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OPTIMAL RECOVERY OF FUNCTIONS
OF A CERTAIN MIXED SMOOTHNESS

DINH DUNG

Abstract. Multivariate functions with one or several bounded partial derivatives have. ap-
prozsmation properties completely different from ones of univariate smooth functions. We investigate
the optimal recovery for functions of Holder classes of a certain smoothness by means of some char-
acteristics of optimal recovery of these classes. Some asymptotic estimates of these quantities are
obtained by use of linear methods of recovery by trigonometric polynomials of hyperbobc crosses.
These estimates in some cases coinside with asymptotic degrees of charateristics of optimal recovery
of Holder classes. i

1. INTRODUCTION

Multidimensional classes of smooth functions with one or several bounded
partial derivatives have approximation properties completely different froem ones
of unidimensional classes of smooth functions. First of all, for functions of a given
mixed smoothness one must understand, which polynomials or splines are reason-
able to select for best approximations. Questions also arise concerning the com-
parison of approximation methods with widths, entropy and other approximation
characteristics. '

_In this paper for multivariate periodic functions of Holder classes of a certain.
mixed smoothness, we shall investigate the optimal recovery by means of some
characteristics of optimal recovery. This problem is closely related to the problems
of the n-width and of the best approximation by trigonometric polynomials of so-
called hyperbolic crosses for these classes. We refer to [D1], [T1] for surveys on
the latter problems. Special lattices and methods were constructed for recovering
functions of a given mixed smoothness from their values at these lattices and some
estimates of the recovery error were obtained in [S], [HW], [T2].

Let us introduce some characteristics of optimal recovery.
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Let X be a normed linear space:of functions defined on the torus T¢ :=
,m|? and W < X. For &;,...,Ls, any s functionals in W and P, {8154 54 vy bad
mapping from R’ into.a linear manifold in X of dimensions at most s, one
n natura.lly consider recovering:f:€ W from £;(f),...,¢s ( f). by the element
Be(b1(f)rs s LT ) We deﬁne the following. cha.ractenstxcs of optimal recovery:

RO m‘ b hsiscslat aitur ot e v i
T4 few ‘

..... z%€
P. s<n

R.W,X):=  inf sup |If = Po(ts(f),. -, Le(f))lx-

- These quantities express, in some sense, the optimal recovery of functions in the
class W from their values or functionals with a preassigned information quantity.
A characteristic of optimal recovery, similar to R}, (W, X) was introduced in [K].
Note that the above definitions imply the following important inequalities:

RWX) > bW, X), (L1)

Ra(W,X) > RL(W, X), (1.2)'

where d, (W, X) denotes the n-width of W in X (see the definition in §3).
In this paper we shall discuss the asymptotic degree of R(SHA, Lo(T?))
and R*(SH}‘,",Lq(Td)) for given A C R? and various pairs 1 < p, ¢ < oo, where
& SH;,4 denotes the intersection of the unit balls SHZ in the spaces Hy, o € A;
 of functions on T, satisfying the mixed Holder condition . The results of this
~ paper have been proved [D3] for the class SH.
In §2, as prehmmanes we establish some properties of trigonometric poly-
nomials and of de la Vallée Pussin’s integral and sum convolution operators I, , '
- and Sy, ,. In particular, we prove a modification of a theorem of Marcinkiewicz
~ and an estimate of the Lp-norm. of Sy, f for trigonometric polynomials f.

In §3 we introduce Holder spaces HY and H/ and associated classes SHY
~and SH ;‘ of mixed smoothness a € R% or 4 C R%. Some dual descriptions of these
- spaces by harmonic diadic decompositions in terms of theoremes of ‘equivalence of

seminorms are given. These decompositions are constructed by means of I, and -
- Sp,r. As auxiliary results, we obtain some estimates of the n-width dy(S Hy' A vLq)
~and Gn(SH}, L,), the best approximation by Fourier sums.in the space Lg of the
classes SH! 4 for various pairs p,q: )
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In '§4 we establish ‘some asymptotic estimates of R;(SH},L,) and
R,(S H;‘, Lg) for various pairs p,¢. The asymptotic degree of the first quanti-
ty in some cases is obtained from the estimates of d, ("’S-H;',‘ , Lq) and G-,;‘(‘-Sﬂq“;"‘, L)
in §3. To obtain the asymptotic estimate of the second quantity, we construct'a
linear method for recovering functions in S H;‘ from their values at a subset of the
diadic lattice by trigonometric polynomials of certain hyperbolic crosses depend-
ing on p,q and A using the decomposition generated by the operator Sp, m. We
prove that in the case 1 < p< ¢ <2 this estimate coinsides with the asymptotic
degree of Rn(SH;,‘, Lg):

