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Abstract. Using the metaplectic representation in terms of the Bergmann-Segal model we
lift the construction suggested by W.Schmid and J.A. Wolf to the case of U (1)-covering by using the
technique of P.L.Robinson and J.H.Rawnsley. Our purpose is lo quve an algebraic version of the
multidimensional quantization with respect to Ziz-covering (as a special case) and U(1)-covering.
By lifting to U (1)-covering, from a basic’ datum we firstly describe in terms of local cohomology the
mazimal globalization of the Harish - Chandra modules in the case of mammally real polarizations.
Then we use the change of polarization to extend the indicated results to the general case.

INTRODUCTION

In 1979-1980, Do Ngoc Diep [1-2] has proposed the procedure of multidimen-
sional quantization for general case, starting from arbitrary irreducible bundles.
This procedure could be viewed as a geometric version of the construction of
M.Duflo [4] . Recently, in 1988, W.Schmid and J.A.Wolf {3} described in terms
of local cohomology the maximal globalization of the Harish-Chandra modules to
realize the discrete series representations of semi-simple Lie groups by using the
geometric quantization and the derived Zuckerman functor modules.

In this paper, we modified the construction suggested by W.Schmid and
J.A.Wolf to the case of U(1)-covering by using the technique of P.L.Robinson
andJ.H.Rawnsley [5]. Our purpose is to give an algebraic version of the mul-
tidimentional quantization with respect to Z3-covering (as a special case) and
U(1)-covering. By lifting to U(1)-covering, from a basic datum as in [3], we shall
describe in terms of local cohomology the maximal real polarizations (Theorem
1). Then we use the change of polarization to extend the indicated results to the
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general case (Theorem 2). Our work is in much influenced from the loc.cit. work
of W.Schmid and J.A.Wolf. The main results can be considered as some U(1)-
analogues of Schmid-Wolf’s ones. The key moment in U(1)-lifting is the usage
of GV ~ K.BY() as the fibered product of BV () = B and G — B over B.
Other very useful fact is that xU(1) works out for U (1)-covering so good as X in
Schmid-Wolf’s sivuabion. So we keep Yhe same notation and exposition as in [3)].

1. CLASSICAL CONSTRUCTIONS AND THREE
GEOMETRIC COMPLEXES

1.1. Classical constructions. Let G be a connected, linear, semi-simple Lie
group. Denote by § the Lie algebra of G and G* its dual space.- The group G
acts on § by the adjoint representation Ad, and on G* by K-representation. Let
F € " and Gr be the stabilizer of this point. Denote by Gy its Lie algebra. Fix
a Cartan subalgebra ¥ of Gc = G ® C. We shall only consider F € G* such that
Gr®C = ). Then H = GFr is a Cartan subgroup of G. We now assume that
K-orbit O passing F is U (1)-admissible [8], i.e., there exists a unitary character
xg(,l) : HY() 5 81 gych that

t

dxp (X, 0) = RlE(X) + o], where (X,0) € ¥ @ U(1)c.

Let B be a closed positive polarization in G, we know that B is a Borel sub-
algebra of Gc with ¥ C B. Let & be some fixed irreducible unitary representation

of H in a separable Hilbert space such that the restriction of V(1) = (&.aj).xg(l)

to (H°)V(1) is a multiple of the character xg(l), where o; is the homomorphism
defined in ([8],§2). Let By the corresponding analytic subgroup in G of 8 N g and
B = H.By. We see that BU(1) — gU(1) y By is the U(1)-covering of B and there
exists a unique irreducible representation o : BV(1) _, U(V) such that

UIHU(U = XU(I), (see [8], §2)

By virtue of the representation o : BV(1) _, 7 (V), denote by E,

G % ¥V the vector bundle on B\ G associated with o. Then t
BU“),O’

verse image bundle r* 0,0 15 a vector bundleon 1 = H \ G, where 7 is the natural
Projection from H'\ G to B\ G. In the category of smooth vector bundles T E,,

and @Y X V are equivalent.
HY Q) g|gU(1)

Then we as in [8] obtain a homogeneous vector bundle

o =
he in-

E'D =gt  «  yv__. g R (1.1)
HU(I)’XU(l)
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on H \ G associated with the representation AL (&.aj).xg(l). In the view of
[3], we can say the bundle (1.1) associated to the basic datum (H, B,xVM).

