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ON THE STRUCTURE OF INVOLIITION
RII\GS WITH CHAIN CO]\DITION

RICHARD WIEGANDT

Abstract. Recent resu,lts due to u. A. Aburawash, K. I. Be{dar, M. Domokos, p. H. rne,
N. V. Ini and, the autlnr ([1], [p], [S], {4, [s], [10], [14], [15] , [16il arc suruesed an the
structure of ings with inaolution. Worlcing within the category of all ings uith inaohdion
ond of dl homornorphisms priseraing also inoolutbn, one has the sliglrt aduantoge ol having
more cdculation rules, but one laces the disoduantage ol hauing less homarnorphism"s. Thus,
to be cons'istent in descibing the structure of inuoh.tion ings, one cannot uorlc with one-sided
id'eal's. An appropriate and, efi,cient left - and right - syrnmetric notion is that ol *- biideds.
Impsing chain canditions on *-biideols the inuold;iue aersiow o! the Wedderbum - Artin,
Goldie, Litofi - Anh, Agoub - Dirlh van Huynh theorems can be proued,, and also stronger
sta'tements thon lor a,ssociatiae ings, can k achieaed (for irutonce, il an inuolution ring has
d.c'c. on*-biideals,thenits Jaeobsonradicalhosd.c.c. onadditiue subgroups). Aninaoh.tion
ring A is semiprime ond finite il ant! only i! the plynom,iol ring over A has d.c.c. on *-biid,eals.
This lalter resuit can be regarded as a countergrt of the Hitbert Basis Theotem. Also some
op,n problems are psed".

1. INTRODUCTION

The purpose of this note is to survey the'most recent developments in de-
scribing the structure of involution rings satisfying chain conditions. These results
have been published or are

[ ls ]  and I to ] .

An inuolution ring A
inuolution, subjected to the

being published in the papers It ] ,  [z], [g], [S], I tO], Ira],

is a ring with an additional unary operation *, called
familiar identities

Vr,y € A.

rings are the real and

@ + A)*  :  x ; *  *  y*  ,  ( ry)*  :  A*  r* ,  n**  :  n ,

The most common and natural examples for involution
complex matrix rings with the usual involution.
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Though involution rings have been intensively investigated in the context of

ring theory with applications to Jordan algebras, Banach algebras and operator

algebras, less attention was paid till recently to the study of involution rings as

such, that is, to their description in terms within the category of involution rings.

While working in the category of involution rings one has the slight advantage of

having more calculation rules, but on the other hand one has less homomorphic

mappings, than in the category of rings: all homomorphisms considered (and so

also embeddings) have to preserve involution too. Thus only subrings are admit-

ted which bre closed under involution. Since every one-sided ideal which is closed

under involution must be a two-sided ideal, the term "one-sided ideal with invo-

lution" cannot play any role. As a consequence there is,no "module theory" over

involution rings. In the investigation of rings it is quite efficient to impose chain

conditions on one-sided ideals (chain conditions on two-sided ideals are usually too

weak for describing the structure of rings). Since the notion of one-sided ideals is

meaningless for involution rings, an appropriate notion has had to be found which

has generalized that of one-sided ideals and which has worked in describing the

structure of involution rings. It has turned out that such a desired notion is that

of *-biideals. A *-Dff deal B of an involution ring ,4 is a subring such that

B A B C B  a n d  B ( - ) C B

where
p ( * ) - { 6 - e  A : b e  B } .

For rings without involution biideals have been introduced by Lajos and

Sz6sz.[f S] in 1971, and the first significant application of that notion in describing
the siructure of rings appeared in the Habilitationschrift of Widiger [f O] in 1978.
It was Loi who first used successfully *-biideals in proving structure theorems fot

involution r ings in his paper [15].

The *-biideal of an involution ring generated by a subset S will be denoted by
(S)-. A principal *-biid,eal is a *-biideal generated by a single element" Obviously,
the principal *-biideal (o)- of an involution ring .4 is given by

(o)* : Za * Za* * aAa * aAa* + a* Aa + a* Aa*

where Z denotes the ring of integers. In the ring M,,(R) of all n x n real matrices
with the usual involution, let us consider the matrix e;i with a single 1 at the (f,1)
position and 0 everywhere else. As one can easily verify, the principal *-biideal

k;il. consists of all matrices which have arbitrary real numbers at the (i , i) , (i , i) ,,
(3., f) and (1,1) positions and 0 everywhere else"

In the sequel, a ring will mean, if not specified, an associative ring not
necessarily with 1. If I is an ideal of an involution ring A which is closed under
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involution, then we shall say that .I is a *-id,eal of l, and denote this fact by .I<*.4.
For descending chain condition and ascending chain condition we shall briefly write
d.c.c. and a.c"c., respectively"

Let A be any ring with involution and. Aop its oposite ring. On the direct
sum

C  :  A @  A o P

we may define an involution *, called the exchange inuolution,by the rule

( r , y ) .  :  ( a , x )  V ( r , y )  e  C .

