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Abstract. A free boundary problem arising in the noncatalytic gas-solid reaction 1s consid-
ered. The local ezistence of solutions is established by using the classical fized point argument.

1. INTRODUCTION

In [6] the following problem was investigated: Find a triple (T, s(t), u(z,t))

_such that T > 0,s(t) € C'[0,T], u(z,t) € C>'(Dr) N C(Dr), where Dr =

{(z,t):0 < z < s(t),0 < t < T}, uz is continuous up to the boundary z = = ML)
and such that

Uz — Ut = 0 in Dr, (1.1)
u(0,t) = vo, DR P (1.2)
s(0) =0, (1.3)
uz(s(t),t) = g(u(s(t), 1)), 0<teT, (1.4)
5(t) = f(u(s(?),1)), U T<d, {1.5)

where vo is a given positive constant, f and g are given functions.

This problem is a mathematical model of an isothermal diffusion-reaction
process of a gas with a solid. We assume that the olid has a very low permeability
and is chemically attacked from the surface with a quick and irreversible reaction.
As a result of the chemical reaction an inert layer is formed, which is permeable to
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the gas and the process will exhibit a free boundary z = s(t) (the reaction front),
u(z,t) represents the gas concentration. The condition (1.4) describes an empirical
law, which relates the rate of mass consumption of the gas and the incoming flux
of the gas. The condition (1.5) states the same balance in terms of free boundary
velocity. In Wen’s model the empirical law is described by

(see [7]). In Langmuir model

)= Finvems u L H

where a, b, ¢ are positive constants, n > 0 (see [2]).

In this paper we consider the following Wen-Langmuir-like model:

Problem I. Find a triple (T, s(t), u(z,t)) such that T > 0,s(t) € C1[0,T],
u(z,t) € C>Y(Dr) N C(Dr), where Dy = {(z,t : 0 < z < §(t),0 < t < T}, ug is
continuous up to the boundary z = s(t), and such that

TR T in Dr,
©(0,t) = vo, Gxt<T,
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‘where f and g are given functions.
The following assumptions are made:
f€CY(R%)?), fu(v,r) >0and F > f.(v,r) >0forv >0,r >0,

P > f(vo,r) for r >0, f(0,0) = 0, F and P being positive constants, (1.11)
é € CY((R1)?), gu(v,t) <0 and g¢(v,t) < 0 for v >0,t >0,
g(vo,t) > —G and ¢(0,t) =0 for t > 0,G being a positive constant.  (1.12)
Moreover, there exist positive constants fy,go such that

|f(v2,7) = fv1,7)] < folva — vi], (1.13)

for vy,vq € [%Q,vo] T E Rt

v 2
lg(v2,t) —g(v1,t)| < golvz — v1| for vy,v2 € [—zg,vo] A I . (1.14)
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2. AUXILIARY PROBLEMS

1. Case 1: s(0) =b> 0.

For each Lipschitz continuous function s(t), satisfying s(0) = & > 0, we
consider the following problem:
Problem II. Find the function u(z,t) such that

Uz — us =0 in Dr, (2:1)
u(0,t) = vo(t), 0<t<T, (2.2)
u(z,0) = ¥(z), 0 <x<¥, (2.3)

uz(s(t),t) = g(u(s(t),t),t), Dect<T, (2.4)

(For the sake of completeness we consider v (t) instead of vo in the right hand side
of (2.2).) We shall prove the following:

Theorem 2.1. Under the hypotheses

i) 3L > 0 |s(t1) — s(tz)| < Lit1 — t2|,Vt1,t2 € [0,T], 0 < a0 < s(t) <
Ao, Vte€|[0,T],a0,Ao are constants,

ii) ¥ € Cla,b],%(0) =vo(0), ¥(z) > 0 in [a,b]," ¢’ € Clb—€,b] for e >
0, ¥'(b) <0,

iii) g(v,t) is a strictly decreasing function with respect tov-for v > 0,t > 0,
satisfying (1.14) and ¢(0,t) = 0 for t > 0,

iv) vo € C[0, T),vo(t) >0 in’[0,T], ma<xTvo(t) - Orélza%(bw(z),

there exists a unique solution of Problem II.