2. PRELIMINARIES
Let

d
Q.m,r(x) :-—-H (Pm,,rj(xj), m,r € Nd, 3
3=l 3

be de la Vallée Pussin’s kernel of d variables where

T Y m b r—k
©Om,r(t) :=1+22coskt+2 - ——————coskt

k=1 7 k=m+1 -

for natural numbers m,r and z,; denotes the j-th coordinate of z € R%. For
functions f on T¢ consider the integral convolution operator :

Im,r‘f =f*®m,,
and the sum convolution operator

d : :
Smrf = [ (@ms + 1) D0 F(hk)@pn,e (- — hk),

=1 e

where the sum is taken over all k € Z® such that 0 < k < 2m+r;h = 2n/(2m +r}
njz = (&]21;...,7[%a), TY = (z1y1, .- +Taya) and the inequality z < y (2 < 9)
is understood as'z; <y; {z; < ¥i)yd = Liad. For abbreviation we write ¢y,
S,, and I, instead of ®pm m;s Sm,m and Iy m- :
Denote by Tpm, m € Z4, the set of trigonometric polynomials of order at l_
most m; at the variable £, 7 =1 ,d, where Zi ={k € Z? : k > 0}. Forafixed
number a,0 < a < 1, let M, be theset of all pairs (m,r), m,r € N 4 satisfying the
condition am < r < m. Below C, C' denote various absolute positive constants,
while Cq ..., Cc’;,b,... dendte various positive constants depending on a,b, ... '
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e Shall need the following properties:

“d’m,rnl < C, forany (m,r)e M, (21)

|’!'Im,,f||p§ Col/fllp" for any (m,r) € M,, (1<p< ) (2.2)
Im,f=7F forany feT, (2.3)

(S TY(hE) = F(hE), k€ 2%, 0<k<2m+r oS e
S f= : “for any f €T (25)

The propertles (2.1- 4) can be easily verified. The latter one follows from
a more generalized assertion. Namely, if m,n,s € Zd and m + n < s, then the
following equality holds for any f € T, andg € Ty, '

Feg=1 3 I(hk)g(-—hk), h=2n/s, (2.6)
k

where the suni is taken *oifex; all k € Z¢ such that 0 < k < s. Indeed, in view of
~ the formula

frg =" frgeet™,
| k

where fr and g are the k-th Fourier coefficients of f and g, it sufficies to prove
that for any g € Ty, and f = %), k < m, the right side of (2.6) is equal to
gre*F+) . This fact can be checked directly by replacing g(- — hk) in the right side
of (2.6) by its Fourier series. Because of (2.3) the above assertion implies (2.5).

For a sequence {a; : k € Z%,0 < k <s},s€ Nd of real or complex numbers,
we deﬁne the norm

; |
Iosy o= o) I 3 el 1< <on

the sum is taken over all k € Z¢ such that 0 < k < 8. The sum norm is changed
to the max norm when p = oo.
For any f € T,, we have

d
supl[{7(e ~ BN, < T1O + hsm) 2t @)

where h = 27 /s.

For the case p = oo, this inequality is obvious. The case p = 1 can be -

proved in a way similar to a proof of an analogous inequality for functions of
exponential type [N}. The case 1 < p < oo follows easily from:the cases p &= 1,00
by interpolation properties of the spaces L. — ¢ {1.3

S
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Lemma 2.1. If1< p < 00 and (m,r) € My, then for.any f € C(T*) we
have
NSmell < Cal T amsrs b = 2r/(2m +7).