If the ring ,4 happens to be simple, then the only *-ideals of C are 0 and C itself.
We say that an involution ring C is *-simple , if C2 I 0 and 0 and C are the only
*-ideals of C. By the above example, a *-simple involution ring need not be simple
as a ring, althoulgh the converse is trivially true.

Throughout this paper M^(D) will denote the n x n matrix ring over a
division ring D. Notice that if M"(D) is an involution ring, then so is also D.
Further , K^(D) will stand for the direct sum K* (D) : M^(D) e M#(D)
endowed with the exchange involution.

2. SEMIPRIME INVOLUTION RiNGS

As is well-known, a ring A is said to be semiprime, if I < A and 12 : 0
force .I : 0. correspondingly, an involution ring "4 may be called *-semiprime,
if "f <* 4 and 12 : o imply I : A. As one can easily prove, an involution ring
A is *-semiprime if and only if .4 is semiprime, and therefore there is no need to
distinguish these notions.

In [f] Aburawash described the structure of semiprime involution rings with
d.c.c. on *-biideals. Let us recall that a ring is said to be artinian, if it satisfies
d.c.c. on right ideals.

Theorem 1. For a semiprime ring A with involution * the following candjtions
are equivalent:

(i) A has d.c.c" on *-biideals,

(ii) A is artinian as a ring without involution,

(iii) Ais a rlnite direct sum
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k e

A = t 
@ Mn.(D;) e D* o*,(pi).

r : 1 i = l

Corollary 1. Every semiprime involution ring with d.c.c. on *-biideals satisfes
also a.c.c. on *-biideals.

For *-simple rings with d"c.c. on *-biideals Theorem 1 reads as follows.

Corollary 2 ([Z]). an involution ring A is *-simp/e and has d.c.c. on *-biideals

if and only if either A is a semisimple ring and A = M^(D) or it is not a simple
i lng and A= K*(D) .

Theorem 1 and Corollary 2 are, in fact, the involutive versions of the Wed-
derburn Art in Structure Theorems.

Imposing d.c.c. on principal *-biideals is certainly a weaker requirement,
than d.c.c. on *-biideals inasmuch as any infinite direct sum of involution rings
with d.c.c. on *-biideals satisfies d.c.c. on principal *-biideals. As we shall see,
also d.c.c. on principal x-biideals yields fairly good structure theorems.

Chronologically the following theorem of Loi [15] was the first result on
classifying the structure of involution rings in terms of x-biideals and it has becorne
the starting point of the later investigations.

Theorem 2. A semlprime involution ring Asatisfies d..c.c. on principal *-biideals

if and only if A as a ring without involution satistles d.c.c. on principal right ideals.

Theorem 2 describes completely the structure of .4 inasmuch as ,4 as a
ring is a discrete direct sum of simple rings of linear transformations of finite
rank of a vector space over a division ring. Moreover, a direct summand of that
decomposition is either closed under involution or not,'and correspondingly a
similar, but may be infinite decomposition can be achieved as in Theorem 1 (iii).

3. INVOLUTION RINGS WITH RADICAL

Given a Kurosh-Amitsur radical p of rings the question arises as whether
the radical p(A) of an arbitrary involution ring .4 is closed under involution" To
solve this problem, a very easily testable criterion was given in [t+].



On the structure of ...

Theorem 3. For a Kurosh-Amitsur radical p of rings the following two conditions
are equivalent:

(i) the radical p(A) is a *-ideal in every involution ring A,

fti) p@): R implies p(R'e1 for everv rins R.

In particular, the Baer (that is, prime) radical P(A), the Jacobson radical
J(,a) as well as the other classical radicals (the Levitzki, K6the's nil, the Brown-
McCoy radical) arc *-ideals in every involution fing A"

Let us recall that the maximal torsion subgroup of an involution ring A
forms a *-ideal ?, called the marimal torsion ideal of A.

