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.  
1. INTRODUCTION.

We have two aims in this paper: Our first aim is to survey some partial

answers to the AR-problem in linear metric spaces obtained mainly by the author

during the last few years. The second aim is to supply the reader with sogre open

pr6blemss stemming from the AR-problem. The orginal problems were posed by

ihe founders of functional analysis: Banach and Schauder which are stated as

follows:
(i) (Banach). Is every complete linear metric space homeomorphic to a

Hilbert space ?
(ii) (Schauder). Has every compact convex set the fixed point property?

We call problems (i) and (ii) Banach-Schauder problems. Banach-Schauder

problems were posed in early 1930's but they are still open untill now. It turns

out that Banach-Schauder problems in fact come from the AR-problem. We shall

discuss this problem in detail in Section 2. It is of interest to know that for more

than half a century of being strongly attacked Banach-schauder problems are still

firmly standing, no one- has been able to knock them down. Although the final

solutions of these problems have not yet been found, the searching for their answers

have received marvellous successes: a lot of important results were discovered. For

instance, a new branch of mathematics, called infinite dimensional topology' see

[Bpl [Ml, was born on the way of searching for a solution to Banach problem" We

irope that our list of open questions will providd ]oung researchers a good soutrce

of open problems for their research study. These pioblems are still very active

,ro*udty" and play an important role in the development of modern functional

analysis and topology.
We have been working on Banach-Schauder problems for several years and

have found some partial answers. Our work has also discovered a lot of new

problerris for further investigation of Banach-Schauder problems. Most of problems

discussed in this papers were posed by the author. However we also recall some

old problems from other sources in this area in a hope that the reader will have
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a complete list of open problems which all come from Banach-Schauder problems.
We believe that they are very good problems and hope that the answers to many
of problems in our list will be soon found by the reader.

For convenience for the reader we state some criteria for recorgnizing ANR-
spaces.

Notation and Conventions: In this paper all maps are assumed to be
continuous. By a linear metric space we mean a topological linear space X which
is  metr izable.  We wr i te  l l r -y l l :  p( r ,y) ,  where p is  an invar iant  metr ic ,  see [Rel .
We may assume that l l . l l  i r  monotonous, that is

l l r" l l  < l l r l l  for every r € X and .\  € R with l l l  < 1.

We call l l . l l u" F-norm.
The zero element of X is denoted by d. A locally convex space is a linear

metric space which possesses a basis of neighbourhoods of d consisting of convex
sets.

Let E be a subset of a linear space X. By conv -E we denote the convex hull
of .E and span .E denotes the linear subspace of X spanned by .O.

Let E be a subset of a metric space X and r € X. We denote

l l "  -  r l l  :  inf{ l l "  -  v l l  :  v € E}.
We recall that for p € [0,1) the linear metric space ,Lo is defined by

Lp : {f : [0, r] ---' R, f o r 0 ( p ( 1 a n d

I

Lo:{ / ' [0 ,  1]  *  R,  |  ##hdr < oo] .
0

For other notation, see [Bo][BP].

2. THE AR.PROBLEM.

We say that a metric space X is an ANR if and only if for any metric space
Y which contains X topologically as a closed subset there exist a neighbourhood
U of X in Y and a map (called a retraction) r : Y -* X such that r(r) : s lot
every r € X.

1 t

I

I  l f  ( t ) lPdf  <  m)
J
0



The AR-problem in linear metric spaces

We say that X is an AR if in the above definition we can take U : Y. The

AR-problem in linear metric spaces is stated as follows:

2.1. Problem. (The AR-problem). Is every convex set in a linear metric

space an AR? See [G] [W], Problems LS1, LS6.

For locally convex spaces Problem 2.1 was settled affirmatively by Dugundji

[D] in 1gS1. However this problem remains open for non-locally convex linear

metric spaces and is one of the most resistant difficult open problems in ilrfinite

dimensional topology.
Problem 2.1 is extremely important because of the following'two teasons:

The first reason comes from Schauder's conjecture. In 1935 Schauder proved

that every compact convex set in a locally convex space has the fixed point proper-

ty. Schauder conjectured that his theorem holds true without the local convexity.

2.2. Schauder's conjecture. Every compact convex set in a linear metric

space has the fixed point proPertY ?