) : Proof Wegrovethelemma»forl<p<eo,thecasep ooca;nbeproved

m a.sumlar way. By use of Hoider s mequa.lrby we have
d 3 :
[T @m; + ) 1(Sms AP
=1

< (32 @z = hk) )7 1S (hR)[P1@ o e = hE)],,
k

k

where the sums are taken over all k' € Z¢ such that 0 < k < 2m + r and
1/p+ 1/p’ = 1. Therefore, by (2.1) , (2.7) we obtain 1

: “ Sm,rf”?

r

S e L L O

< Col|@m,e 1 I{F (RR)Hlp,2m+r < Cal (St} lpamer- O
Frbm Lemma 2.1 it follows that

"Sm rﬂC(T‘)—»C(T‘) < Ca for any (m, ) E Ma, : (2.9)

and, moreover, for any f 'éfC(Td)

1;@ lIf—Smfl’lccrd)=0- 40 Ty (m)é

i=

ik amodtﬁcamon of a theorem of Marcmkxewxcz (cf e g* {Z]’), frﬁm (2: &), |
(2.7) and Lemma 2.1 we obtain the following:
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Lemma 2.2. If1< p < oo and (m,r) € M,, then for any f € T,, we have

Callfllp < [{f@R) lpamtr < Callfllps b =2x/(2m +7).

Lemma 2.3. If1<- p< co. and (m,r) € M,, then for any fET,, n>m,
we bave

= d
18myrfllp < Ca [T (s /)72 £l

i=1

3. HOLDER SPACES AND HARMONIC DECOMPOSITIONS

First we introduce H - ‘1 < p < 00, the Holder space of smoothness a € R¢.
This space consists of all those distributions f € ¢ (Td) with zero mean in each
f'hnable such that the seminorm

W fllag = Sup “Ahf(')” H lhy| =57 -

5=1

: d
i ia finite, where Ar,z, 1=k 0 AR DYg = H Ay, (Afhjf)(z.) = flZr i +
¢ =1

. h,, .,Zd) — f(z) and by definition f(*) is the Weyl partial derivative of order r
Lof f; the vectors r € Z¢ and § € (0,1]¢ are defined by the equality o = r + 3.
' There is another equivalent definition of Hy fora >0, a€ Rd usmg a mlxed
- higher-order finite difference operator (cf. [Tl}) A Te ] rias ,

L In recovering we shall take functions of a given mixed smoothness A c R4,
 belonging the intersection HA: ﬂ HZ. Below we'can see that H coinsides

with the space of a.ll those dlstrlbutlons f for which the seminorm

1 fllza = sup |[f||ma (3.1)
acA
is finite. :
To formulate and prove our results, we describe two harmonic diadic decom-
 positions of the space HZ. Let Uy and V}, be the unidimensional operators defined

by
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Ui ;= 51, Up := Sqk—1 — Sge-2, k=2,3,...;
Vi =Ty Vie=Igor=Ipeay k=2,3....

The multidimensional mixed operators Ui and Vi, k € N? are defined by

d : d
U= [[Uris  Var= T v,
=1 =1

where Uy; and Vy, are the unidimensional operators at the variable z;.
Note that for any m € N¢

Sgm=Y U Im= 3V,

k<m k<m

where 2% := (2%1,...,2%) for z ¢ RY. Hence, using the properties (22-3) a.nd
(2.10), one can verify that any f € Ly, 1 < p < o0, can be represented by the
series

f=)Y_Vif, (3.2)
k
converging in the L,,; - norm, and any f € C(T?) can be represented by the series

F=Y Ul (3:3)
k i

converging uniformly on ™.

We shall use the notations < and =< to denote the inequality and equivalence
of asymptotic degrees (orders) (for details cf. [D1]). For G . R? let sG(z) :=
sup{(z,y) : y € G} be the support function of G. ,

Lemma 3.1. For arbitrary A C R? and 1 5 p < oé, a distribution ¥
belongs to H, ;‘ iff the quasinorm (3.1) is finite. Moreover, the following equivalence
of quasinorms holds i ‘ ‘