Tlreorem 4 ([16]). If A is an involution ring with d.c.c. on principal *-biideals,

then

0 (A ) :  r ( 4  s r "
In particular, if an involution ring with d.c.c. on *-biideaJs is torsionfree, then it
is J acobson semisimple.

Applying Theorems 2 and 3 also the following splitting theoremwas proved
in  I ro l .

Theorem 5. Let A be an involution ring and,T be its maximal torsion *-ideal"

lf A satisfres d.c.c. on pricipal *-biideals, then A decomposes into a direct sum

A : T @ F

where F rs a uniquely determined torsionfree x-ideal. Moreover, l' is semiprime
and has d.c.c. on principal *-biideals.

The statement of Theorem 5 can be considered as the involutive version of
the splitting theorem of Christine Ayoub [6] and Dinh Van Huynh [9].

Imposing d.c.c. on *-bi ideals, also the structure of non-semiprime involution
rings can be described.

Theorem 6 ([8])" If A is an involution ring with d"c.c. on *-biideals, then its
Jacobson radical J(,4) satisfies d.c.c. on additive subgroups and J(A) is nilpotent.
If, in addition, J (A) is reduced (that is, it has no divisible additive subgroup), then
J(A) is finite.

A relatively easy consequence of the not so easy Theorem 6 is
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Corollary S ([A]). an involution fing A has d.c.c. on *-biideals if and only if A

is an artinian ring and so is J(,a).

Let us remind the reader that the structure of artinian rings with artinian
Jacobson radical has been fully described by Kert6sz and Widiger [fZ] (cf. also

[11] Theoreqrs 65.2 and 67.4): an artinian ring A with artinian Jacobson radical

is the direct sum of finitely many matrix rings over infinite division rings and of

a ring C which satisfies d.c.c. on additive subgroups (also the structure of C is
fully determined, J(A) I C and C lJ(A) is a finite direct sum of matrix rings over
finite fields).

4. INVOLUTION RINGS WITH D.C.C.
ON PRINCIPAL *-BIIDEALS

In Theorems 2, 3 and 5 we have already seen results on the structure of
involution rings with d.c.c. on principal *-biideals. Here we shall'present more
results on that area.

Let us recall that the structure of a simple ring possessing a minimal right

ideal is described by the Litoff-Anh.Theorem [4]. We say that A is a strongly
locally matrir ring if there exists a division ring D such that every finite subset F
of ,4 can be embedded into a biideal B of Asuch that B is isomorphic to a matrix
ling M*(D) over D for some ?? 2 1. The Litoff-Anh Theorem asserts that .4 is a
simple ring with minimal right ideal if and only if A is a strongly locally matrir
ring. (In [+] Anh used Steinfeld's quasi-ideal (cf. [rt] or [ta]) for biideal but in
our context these notions coincide.) Moreover, a simple ring has a minimal right
ideal if and only if it has d.c.c. on principal right ideals, and hence it is a ring of
linear transformationg of finite rank of a vector space over a division ring.

The involutive version of the Litoff-Anh Theorem has been proved in [Z].
Following Aburawash [2] we say that an involution ring .4 is a *-strongly, Iocally
matrir ring oxer a division ring D, if every finite subset F of A can be embedded
into a *-biideal B of A such that B = Mn(D) whenever / is .a simple ring, and
B = K.,(D) whenever .4 is not simple as a ring (the number n or rn depends on
r).

Theorem 7 (t2]). An involution ring,A is *-simp/e and possesses a minimal
*-biideal if and only if A is a x-strongly IocaIIy matrix ring,

In Theorem 7 the *-simple involution ring A is, of course, semiprime, an4
has d.c.c. on principal *-biideals. Thus, in view of Theorem 2, the structure of
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semiprime involution rings with d.c.c. on principal *-biideals has been completely
determined also in terms of *-strongly locally matrix rings.

In the description of involution rings having nonzero Baer radical (or Ja-
cobson radical), demanding only d.c.c. on principal *-biideals seems not to be
sufficient, also d.c.c. on *-biideals on the Jacobson radical is needed.

Theorem 8 ([e]). for an involution ring A the following conditions are equivalent:

(i) A has d.c.c. on principal *-biideals and its Jacobson radical J (A) has
d"c.c. on *-biideals,

(ii) A as a fing without involution has d.c.c. on principal right ideals and
J(A) i, an artinian fing,

(iii) A is a discrete dircct sum

A : D o B . i @ c ,
tr€/t

whete each Bs is a *-sfrongly locally matrix ilng over an infinite division ring
D with involution, such that J(A) C C and CIJ(A) is a discrete direct sum of*-strongly locally matrix rings over finite fields with involution.