P r oo f. a) First, we prove the following a priori estimate for the solution
u of Problem II:

0 <ulzed) < Ao vo(t) in Dr. (2.5)

The right hand side inequality of (2.5) follows from the maximum principle and
the fact that, ¢ < 0. Let Ty > O be the first time such that u(s(7v),70) = 0,
0 < Ty < T. By the strong maximum principle (see [5]), we get u.(s(To),To) <O,
which contradicts u,(s(To),To) = g(u(s(Tv),To),To) = ¢(0,To) = 0. It follows
that u(s(t),t) > 0,0 < t < T. Using the maximum principle we get u(z,t) > 0 in
Dr. This proves (2.5).

b) Uniqueness. It follows from (iii) and the maximum principle.

c) Existence. For each given function h(t) € C€[0,T] with h > 0 and
g(h(0),0) = ¢'(b), there exists a unique solution of the following problem:
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Vrzrz — U =0 in Dr,
v(0,t) = vo(2), 0<t<T,
v(z,0) = ¢(z), < = <0,
va{8(t], t) = glhlt],t) ="H(t},. O<t<T.

(see [6]). Moreover, the solution v is continuous in D7 . Hence, for every
h € C[0,T] we can define h(t) = v(s(t),t) € C[0,T] and therefore we have the
application

Fy : h(t) € C[0,T] — h(t) € C[0, T)]. (2.6)

By an argument used in [4], we can prove that F} is a contractive mapping
of C[0,T] into itselt. Indeed, there exists an increasing continuous function T,
vanishing for T = 0 and depending continuously on the parameters ao, Ao, L, go
such that

Ao = hylfs < Q(TW2 ~ hy|l¢, for t €0, T]

where |lp||; = P 8 (7). ’ :

Hence, there exists To = To(ao, Ao, L,g0) > 0 such that Q(T) < Q(Tv) < 1
for all T < T, and then F; is a contractive mapping and its fixed point is a solution
- of Problem II. Moreover, Q(t) and Ty do not depend on the data ¢(z) and v(t),
so that the same method can be repeated in [T, 2T,]. Thus, there exists a unique

solution of Problem II for any T > 0.
2. Case 2: s(0)=b=0.
For each given function s(t) € C'[0,T] with s(0) = 0 we consider the fol-

lowing problem:
~ Problem III. Find a function u(z,t) € C*!(Dr) N C(Dr) such that:

Uzet=U; =0 in Drp,
u(0,t) = v, Vet
u-l8(t),t) = gluls(t),t),t), O0<t< Ty

where vg is a positive constant and g satisfies (1.12).
We have the following a priori estimates:
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Lemma 2.1 1)

0 < u(z,t) <vo in Dr, (2.10)
—G < ug(z,t) <0 inDr. (2.11)

i1) If s also satisfies the condition

Vo :
3K, > 0,s(t) < Kqt,Vt € (0,t0),t0 = * D,
2 > 0,5(t) < Kyt,Vt € (0,20), %0 2K,G
then u verifies

Vo s
0< . < u(z,t) <wvo in Dy, (2.12)

v pa s
—G < ug(z,t) < g(—29,0) < 0 in Dy,. (2.13)

Proof. i The proof of (2.10) is sirmilar to the one of (2 5).

We get (2.11) by using the maximum principle and the fact that g <0,
gy < 0,uz.(0,t) =0 in (0,20).

ii) For (z,t) € Dy, we get

z
u(z,t) = vo + /0 uy(y,t)dy > vo + s(t). 021<nto g(vo,t) >

; v
Z Vo —4GK2t Z v — GKzto s 70

By using the maximum principle and the fact that g, < 0,u,;(0,¢) = 0 in
(0,t0] we obtain the right hand side of (2.13).

As in [4] we can establish the following:

Lemma 2.2: If vo(t) € C[0,T],vo(t) > 0 in [0,T],g(v,t) is a continuous
function with respect to v, for v > 0,t € [0,T] and s € C[0,T| with s(0) = 0, then
there exists t' € (0,T) such that the equation

Flw.t) = y = volt) - gy t)s(t) =0

has at least one solution y for each t € (0,t').
Moreover, the function yo(t) > 0 can be defined in (0,t') such that

f(wo(t),t) =0 and tEr& Yo(t) = vo(0).
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Theorem 2.2. If g verifies (1.12), s € C'{0,T],s(0) = 0 and s(t) >
Kit,(K; > 0) in [0,T], then there exists a unique solution of Problem III for a
suitable small T > 0.

P r o of. a) The uniqueness is deduced as in the proof of Theorem 2.1.

b) Existence. We introduce a decreasing sequence {t,} such that

Tatslhiohpr. ote> ., imity=9,

n— oo

where t’ is defined in Lemma 2.2. We define the sequence {u,} such that u, =
un(z,t) is the unique solution of the following problem:

Up,, —tn, = 0in Dy 7, ( )
%,{0,8) = vo, te < b T, (2.15)
Un, (8(2),t) = g(un(s(t)at)’t)7 tha <t'<T, ( )
Un(Z,tn) = ¥n(z), 0<z<s(tn), (2.17)

where Dy, 7 = {(z,t) : 0 < z < s(t),tn <t < T}, and

¥n(z) = vo + g(¥n(s(tn))stn)z. (2.18)

which is justified by Lemma 2.2 and choosing % (s(ts)) = yo(tn,) > 0 for each n
that satisfies

nlLII;o Yn(s(tn)) = vo.