I g = up2* 4O Vil f € H- |

&

P r o of. Obviously, the lemma will be proved if we establish the inequalities
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Cp | Fll g Ssup 2EONWVif|lp < Collflag» fren AS)
for each f € HY. Inequalities analogous to (3:4) were proved for functions "o’f"%‘.
space similar to H and defined by use of a mixed higher—order finite difference
~operator [T1]. In particular, from those inequalities [T1)] and their proof it follows
that (3.4) holds.for arbitrary o € (0, l]d 'We shall prove (3.4) for ‘the unidimen-
sxonal\case (d = 1) the multidimensional case can be proved in a similar way
- without essential changes. Let c e Randa=r+4,r € Z, f € (0,1]. By the
: above mentloned remark and the equality Vif (Rl (Vi )" we have

.C Hf(')llm < sup2”"II(ka)(')llp <Gl ey (3.5)

or each f 6 H o Slnce Vk f “ T2k+l and Vk f is orthogonal to the trlgonometnc

f
p lynomlals of order at most 22 by Bohr’s and Bernstein’s inequalities (cf., €.
g [N]) we obtain

o

R TR

oDl <25 Wil < G0
?’* Thls and (3.5) 1rnply (3.4) for arbitrarya € R. O

Setlv—(l l)ERdand}/()-—coG Rd forGCRd wherecoG
denotes the convex hull of GandR? :={z€R%:z > O}

Lemma 3.2. If1 < p< oo and1/p¢&int N(A), then the following equiva-
Ience of quasinorms holds

1l < sup2*ONVeSlp,  f € B

: P roof. From the condltlon 1/ pE int N (A) by use of Lemma 3.1 one ca.n’
prove that H, 4 js compactly embedded into C(T¢). Let f € H ;‘. By (3.2) we have
; forany k € Nd . ‘

Uef =) UsVif o

k By (2.5) it is not hard to verify that UkV.;f =-0 whenever the inequality s > k-1
' does not hold. Therefore,

10fllp < Y NUVafllp- ’ -+ (3.6)
a>k—;!. s

g

- Lemma 2.3 gives
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UVl € 20PN Y, fily.

Hence by: (3.6) and Lemma 3.1 we have

zaA(k)Hka” <23A(k) Z 2(1/p,a-—k)2—sA(a)“anA
. 8>k—1 g
< g2 B0 Y 2080, g
Bty ' : svods

where B = A— 1/ p. In virtue of the condition 1/p € int'N (A) the series in the last
expression does not exceed a multiple of 2~?B(¥), Using thls estlma.te we obtam
from (3. 7) the asymptotlc inequality

sup2* 4 OS]l < 1 Flhag- (38

The inverse asymptotic inequality can be proved in the same way by repla.cmg
roles of U and Vi by one other. ,

A inequality similar to (3.8) was proved [T2] for functions of a mixed smooth-
ness @ > 0, a € R%, defined by means of a mixed higher-order finite difference

operator.
Let f be a function represented by the series | ¥ & apmirtod
f(z)= ) fila)
kezd

with fi € Tox, k € Z‘i, satisfying the condition

Z (2(1/P~1/q)lk1 I1ll,)e € o0 7
kezg - |
f0r1$p<q<o<;. Then f € Ly and

EIE < Crg D 2127 fl)0,

d
keZg

Here |z| := H z; for,z € RS.

This mequahty was proved in [T1] for a diadic decomposmon a.nd in [DZ} m;
the general case. -
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¢ © < - Instudying n-widths and other approximation characteristics of classes of
%ﬁnctlons of a mixed smoothness, the estimates of the approx1matflons eften reduce
"‘to the problem of determining the asymptotic degrees of the:sums

> ZE@e= "R 31 2'@',“5- (3.10)

kEN‘n tG

dgpendmgso,n( a pomtlve parameter t w‘here G C R;_ is a convex compact set w1th
non-empty interior, and of the. sums of some exponents over mtegral pom‘ts in ;the
complements of tG (see (3. 16)) We need some results of these estimates in [D2]
or estimating the characterictics of optimal recovery of cla,sses of ﬁmctlons of a
~ mixed smoothness. To formulate these results we define some values and functions
~ associated with the following problem of convex programing in Ré:

maximize |z|, subject to z € G.