Let us mention that the non-involutive version of Theorem 8 concerning
rings with d.c.c" on principal right ideals and with artinian Jacobson rarlical has
been given by Anh in [s].

5 .  A .C"C ,  ON * -B I IDEALS

The results of this section have been proved in [a].
Before going to present results on involution rings with a.c.c. on *-bii6eals,

we illustrate the connection between a.c.c. on right ideals (that is, being right
noetherian) and a.c.c. on biideals on rings without involution.

Even for commutative rings, a.c.c. on biideals is a stronger requirement than
being noetherian. Namely, for a commutative ring .4 the following conditions are
equivalent:

( i) A has a.c.c. on bi ideals,

(ii) ,4 is noetherian and for every ideal 1 of ,4 the additive group of I f 12 is
finitely generated,

(iii) ,4 is noetherian and for every ideal / of ,4 the additive group of the Baer
radical B@lI) of AII is f initely generated"
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A not necessarily commutative but associative ring.4 has a.c.c. on biideals if

and only if A is left and right noetherian and for every subring G of A the additive

group of th" factor ring G/((G) n C) is finitely generated where (G) stands for the

biideal generated by G. -
In the case of involution rings there exist an involution ring 4 such that A

is left and right noetherian as a ring but A does not satisfy a.c.c. on *-biideals.

We can state also

Theorem 9 (t8]) . lf an involution ring A has a"c"c. on x-biideals, then fot every
*-subring G 

";i 
A the additive group of the factor ring Gl(\G)- n G) if finitelv

generatid. If an involution fing A is left anf right noetherian as a ring and for

every x-subring G of A the additive group of C l(\C) 
- n G) is finitely genetated,

then A has a.c.c. on *-biideals.

The connection between a.c.c. on bi ideals (a.c.c. on *-bi ideals) and other

chain conditions seems to be a delicate question and far from being settled. In

this context we repeat the problems posed in [a].

Problem l. Does a semiprime.involution ring with a.c"c. on *-biideals satisfy

a.c"c" on biideals ?

Problem 2. Does there exist a prime non-afiinian ring with a.c.c. on biideals ?

Concerning the Baer radical we have

Tlreorem LO. lf an involution ring A has a.c.c. on *-biideals, then its Baet radical

9(A) is nilpotent and the additive group of B(A) is finitely generated.

The strong effect of a.c.c. on *-biideals is exhibited by the following sur-

prising result which has been recently proved by BeYdar [Z]; if an involution ring

.4 has a.c.c. on *-biideals and A is an algebra over an infinite field, then ,4 is

a semiprime artinian ring. Also the corresponding assertion holds true for rings

without involution" In view of Theorem 1 and Corollary' 1 BeYdar's result [7] can

be formulated as

Theorem LL. Let A be an involution fing as weII as an algebra ovet an infinite

field (with the same addition and multiplication). .4 satisfies a.c.c. on *-biideals

if and only if A is semiprime and satisfies d.c.c. on *-biideals.

This result can be regarded as a partial converse of Corollary 1 and a partial

sharpening of Theorem 10.
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Considering the polynomial ring A[c] over an involution ring A, the invo-
lution * of .4 may be extended fo Alr) by defining either n* : n or r* : -r,.

Speaking of a polynomial ring ,4[z] over an involution ring 1,, we assume in the
sequel that the involution of .4 is extended to Alxl in one of these two possibilities.

Imposing a.c.c. on *-biideal on the polynomial ring .4[r] has a very strong
effect on the involution ring L, as we see it in the following

Theorem.12. An involution ring A is semiprime and finite (hence a finite direat
sum of matrix rings over finite fields) if and only if the polynomial ring Alr) has
a.c.c. on *-biideals"

Theorem 12 can be cohsidered as a counterpart of the Hilbert Basis Theorem
which states that a ring ,4 with identity is right noetherian if and only if the
polynomial ring ,4[r] is right noetherian.

Let us mention that in [S] Theorem t has been proved for not necessarily
associative rings (with necessary modification of the definition of a *-biideal) and
Theorem 12 is valid also for a not necessarily associative ring A with an extra
condition imposed on .4 in terms of fields of rational functions.

6.  GOLDIE'S THEOREMS

In the classical structure theory of rings a very important major branch is
Goldie's theory of r ings of quotients (cf. for instance Itt ]  or I t7]). In this theory
again chain conditions on certain one-sided ideals play an important role. So it is
natural to ask for involutive versions of Goldie's Theorems formulated in terms of
left and right symmetric conditions. This job was done recently by M. Domokos
l rol .