At a first glance one may think that Schauder's conecture is not very hard,

however it is one of the most difficult problems in fixed point theory" In fact

Schauder posed Problem 2-2in the Scottish book in 1935 and despite great efforts

by topologists for over fifty years his conjecture is still unproved. Schauder's

conjecture is still open even in some very special cases: For instance, it n<lt known

whether compact convex subsets of the spaces Lp,O< P 1I, have the'f ixed point

property.
Let us observe that the following theorem of Borsuk [Bo] has reduced Schaud-

er's conjecture to the AR-Problem:

2.3. Theorem. (Borsuk, 1937) Euery compact AR-space has tlt'e fired prtirr't

property.

The second reason comes from the problem of topological classi{ication of

convex sets in lilear metric spaces which is, in our opinion, even more irnportalit

than Schauder's coniecture. I t  asks.

2.4. Problem. (i) Is every infinite dimensional compact convex set in a

l inear metric space homeomorphic to the Hilbert cube Q : [0,1] '" ?'

(ii) Is every complete separable infinite dimensional linear metric space

homeomorphic to a Hilbert sPace ?

Problem 2.4 was posed by Banach in early 1930's and is the most fundamen-

tal question in infinite dimensional topology. In fact, infinite dimensional topology

was born on the way of searchitrg for a solution of this problem.
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In the late seventies Torunczyk established very powerful cha"racterizations
of Hilbert cube manifolds and Hilbert space manifolds which reduce Problem 2.4
to the AR-problem.

2.5. Theorem. [DT1j. (;) An infinite dimentsional compact conuer set X
in a linear metric space is homeomorphic to the Hilbert cube if and only if X is an
AR.

(i;) A complete separable linear metric space X is homepmorphic to a Hilbert
space if and only if X is an AR.

From Theorems 2.3 and 2.4 it follows that a solution to the AR-problem
would solve both Banach problem and Schauder's conjecture which have been
open for six decades.

3. A CHARACTERIZATION OF ANR-SPACES.

The problem of detecting the ANR-property of a metric space is, in general,
very difficult. There are a lot of criteria for recorgnizing ANR-spaces, see [Bo]
[BP] [Hu] ["Mj. In this section we present a criterion for ANR-spaces extablished
by the author in [Nf], see also [N3] [AN]. This charaterization of ANR-space is
very convenient in applications and has been used frequently by the author and
others to obain new ANR-spaces, see [Nt] [Nz] [w+] [Nb] [N6] [NT3] [NS].

Let X be a metric space. For an open cover U of X let N (U) denote the
nerve of U equipped with the Whitehead topology. Let {U"} be a sequence of open
covers of X. We say that {U"} is a zero sequence if and only if

sup{diam U : U e U"} -+ 0 as rL --} oo.

We denote

U : j
z : 1

Un and K(U) : t t(U^[J u,+,).U
n = 1

For each o € K (U) we write

n(o )  - sup {z  €  N  :  o  €  N(U"UU"+r ) } .

We say that a map "f : U - X is a selectionif and only /(t/) € U for every
u  e u .

The characterization of ANR's established by the author in [N1] is simplified
to the following due to observations of J.Luukkainen and K. Sakai:
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3.1. Theorem. [N1] [N3l [AN] A metric Epoce X is an ANR if art 'd only

if there erist a ,rro ,"qrrnce of open cooen {U"} of X together with a map f :

l f  (ql *.X and, a selection g i  lJ --+ X such that for any sequencA {o6} with

n(ox) --+ oo we have diam{s(of;) u /(ot)} -- o.

As a consequence of Theorem 3.1 we obtain Dugundji theorem.

8.2. Corrolary. (Dungundji theorem lDl) Euery conuer subset of a locally

conuer space is an AR.

P  r  oo f .  Le t  X  be  aconvexse t  i n  a  l oca l l y  convexspace .  S ince  X  i s

contractible, it suffices to show that X is an ANR, see [Bo]. We shall verify the

condit ion of Theorem 3.1..
Lef {tl*} be a sequence of open covers of X consisting of convex subsets of

X with the following properties:
(1) diam conv U < 2-n for every U € stU" ;
(2) U"+t < U,, for every rz € N.