| Letd = 0(G) := sup{|z| : z € G} be the value of the problem s = 5{(G), = d—1—r
. and r = r(G) be the linear dimension of the set of solutions; <p(h) ©(G;h),
' h > 0, be the d-1-dimensional volume of the set {z € G : |z| = 0 — h}. It was
| proved that one can construct a function w(h) = w(G;h), h > 0, such that w(h)
 is'a‘concave modulus of continuity if s > 0'and w(k) =1 if s = 0, and the rela.t;on

w(h)xw(h), h—o, | (311)

holds. Moreover, if G‘ isa polyhedrai set, i. . the 1ntersecﬁ10n of a finite number
f half-spaces, then

e(h) <h", h—0. o
Set
R(t) = R(G;1) =410y, e
| We have
PhaT > 2R R 5 o B 563 14)

- For a given G one can construct a convex compact set H ¢ R4 such that H D G,

Z(@tH) % Z(G), t—oo, (3.15)

kEN4\tH W ‘
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where mG(z) = inf{t >0 : z/t € G} is the Minkowski function of G,'and a >0
is'a fixed'number. , F A ai’
We shall take functions from

SHA={f € Hf  |flap <1},

the unit ball of the space H :‘ , for recovering. As auxiliary results, we first establish
some asymptotic estimates of n-widths and the best approximation by Fourier
sums in L, of the class SH. : for various pairs 1 < p,q < oo. ’

Let X be a normed linear space of functions defined in T¢ and W C X. We
recall that the n-width of W in X is

a0 ek BWLX), iy

where L is a linear manifold,in X and

E(W,L,X) = sup _in ||f - gllx.
jew 9€L

A characteristic of best approximation by Fourier sums was introdueed in [Dl]

This quantity is defined by

Gn(W, X) = carcllngsﬂ ?‘EIV% V= Iqufllx,_

where G is a finite subset in Z¢, card G is the cardinality of G and
Fof v= Rifue™.
keG

From the definitions it follows that the following the inequality holds

dn (W, X) < RA(W, X) < Ga(W, X). - (31n)
Set G = {z € R :(z,y) < 1, 9.€ Glamd C(G) := 3, [ for

keGNN4
G c R4, ay := max(a,0) for a € R, where .

Op:={s€Z%: 2% 1<l s28%, j=1,....d}

Theorem 3.1. ForAc R4 and1<p,g<oolet B:= A— (1/p— 1/q)+1.
Suppose that 0 € int N (B) and one of the following conditions holds:

(i) 1<q<p and p22
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(ii) 1<p<g<ooorp=g<2 |

‘Then one can construct a convex compact set G C Re such that card C ( °G’) <n
with some m® = m°(n), and the following relations hoId HL

Gn(SHA,L,) < fesgp If = Feimeyfllq

W 1/oR(log n)I/OH/q n —-»vt;o,

""wbere q =2 in the case (1) .and, Q= q in the case (n) and 6 = 0(B+), R{) 5%
/ Proo f 'I‘hls f,hedfem can be proved in'a way completely smnlar toa proaf"
of an analogous theorem [D1] for the class SW"HS  defined by the mixed'modulus
of continuity Q(z) = mf o, A=A —r. O 15V v Taniiil &

Theorem 3.2. Under the hypotheses and notatzons of Theorem 3.2, let tbe
gcondztmn (i) be restricted by (ii’): 1 < p < ¢ < 2. Then

dn(SHA,Lg) < n=/*{R(logn)}/**+1/4", n s o,

. P roof. The upper bound follows from (3. 17) and Theorem 3. 1 The lower
bound in the case (i) can be proved in a way .similar to estabhshmg the lower
‘bound in- Theorem 1.2 [D1]. The lower bound in the case (ii’) was proved in [G]
for finite sets A. For arbitrary set A it can be proved analogously. We draw a
sketch of proof and refer the reader to |G| for a more detailed proof. Let T :=
span {e'*) : ke C(S)}, S :={keN? : |kl =m,le,k) <m/8+C, o€ B}
For a given n, one can choose a value of C such that n =< dimT = Z (S) £ nm,
» — oo, On the other hand Z(S) < 2™R(logm) and N := ca.rdS R(]og m),
m — oo. Hence, we have -

dn (SHA Ly} < dn (.S'HAnTL P

> 2_.m/0+m/p—m/qdn (B:M,N, eg"',N) = 2"'m/0N1/q

xn l/“’R(logn)l/(”*'l/" n — oo.

