of R such that B = rg(G) Nrg(G)™).

An involution ring R will be called a Goldie involution ring, if the following
two conditions are fulfilled:

(i) there is no infinite sequence Bi,...,By,... of nonzero *-biideals of R
such that (By + -+« 4 B,)* N B,y1 =0foralln=1,2,..., that is, the mazimum
condition on *-biideal direct sums is satisfied,

(ii) there is no infinite strictly ascending chain

rr(G1) Nrer(G1)™) C - - Crr(Ga) Nrr(Ga)™M C ...

where Gi,...,G,,... are subsets of R, that is, R satisfies the a.c.c. on annthilator
*.birdeals.

After these preparations we are ready to formulate the involutive versions
of Goldie’s Theorems as given by Domokos in [10].

Theorem 13. For an involution ring R the following conditions are equivalent:
(i) R is a semiprime Goldie involution ring

(ii) R has a *-ring of quotients Q and
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k : ¢
Q = ZQMn"-(Di) (&%) ZKm(DJ)a

1=1 j=1

that is, R is a *-order in the semiprime involution ring Q with d.c.c. on *-biideals.

Theorem 13 corresponds to Goldie’s Second Theorem on rings of quotients.

An involution ring R is said to be *-prime, if R does not contain nonzero
*.ideals K and L such that KL = 0. In contrast to *-simplicity, *-primeness does
not imply primeness only semiprimeness. The involutive version of Goldie’s First
Theorem reads as follows.

Theorem 14 ([10]). The following two conditions are equivalent for an involution
ring R:
(i) R is a *-prime Goldie involution ring,

(ii) R has a *-ring of quotients Q and

Q= M,(D) or Q=K,(D),

that is, R is a *-order in the *-simple involution ring Q with d.c.c. on *-biideals.

An immediate consequence of Theorems 13 and 14 is

Corollary 4. If R is a semiprime (*-prime) involution ring with a.c.¢. on *-
- biideals, then R is a *-order in a semiprime (*-simple) involution ring Q with
d.c.c. on *-biideals.
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