Let 11 : l) u" and let g:lJ, -- X be any selection. using the convexity of
n : l

X we extend g to a map .f : lK(U)l * X. It is easy to see that the map satisfies

the condition of Theorem 3.1. therefore X is an ANR and the corrolary is proved"

4. THE LOCALLY CONVEX APPROXIMATION PROPERTY.

In this section we sha.ll provide some our partial answers to Problem 2-1'

Our idea of attacking Problem 2.1 is to approximate convex sets in linear metric

spaces by convex sets in locally convex spaces. We introduce the notion of the

locally conuetr approrimation property (the LCAP) for convex sets in linear rnetric

spaces and prove that the LCAP implies the AR-property. Roughly speaking, osr

theorem states that if a convex set X can be "approximated", itt sorte sence, by

convex subsets in locally convex spaces then X is an AR. In the compact case tlte

LCAP is equivalent to the notion of admissibi l i ty introduced by Klee tKl] [K2].

4.I. Definition. [N3] Let us say that a convex set X in a linear metric

space is LC-convex if  and only i f  for every e ) 0 there exists a 6 :6(e,X) such

that for every finite set .4 C X with diam l, ( 6 we have diam conv A < e.

obviously, any convex set in a locally convex space is LC-convex.

4.2. Definition. [Ne] We say that a convex set X in a linear metric space

Y has the locally convex appro:<imation property (the LCAP) if and only if there

exist an F-norm l l . l l  o" Y, a sequence {X,"} of LC-convex subsets of X and a



6 Nguyen To Nhu

sequence of continuous maps rn : X --+ Xnsuch that for some summable sequence

{o,.} of positive numbers we have

(LC) ,l$ ittf (o^)-' l lc - r"(r)ll : o for every r € X"

We have proved the following theorem which indicated the importance of
' the LCAP for investigating the AR-problem.

4.3. Theorem. [N3] ,any conucn set witk the LCAP is an AR.
' 

Our Theorem 4.3 reduces Problem 2.1to

, 4.4. Problem. Has every convex set the LCAP ?

Theorem 4.3 also suggests the following problem:

4.5. Problem. Assume that X is a convex set with the LCAP. Is every
convex subset of X an AR ?'

We shall discuss some applications of Theorem 4.3.'

Application 1. The following result is an obvious application of our The-
orem 4.3.

4.6. Corrolary. Any conuer set which is a countable union of LC-conuer
subsets is an AR.

From Corrolary 4.6 it follows that a positive answer to the following problem
. 

would imply the AR-property of all separable convex sets.

4.7. Question. Let X be a convex set in a l inear metric space E. Assume
that X has the LCAP. Has the closure X of X in .E the LCAP ?

Application 2. In 1940 Krein and Milman proved the following theorem:

4.8. Theorem. lKMl Any cornpact com)er set in a locally conuer space is
the closure conuer, hull of its ertrerne points.

The following question was open for a long time.

4.9. Question. Does Krein-Milman theorem holds true for non-locally
convex linear metric spaces ?

In 1976 Roberts constructed a striking example of a linear metric space
which contains a compact convex set without any extreme points. Thus the Krein-
Milman theorem does not hold true for non-locally convex linear metric spaces.
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One may ask whether Krein-Milman theorem holds true for compact convex AR-
sets. In other words, is it true that any compact convex AR-set in a linear rnetric
space is the closed convex hull of its extreme points ?. The answer to this question
is "no". In fact as an application of our Theorem 4.3 we get the following result'
which was proved first in [NT]

4.10. Corrolary. [N3] Sorne of compact conuer sets with no ertreme pctints
constructed by Roberts has the LCAP and hence is an AR.

. 4.11; Question. Has every compact convex set the LCAP ?
Let us note that by Theorems 4-3 and 2-3 a positive answer to Problem 4-11

would also provide an affi.rmative solution to Schauder's conjecture.

4.L2. Question. Let X denote the l inear metric space constructed by
Roberts [R1]. We ask:

(i) Has every convex subset of X the LCAP ?
(i i)  Has euery compact cont)en of X the LCAP ?
(i i i )  FIas euerv l inear subspace of X the LCAP ?
(iv) Has the whole space X the LCAP ?
(v) Has every compact convex set of X the fixed point property ?