Here we use the thtlewood—Pa.ley theorem (cf e.g. {D1}]), Lemma. 2 2 and The-r
‘orem 2 [G]. For definitions of ‘the set B2 ‘¥ and the space zi,q’” see also in [G].
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4. OPTIMAL RECOVERY -

From Theorems 31-2311(1(317) follows

Theorem 4.1. Under the hypotheses and notations of Theorem 3.2 we have

RL(SHA, Lg) < n~/*{R(logm)}'/*+1/4, 1 co.

Theorems 3.1 and 4.1 show that recovering functions in SHI‘D‘1 from the n
Fourier coefficients associated with the hyperbolic cross T(C(t°G)); G constructed
in Theorem 3.1. by the corresponding Fourier sum, gives the asymptotic degree
of Ry (SH2,Ly) in the cases of p and ¢ considered in Theorems 3.1 and 4.1.

‘To estimate the other charateristic R, (S H; A, L,), we preliminarily construct.
a linear method of recovery on basis of the harmomc diadic decompos:txon (3.3)«
For G C R we define the operator S by

g 3T Y

keENING

for functions f on T¢. The functlons Sgf are completely determmed from the
values of f at the lattice

U {97%/% :, 0< sq a2’
keG )

The error of recovermg f from the values at L(G) by Scf is estimated by the
following

Lemma 4.1. For any G C R and f € C(T?) we have

0

17 -Sefle< (X 2 vpHg, )

kENI\G
whereq°—_—_lforl<q<p<ooorq=ooandq°=qfor1<p<q<oo.

P r o of. The lemma in the case ¢° = 1 is obvious and in the case ¢° = q
obtained from (3.9). O

Theorem 4.2. Let 1 < p,g < 00, A C Rd be a bounded set and 1/p €
int N(A). Then one can construct a convex compact set'G C R4 such that 1"01'7§
a given n-card L(m°G) < n with some m® = m°(n), and the foHowmg reIatxonsg
hold

|
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Rn(SHA,Lq) < sup ||f = Smecflq
4 feSHA
: 2 :

=< n~ Y% R(logn)}/0+1/a° oo,

where § = 6(B3), R(.) = R(B3;.) B=A—=(1/p—1/q)+1 and ¢° is defined in
Lemma 5.1. -

WP re 0 o f. We prove this theorem in the case 1 < p < g < oo, ‘the theorem
in the remaining cases can be proved in a similar way. Note that Bj_ is a con-
vex compact set because of the definition of BY and the boundedness of A. We
construct by (3.14-16) a convex compact set G C R4 such that G > B and

card C(mG) < Z(mG) =< _2"'0’"R(m), m = o00; (4.1)
Z 27ImBL() < 9= R(m), m—o o0 © (4.2)
keENd\mG :

‘By Lemmas 3.2 and 4.1 and the equahty sB(k) = sA(k) (1/p—1/qg)|k|, we have
for each f € SHA

e If = Smaflf< 3 2720, m— e,
-  keNd\mG
-;;‘Twhe equality sB(z) = mBS () for z.€ R4 and (4.5) give

|f = Smafllq < Z'le/q(m), m — oo, " (4:3)

for each f € SHA. For a given natural number 7, let m® := sup{m : card C (mQG) <
n} Then, from (4.1), (4.3) and properties of the functlon R(m) it follows that

If = Smecfllq <« n~Y{R(logn)} /o414, s oo.

“”’Since the function S,,.cf belong to the space T° := T(C(m°G’)) and dm T° =
(eard C(m°G) < n, the inequality (4.4) proves the theorem in the case 1 <p<
g<o. O

A similar method for recovering in L, functions of SHY,a>0,1<p< o,
was constructed in [T2].
gﬁﬁ From Theorems 4.1 and 3.2 and (1.1) - (1.2) we obtain
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Theorem 4.3. Under the hypotheses and notations of Theorem 4.1 let

1<p<g<2. Then

[D1]

[D2]

(D3]

[HW]

(K]

[N]
8]
[T1)

[T2]

Ra(SHf, Ly) =< n~"/*{R(logn)}'/**1/9, n — co.
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