As is well-known, a ring Q is said to be a right (classical) ring of quotients
of its subring E, or in other words, the subring R is a right order in the ring Q if
the following three conditions hold:

(i) Q has an identity 1,

(ii) each elements s e S(,R) is a unit in Q (that is, s has a multiplicative
inverse in Q) where ^9(R) denotes the set of all cancellative elements (that is,
non-zero devisors) of B,

( i i i )  toeveryelement  n€Q there areelements a € R ands € s( .R)  such
that  z :  as-r  ho lds.

Left ring of quottents and left order are defined correspondingly. We say that
Q is a ring of quotients of .R (or.R is and ord.er in Q), if Q is both a right and a
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left ring of quotients of .R. The involution makes the situation symmetric as seen
from the next assertion.

Proposition 1. An involution ringlas a right ring of quotients,if and only if it
has a left ring of quotients, and they are isornorphic.

Thus we may speak only of rings of quotients of involution rings.

Proposition 2. If R is an involution ring and Q is a ring of quotient of R, then
there is a uniqu e involution on Q which exf ends that of R to Q.

In accordance with our terminology, a *-subring will mean a subring closed
under involution. We say that an involution ring Q is a *-ring of quotients of its
*-subring .R (or R is a *-ord,er in Q) , if Q is a ring of quotients of the x-subring

R. Proposition 2 shows that an involution ring R has a *-ring of quotients if and
only if .R has a ring of quotients, further, the x-ring of quotients of R is uniquely
determined up to isomorphi6m.

The right annihilator r6(G) of any subset G of a ring -r? is a right ide-
al, and the left annihilator (.p(G) is a left ideal. One has clearly the relation
rR(G)G) -  1*(C( . )1,  fur thermore,  the in tersect ion 16(G)n16(G)(*)  i .  a  * -b i ideal

of the involution ring R. ,4. *-biideal B of the involution ring .[? is called an anni-
hi lator *-bi ideal,,  i f  there exists a subset G of R such that B:rR(G) n 16(G)(-).

An involution r ing,R wil l  be called a Goldie inuolution r ing,i f  the fol lowing
two conditions are fulfilled:

( i )  there is  no in f in i te  sequence 81, . . . ,Unr . . .  o f  nonzero * -b i ideals  of  -R
such  tha t  (B r  +  . . .  a  B " ) *  )  Bn+r :  0  fo r  a l l  n :  1 ,2 , . . .  ,  t ha t  i s ,  t he  mar imum
condition on *-biideal direct surns is satisfied,

(ii) there is no infinite strictly ascending chain

" a ( G r )  
n r p ( G 1 ) ( * )  c '  "  C  r n ( G , )  n  r n ( G * ) ( * )  c  . . .

where Gr, .  .  .  ,Gnr. .  .  are subsets of ,R, that is, R satisf ies the a.c.c. on annihi lator
*-biideals.

After these preparations we are ready to formulate the involutive versions
of Goldie's Theorems as given by Domokos in IfO].

Theorem 13. For an involution ring R the following conditions'are equivalent:

(i) R,is a semiprime Goldie involution ring

(ii) R has a *-ring of quotients Q and
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k t

a= f@Mn; (D i )  eDo^ , (D) ,
r = 1 i : l

that is,.E is a *-order in the semipfimg involution rin1 Q with d.c.c. on *-biideals.

Theorem 13 corresponds to Goldie's Second Theorem on rings of quotients.

An involution ring R is said to be *-prirne, if B does not contain nonzero
*-ideals.t{ and tr such lhat KL:0. In contrast to *-simplicity, *-primeness does
not imply primeness only semiprimeness. The involutive version of Goldie's First
Theorem reads as follows.

Theorem f4 ([10]). The following two conditions are equivalent for an involution
ring R:

(i) R is a *-prime Goldie involution ring,

(ii) .R .has a *-ring of quotie.nts Q and

Q = M n ( D )  o r  Q o K ^ ( D ) ,

that is, r? is a *-order in the *-simple involution ring Q with d.c.c. on *-biideals.

An immediate consequence of Theorems 13 and 14 is

corollary 4" If R is a semiprime (*-prime) involution ring with a.c.c on *-
biideals, then R is a x-order in a semipdme (*-simple) involution ring e witlt
d.c.c. on *-biideals.
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