5.  AMIDSSIBLE CONVEX SETS.

The notion of admissibility of convex sets in linear metric spaces was in-
troduced by Klee in [Ktj [K2] and plays an important role in discovering the
AR-property in linear metric space" In this section we shall see that the LCAP is
an extension of the notion of admissibility of Klee to the non-compact case.

5.1. Definit ion. ([K1] [K2]) We say that a convex set X is admissible i f
and only if for every compact subset A of. X and for every e > 0 there is a map /
from ,4 into a finite dimensional subset of X such that ll" - f (")ll < u for every
r € A .

Thg relation between the LCAP and the admissibility of Klee is established
in the following theorem.

5.2. Theorem. [AN] A compact conuer set X is admissible i f  and only i f  X
has the LCAP.

Klee [K1] [K2] showed that any convex admissible convex set X has t]re
compact ertension property, that is, any map into X defined on a compact subset
of metric space can be extended to the whole space. Observe that Theorem 4.3
can be thought of as an extension of Klee theorem. We are not able to prove
Theorem 5.2 for non-compact convex sets.

5.3. Question. Has every admissible convex set the LCAP ?
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The following problem is still open:

5.4. Question. Is every convex set in a linear metric space admidssible ?
, Even the following special case of Question 5.4 has no answer.

5.5. Question. Assume'that X is an admissble convex set in a linejar metric
space. Is every convex subset of X admissible ?

6.  NEEDLE POINT SPACES.

The idea of Roberts of constructing a compact convex set with no extreme
points is to introduce the notion of needle point spaces.

6.1. Definit ion. [nf ]  [nZ] We say that a non-zero point a in a l inear metric
space X is a needle point \f and only if for every 6' > 0 there existq a finite set
A(a,e) :  {ar  , t . . . ,arn}  sat is fy ing the fo l lowing condi t ions:

( i )  l l o ; l l  <  e  f o r  e v e r y  i :  l , . . . t m i
(i i)  For every x € conu(A(a,e) U {0}) there exists an o € [0,1] such that

l l r - o . a l l  < r ;
( i i i )  a  :  n1 , - t  ( o t  +  . . . a  o ,n ) .
It is easy to see that condition (iii) can be replaced by the following one.
( i i i ) '  l l o  -  * - -  t ( o t  +  . . . 1  o ^ ) l l  <  t .

A linear metric space X is a need,le point space if and only if X is a'complete
separable space in which every non-zero point is a needle point.

Roberts proved the following theorems.

6.2. Theorem. lRz] Every need,le point space contains a cornpact cont)er
set without any entreme points.

6.3. Theorem. [R2] For euery p € [0, t) the space L, is a rr.eedle point
Epace.

We observe that the proof of Theorem 6.2 is quite simple. So if we have a
needle point space at hand we can easily to construct a compact convex set with
no extreme points. However it is not easy to give an example of a needle point
space: The proof of Theorem 6-3 is far more complicated.

Because Theorem 6.2 is suprisingly interesting and its proof is simple we
shall outline the proof. Let X be a needle point space. At first we take any point
ao *  A and le t  Ao :  {oo} .

Assume that  A,"  :  {a ! , . . . ,ahfu)  }  has been def ined.  For  every a € Anwe
use Definit ion 6-1 to take A(a,enq1), where

€n*r : z-n-L (card l ,r)- 1 '
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Put

An*r :  U{A(a ,en+1)  :  a  €  An} ;

/ ': conv,Q. t' t 
"'

Observe that A is a compact convex set in X and the only possible extreme
point of A is 0. Therefore the set B : conv (,{ U (-/,)) is a compact convex set
without any extreme points.

. For sometime it was hoped that Roberts'example would provide a counter-

example to Schauder's conjecture. However this is not the case: In fact in [NT2] it

is shown that all compact conuer sefs constructed by Roberst have the fixed point

property. Let us observe that in [KPR] it was claimed that all compact convex

sets constructed by Roberts' method have the fixed point property but no detail
proof was given

It was proved earlier in [NTl] that every needle point space contains a coni-

pact convex AR-set with no extreme points. However let us odserve that the

proof given in [NTf] has not yet reached atl Roberts' compact conuer sefs. Some

of Roberts compact convex sets were still standing away from the arguments given

in [Nrt]
Our result in [NTZ] has settled completely the question about the fixed point

pioperty for all the compact convex sets constructed by Roberts. However the AR-

property of Roberts compact convex sets has not yet been completely settled: The

result of [NTZ] does not say that all Roberts' compact convex sets are AR's. It

seems to the author that the AR-property for all Roberts' compact convex sets

can be established by using the arguments given in [NTZ]. However this has.not
yet been done.