Let 2, be a solution of the following problem:

BBy, =0 m A (2.19)

Falle =1, te Bt < dy ' (2.20)
Il 20 o))S BlE(Bhs B @ S st : (2.21)
Zn, (8(t),8) + 8(t) 2n (s(2), 8) = g0 (2(2), 1) [$()g (¥ (2), 8) +
+zn( (), t)]+gt( L1, <tz (2.22)
/ 8(r) () ) + 2a(s(r)s ) dr+
+¢n( (tn))y = ta<t<T. (2.23)

As in [1] we can see that there exists a small enough 77 > 0 such that
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1lén1an,T1 < sup $(t). sup |g(v,7)| < const. (2.24)
t.<t<Th Yocvev,
tpn<r<T-1

Define i, (z,t) in Dn,r(T < T1) by putting

tin(z,t) = vo + z[g(¥n(s(tn)), tn) + /t 2z, (0,7)d7]+

3 /: d¢ /OE 2n (Y t)dy. ' | (2.25)

We have the following properties:
i) @, (2,1) = @y, (2, t] = @nlZabl in Bnm
i)un(O t)‘——vo, <t .
iii) fin(Z,tn) = vo + 2g9(¥n(s(tn)), tn) = ¥n(z), 0 < z < 5(tn).
V) din, (5(0),8) = 9(¥n(s(t))stn) + [, 20, (0, 7)drt [ 2n(,1)dz =
(¢n( (tn)),tn)+ fo L g(~y(r),7)dr = g(¥(t)st), 0 <t <T. (It follows by us-
ing Stoke’s theorem - for t € (tn,T) we get 0 = [[ (2n,, — 2n,)dzdr = [ 2zndz+

Dn,t Dn,t
y,; dr.)
)dtun( t)

s(t),1) = §(£)g(1(t),1) + 2a(5(£),8) = 4(2), 0 < t < T, and by inte-
gration, we find ,(s(t),?

} =t} 0<t < T Hence
tin, (s(t),t) = g(in(s(t),1),t). (2.26)
 Fromi) - ii), (2.26) and the uniqueness of solution of (2.14)-(2.17), we deduce
fin = Uy in Dy 7. By (2.24) it follows that :
|lwn,,||D.r < const, ||tn,|D,r < const, Vn. (2.27)

Denote by u(z,t) the limit function of u, for n — co. Then u satisfies (2.7},
(2.8). We have only to verify (2.9). Let t € (0,T), = € (0,s(t)) be fixed, then we
have

u(s(t),t) —uals@). )+
a(8(t),t) = un(2, )] + [un(e,t) — (s, )] =
= [u(s(t), t) — un(s(t), )] + [un(2,t) — u(z, t)]+

+ g(ua(s(0), 0,0 (5(2) — 2) + S0, (3,8)(s(0) — 2)?
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for some z € (z,s(t)). By (2.27), we obtain

[u(s(?);t) = u(z,t) = g(unls(t),2),1),1).(s(t) ~ 2)| <
< 2||w — uy|| + const.(s(t) — z)2.

Letting n tend to co and then z to s(t), we get (2.9).

3. LOCAL EXISTENCE AND UNIQUENESS

We return to Problem I with f and g satisfying (1.11)-(1.14).
Since f, > 0, f, > 0 and (2.12), it follows that .

3(t) > £(5,0) > 0, Vi € (0, ), o

and s(t) = s( +f0 7)dr > 0, Vt € (0,t0).
We choose T such that

T < min(to,t', T}), (3.2)

where to,t', T} are defined by Lemma 2.1, Lemma 2.2 and (2.24) respectively.

We consider the following auxiliary problem: For each given function r(t) €
- C'[0,T] such that r(0) = 0 and 0 < K; < #(t) < K3 in (0,T), let v(z,t) be the
unique solution of the problem: ;

Vg — ¥ =0 in D, r, (3.3)
v(0,t) = v, Oned ey
vz(r(t),t) = glv(r(¢),1),1), o o

where D, r = {(z,t) : 0 < z < r(t), 0 <t < T}. Then v(z,t) satisfies (2.12),
(2.13) in D, 1, i.e. .