Suppose that dimc 07 = m. Let CI(EV())) denote the sheaf of differential
forms of type (0,g9) on H \ G with coefficients in EV(1), We know that each
differential form of this type is a section of the bundle EV() @ \IN* on H \ G,
where N — H \ G is the homogeneous vector bundle with fibre N = B/¥ and N~
is its dual. Denote by Oy (EU(I)) the sheaf of germs of partially holomorphic C'*°
sections of EV(1) that are annihilated by N & U(1)c. Then we have

0 — Oy (BVM) & cOBYM) | P24 cmBUM) Lo (1.2)

where the mapping ¢ is induced by inclusion of the space of partially invariant
partially holomorphic sections of EV(1) into the space of smooth sections, and the
mappings 5EU(1) are induced by the usual operator, mapping a form of type (o, g)
to a form of type (0,q + 1).

By taking global sections, (1.2) induces a sequence of the form

0— C®(H\ G; Oy (EVM)) - C(H\ G; COEVM)) - ...
-~ C®(H\G; C™EYW)) —0 (1.3)

and this sequence of abelian groups forms a cochain complex

C®(H\G; EVM) @ A'N*), dgo (1.4)

Denote by H? (C*(H \ G; EV(D) @ A'N*)) the p — th cohomology group of the
cochain complex (1.4) we have

Proposition 1.1. There exists a canonical isomorphism
HP(C*(H \ G; EV(D) @ AN7)) = HP(H \ G; On(EV(W)), p > 0 where
HP(H \ G; Ox(EUM)) is the sheaf cohomology group of the space H \ G of
degree p with coefficients in Oy (EV(1)).

P r oo f. We know that H \ G = (1 is the paracompact almost complex
manifold. So (1.2) is a fine resolution of Oy (EV(!))and then it is acyclic. Thus,
our assertion is an analogue of Dolbeault’s theorem.[]

1.2. Three geometric complezes. We see that the differential dgu (1) of (1.4)
extends naturally to hyperfunction sections, so we have a complex

C~Y(H\G; EVM @ A'N*), dgva (1.5)

Let X denote the flag variety of Borel subalgebras of §. Since H normalizes
B, there exists a natural G-invariant fibration H\ G — S = G.B C X, where S is
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the G-orbit passing B in X, and as homogeneous real analytic submanifold of the
complex manifold X,S has the structure of CR-manifold. ‘

Then the bundle EV(Y) - H \ G push down to a G-homogeneous bundle
EV() ., s5~p \ G and we obtain as in [3] the Cauchy-Riemann complex

C™(S; EV() @ A'N%), 8 (1.6)

where N5 = T%!(S) is a G-homogeneous vector bundle based on N/NNON.

Denote by XV(1) the flag variety of U (1)-invariant Borel subalgebras of
Gc ® U(1)c. We obtain the natural projection 7x : XU(1) - x. By using the
Gauss’ decomposition G = K.B, where K is a fixed maximal compact subgoup in
G, wehave B\ G = BV()\ K.BU(), Note that K.BU() acts on the flag variety
XU, Let SUM = (K.BU().(B @ U(1)c) be the orbit passing (8 ® U(1)¢) in
XY it is easy to show that BU()) is the stabilizer of (8 @ U(1)c). Then there
exists a diffeomorphism of SY(1) onto S. By the projection wx : XU() 5 X we
obtain the homogeneous bundle 75 EV(") — SU(1) and have the complex

C—W(SU(I); ﬂ';(EU(l) ® AiNg.U(l)), 53!](1) (1.7)

where Ngv, = 7% Ng, and dgv ) is induced by the CR- operator 8.
The bundle 3 EV() APNZy 0y = SYW = B\ G pull back to trivial
bundless on G, so the comples (1.7) is isomorphic to the complex

{CT¥(G)®V @ A (N/N NN)*}NN.B"H 8y woT (1.8)

for relative Lie algebra cohomology of (N, N N J—V-) and hyperfunction coefficients.
A section § € C~¥(SUW); £r EUQ) ®APNGyy) is said to be HY(V_equiv-
ariant iff §(hz) = xU(V(h).5(z), Vhe HV() zc sU0) ~ g \'G.
Denote by C .57, (SYM); 73 EV() g APNZy(,)) the space of HV(1) equiv-
ariant partially holomorphic C® sections of C9(sYM); m3 BV g APNGy ),
we have

Proposition 1.2. There exists a canonical isomorphism

Crinn (75 BV @ APN3,)) = C4(5; BV @ APNG) (1.9)

as vector spaces.