After Roberts constructed his example needle point spaces become'the most

important area for finding a solution of Problem 2.1. Because needle point spaces

contain compact convex sets with no extreme points, it is hoped that needle point

spaces (and in particular the spaces Lp,O S p < L) would be a good place for

constructing counter-examples to Problems 2.1. The following question arises

natural ly:

6.4. Problem. Is every convex set in a needle point space an AR ?

7. THE FINITE DIMENSIONAL APPROXIMATION PROPERTY.

Our aim is to search for a solution of Problem 6.4. Again we try to ap-



1 0 Nguyen To Nhu

proximate convex sets in needle point spaces by convex sets in finite dimensional
spaces. The finite dimensional approrimatton property (the FDAP) introduced in

[NS] is the key to this problem. Our results produce linear metric spaces which
contain compact convex sets with no extreme points such-that all convex subsets
of them are AR's. This result extends the earl ier theorem establisired in [NTl].

As we have seen the LCAP is quite useful for detecting the AR-property
in linear metric spaces. However it is not strong enough to attack Problem 6.4.
For instance we are not able to show that convex subsets of a convex set with
the LCAP are AR, see Question 4.5. We shall  introduce the notion of the FDAP
which is stronger than the LCAP and could be applied to the case of Problem 6.4.
In fact applying the FDAP we obtain some part ial answers to Problem 6.4 , see
Theorem 7.4.

7.I.  Definit ion. [NS] Let X be a convex set in a l inear metric space Y.
We say that X has the finite dimensional approximation property (the FDAP) if
and only if there exist an fl-norm ll ll o" Y and a sequence of continuous rnaps
rr, from X into finite dimensional subsets Xo of X such that for some summable
sequence {o"} of positive numbers we have.

(FD) l im inf(a,)-r  d im X" l l "  -  r*(r) l l  :  O for every r  € X.

Of course the FDAP is stronger than LCAP. So we also obtained the follow-
ing stronger theorem.

7.2. Theorem. [N3] Let X be a conver
has the FDAP then euery conuefr subset E c X
set with the FDAP is an AR.

Theorem 7.2 reduces Problem 6.4 to

set in a l inear metric spaee. A X
is an AR. In part icular any conuer

7.3. Problern. Has every needle point spaces the FDAP ?
As an application of Theorem 7.2 we obtain the following result which pro-

vides a partial answer to Problem 6.4.

7.4. Theorem. [N3] Euery needle point space X contains a d,ense l inear
subspace E c X with the following properties:

(i) E contains a compact conuer set with no ertreme points;
(i;) E has the FDAP, therefore euery conuet, subset of E is an AR.

Unfortunately, we are not able to prove that .E - X. Even the answer to
the following question has not yet been found i
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7.5. Question. Is there a complete l inear metric space with propert ies ( i)
and (ii) of Theorem 7-4?

We are not able to prove Theorem 7-4 even for tire spaces Lp, O ( p < 1.
However for the spaces Lp, O 1 p 11, we get something more than Theorern 7-4.

7.6. Definition. We say that a subset D c Lo is fl-convex if and only if
for any f,g € D and for every a e [0,1] we have f l(/ ,  g) e D where f l(/ ,g) i t

defined by

fi(',n) : { Itl:ii!ll,li
7.7. Theorem. [N1] [N2] Euery fl-conuex subset of Lp, 0 < p I l, is art,

AR.
In particular we have:

7.8. Coruolary. The whole spaces Lp, O 1p 1L are AR.

The following questions are still unanswered.

7.9. Question. ( i) Is every l inea.r subspace of L1,, 0 S p 1 l ,  an AR ?
(i i)  Is every compact conuer sef in Lp, 0 S p < 1 an AR ?
(iii) Has every compact convex set in the spaces Lp, O 3 p < 1, the fixed

point property ?
Our results provide new examples of convex sets with the AR-property and

raise a lot of new problems for further investigation of Problem 2.1, one of the
most difficult problems in infinite dimensional topology.
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