22 < o(z,t) < v, (3.6)

lvz(z,t)] < G. (3.7)



On a free bouhdary problem arising ... o 41

By an argument used in the proof of Theorem 2.2 and taking [1] into account,
we find that v,, is bounded in D, 7 by a constant Z depending on K,,G for T > 0
small enough. Define

B={seC!0,T]:s(0) =0, 0< K; <3(t) <K,
|6(t2) — $(t1)] < Kslta — t1] for ti,tz € (0,T]}, (3.8)

. v
ﬂ:{(y,p):;OSySvo,osPSoo},

where the coefficients K, Kg, K3 satisfy the conditions

0< Ky < inf fly,p) = f(gg’o),

(v,p)EQ 2
0< sup f(y,p) < Ko, fo(GK2+Zo)+FK2 < Kj. (3.9)
(y,p)EQ
Since 0 < K, < §(t) < K, and s(t) = s(0) +f0té fo 7)dr, we have

Koty Kap, D<t<T.
It is clear that B is a closed subset of C[0,T]. In particular, we can choose

v

Ki = f(5,0), K2 = P, Ks = fo(GK; + Z0) + FK:. (3.10)
Define F, to be the application

F,:re B—r,

where . *
-2 / fl(r(r),7),s(r))dr, t € [0,T], (3.11)
. |
and v(z,t) is the unique solution of (3.3)-(3.5), which satisfies the estimates
"70 <u Ly, |vs| <G, [ver| SHooin D, 1. (3.12)

Then we have 7 € B because

F(t2) — 7(t1)] < [ (v(s(t2), t2), s(t2)) = flv(s(tr),t1), s(t2)) [+
+1f(v(s(t1),t1)s8(t2)) — fu(s(tr)ita), s(t))l <
< folv(s(tz),t2) — (v(s(t1)sta) + Fls(t2) — s(t1)] <
< fo{GK3 + Zo}|tz — t1| + FKalta — t1| = Kalta — t1],  (3.13)

for ty,ty € (0,T). We have the following theorem:
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Theorem 3.1.

The application Fy is a contractive mapping of B into itself
in the metric of C|0,T] for a small enough T > 0.

Proof. Let u and v be the corresponding solutions of the problem (3.3)-
(3 5) for s,r € B, respectively.
For the sake of simplicity we put

— (), |16r, s = sup 6p,(r)

510 = 1a(4) = r®), ol = sup 6()
o1(t) =i . s(t

inf(s(t), 7(t)), 02 = sup(s(t),r(t)).

Without loss of generality we may assume that o; = r 03 = s. Then

or,( ‘”I/[f

8(7)) = [(u(r(r),7), (7)) ]dr| < ‘
< fot|jvs = u|,||t + Ft et |s(r) — r(7)], (3.14)
(we denote by v,

and v), the restrictions of v on z = s(t) and z = r(t), respec-
tively). We get

”vb

upele = gax [o(s(r),7) ~ ul

<
—
-3
N
\‘
N’
IN

< e
max, v(s(r),7) - o

<
—~
-
~—
-3
~—
+

g olggét v(r(r),7) — u(r(r),7)]

= b(t) + a(t). (3.15)
Applying the average value theorem we get further
b(t) < G.|6]l:- (3.16)
Notice that v(r(t),t) = vo +f0 (z,t)dz, u(r(t),t) = vo +fr(t) ds:
This yields

[o(r(t),2) — u(r(2),1)] < Kst|lve

p,. = Kat sup C(7),
o<r<t
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where

C(r) = vz (r(r), 7) — ua(r(r);7)| <
< Joa(r(r), 1) = va(s(r), )| + vz (s(r), 7) — ua(r(r),7)| <
< zol6]l: + gO””Is B u|r“7t'

Hence, we find
| a(t) < Kat[zo||8]lt + gollvjs — ujr[le]-

From (3.15)-(3.17) it follows

lvjs — w)rlle < Gll6]le + Kat[2o]|6]|t + gollvjs — )l

# G + Ky Zot
240 %
lvjs — upelle < ¥ e < ag|6]]¢ for 0 <t < t7,

where t* = 2K12g0 >0, ap = 2G + gg > 0.

By using (3.14) and (3.18) it follows that

6, (t) < fooot||6ls + Ft||6]|: = (fooo + F)t[|6][:,0 <t < "

43

(3.17)

(3.18)

If we choose T such that 0 < T < Ty = min(t*, 7—()7104_—1,), then F, is a contractive

mapping.

Theorem 32 Problem I admits a unique solution for T < Tp.

P r o o f. This is a straightforward consequence of Theorem 3.1 and of the

Banach’s fixed point theorem.
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