Proof The assertion follows from the definition of HY(N_equivariant
sections and the construction of homogeneous bundles, (see (7, §3]). O

We see that H \ G = SV has Euclidean space fibres. By applying the
Poincare’ Lemma to those fibres we see that inclusion of the complex (1.8) in the
complex (15) induces an isomorphism of cohomology. Then as in [3] we obtain
the following results.
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Proposition 1.3. There are canonical isomorphisms

HP(C™(H\ G;EYM @ A'N")) = HP(C i, (SYM); mEYM @ A'NGuwy))

=~ HP({C™¥(G) @V ® A (N /N N N)*}¥N KBy

Let S denote the germ of neighborhoods of S in X. Then EV (1) -» S has a

. =U(1) :
unique holomorphic §-equivariant extension E 3 - S C X, and we obtain the

Dolbeault complex

e 'Y @ AT, 3 (1.10)

with coefficients that are hyperfunctions on S with support in S.

Similarly, we have ﬂ}*(l:]U(l) — §UV() © XU() and then obtain the complex

L, ~ U 5, e

c(5V; w3k @ A TU ), By (1.11)

0,1 « m0,1 = 3% =

where T ;) = 75Ty, and dy (1) is induced by d.
By using the canonical isomorphism Cp7,,, (ST, W}EU(I) ® A'Tg(’},’:”)

= C7Y(S; EU(I) ® A'Tg(’l“), we see as in [3] that
_b = « V(1) #4301 iy . ~ U(1)

HP(C v, (SU(l); TxE ®A Tg(}!u))) = Hg(S,0(E ) (1.12)

where the right hand side of (1.12) is local cohomology along S. [

2. ISOMORPHISMS OF THE COHOMOLOGIES AND THE INDUCED
FRECHET TOPOLOGY

2.1. Isomorphisms of the cohomologies. We fix a basic datum (H, B,xU(l))
as in Section 1.1. Let S = G.B C X. Denote by Y the variety of ordered Cartan
subalgebras. As homogeneous G¢-space, we have Y = H¢ \ Gg, where G is
the adjoint group of §c, and Hc is the connected subgroup with Lie algebra
. Since Hc normalizes B, there is a natural projection p : Y — X with fibre
p~Y(B) = exp (N). Let Sy = G.X C Y be the G-orbit through the base point in
Y, we have p: Sy — S, with fibre exp (N C §) = exp (N N NN G). Then Sy is
a real form of the complex manifold Y and u = codimg(S) is the fibre dimension
of the natural projection p: Sy — S.

By the projection p: Y — X there exists a homomorphism
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U yU() _, Q)
such that the following diagram

yu 270 soq)

Ty | KJ L mx
Y —p—» X (2.1)

iIs commutative, where 7x and 7y are natural projections. We let Ty|x denote
1,0
Y|X>

T?,’llx the subbundle of holomorphic, respectively antiholomorphic, relative tan-
gent vectors. Then, there exists a G c-invariant isomorphism

the complexified relative tangent bundle of the fibration p:Y > X,and T

pP’Tx ® Ty x = Ty,
which is compatible with the complex structure and the Lie bracket.
By a similar way as in (3], we obtain the complex

~ U1 ¥
c—(Sy; p'B"! )®A'T;;‘|3)‘C), (2.2)

Let Sy ) = (K.BYM).(¥@U(1)c) € YUM) be the orbit passing (HeUu(1)c)
we see that Sg(l) = Sy. By using the diagram (2.1), we obtain

. S ki
c=(syY; WY @ 4TI, 5y (2.3)

where Tg[(;l()l'o Py W;(T;,’?x, and 5U(1) is induced by 9.
We see that T;,’?X is modeled on N = B @ U(1)c/¥ ® U(1)¢ and w}EU(I)

is also modeles on HY().-module V', so the subcomplex of the complex (2.3)

& U o WP U(1) < ,0%
Cr¥i, (SYD); pVWens i ® ATy (M), (2.4)
coincides with the complex (1.5). By a similar argument as in [3, §6], we obtain

Proposition 2.1. There are canonical isomorphisms

HY(C™*(H\ GEY™ @ AN) = HP(C) (S7W; a3EYD @ A'Ngu ()
= BI($; 08" )
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as G-modules without topology, where u = codimg (S C X).

2.2. The induced Fréchet topology. We fix a Cartan involution & of G with
0K = K. Then H = T x A, where ¥ = T + A are the +1-eigenspaces of 8|y,
A = exp(AN §). Consider the orbit S = G.B C X, where ¥ C B.

It follows from Proposition 7.1 in [3] that we can define a relative orbit
Smax = G.Bmax, Wwhere ¥ C Bmax and Bpax is maximally real for that condition.

Then G has a cuspidal parabolic subgroup P = M A.Ny, where 6M = M
and Bmax C P, P = Lie P. Moreover, the fibrations S — Spax and Spax — P\ G
induce a fibration S — P \ G. Since SU() ~ S, we obtain the fibration U -,
P\G. Let C;\“’G(SU(I)) be the sheaf of germs of hyperfunctions on SU(1) that are
C® along the fibres of SU(!) — P\ G. Then C;(’G(SU(I)) defines a complex of
sheaves C;(’G(SU(I); W}EU(I) ®A”N“S.U“,) of germs of HV (1. equivariant sections
of the bundle W}EU(I) @ APNS, ) — SU() ¢oefficients in C;{"G(SU(I)).

Taking global sections, we arrive at a subcomplex of (1.7)

C’;{"G(SU(I); W}EU(I) ®A'N*sl'(1))a gsrr“)_ (2‘5)

Proposition 2.2. The inclusion Cpig (Y1), o EV() @ ANy, ,)) —

Gy (S, 3 EVD @ AN, () induces isomorphisms of cohomology.

P r o o f. By applying the usual Dolbeault Lemma and the (standard)
argument on hyperfunction, we see [3] that the sheaves C,.7,, (sY); 7 EVM g
APN%y ), and C;‘\"G(SU(I); 3 EVD @ APNZ%,(y)) are soft, and the inclusions
of Covg(SYMmx BV ® APNZ, () into Cht,, (Y05 m3 BV @ APNL,.(,)
induce isomorphisms of cohomology sheaves.

On the other hand, it follows from [6] that the inclusion of sheaves induces an
isomorphism of hypercohomology. Since both complexes consist of soft sheaves, the
hypercohomology is just the cohomology of associated complex of global section.
This completes the proof of our proposition. [J

Remark that the theory of hyperfunctions with values in a reflexive Banach
space is developed exactly in the same way as for complex valued hyperfunctions.
So by a similar argument as in ([3], §7) we obtain:

Proposition 2.3. The C;{"G(SUS); % EV(") @ APN%,(,,) have natural
Préchet topologies. In those topologies, 8 gu (1) is continuous and the actions of G

are Fréchet representations.
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3. THE TENSORING ARGUMENT AND MAXIMALLY
REAL POLARIZATIONS

3.1. The tensoring argument. Recall some notions from [3]:

An admissible Fréchet G-module has property (MG) if it is the maximal
globalization of its underlying Harish-Chandra module.

A complex (C',d) of Fréchet G-modules has propecty (MG) if d has closed
range, the cohomologies H?(C",d) are admissible and of finite length, and each
H?(C",d) has property (MG).

Given a basic datum (H, B,xU(l)), we say that the corresponding homoge-
neous vector bundle EV(1) — SU(1) hag property (MG) if the partially smooth
Cauchy-Riemann complex (2.5) has property (MG).

Denote H>(SY(M); EV() = HP(CLy,,, (SU0); nx BV @ A'NL, )

Proposition 2.2 shows that HP(SU(1):; EV(1)) is calculated by a Fréchet
complex, then HP(SU(I); EU(I))(K) is calculated by the subcomplex of K-finite
forms in that Fréchet complex. In particular, we can define morphisms

HP(SY); EYM) ) — AP(G, H, B,xU (1), (3.1)

where A?(G, H, 8, xV (V) = gr(clr(H\G; EU“)@A‘N*)(K)) are Harish-Chandra
modules for G.  Then HP(SY(); EVY(1)) will be the globalization of
AP(G, H, B,xY (1) if (3.1) are isomorphisms. (See [3], §3). O

Recall that as in [3], the bundle EV(1) — §U(1) has property (Z) if the maps
(3.1) are isomorphisms. Note that f € ¥ can be identified with F € XoU(1)c)
such that F|y (), = 0, then ¥~ C (X ®U(1)c)". So, we can consider the following
condition for a pair (H, B):

There exist a positive root system ®* and a number ¢ > 0 such that:

If EV(V) 5 gUQ) ;¢ irreducible,

= dXU(l)I),( = )(*,

J AR 1s the restriction of A to the real form Xr
on which roots take real values, (3-2)
<Am,a>>C, forall a € ®+,

then EV(D) — §U) hos both properties (MG) and (Z).

Proposition 3.1. Fix (H,8). If (3.2) is true, then for arbitrar i
,B). . \ y basic datum
(H, B,xU(l)), the bundle EV(1) —, SU(1) has both properties (MG) and (2)

P roo f. Assume (3.2). Applying Corollary 8.12 and Lemma 8.13 in [3] we
see that if Proposition 3.1 fails, then it must fail for a basic datum (H,8, XU(I))
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with EV() — SUQ) jrreducible. So we can suppose that EU(1) _, gU(1) jg
irreducible, A = dxV )|y € ¥*. Let C be as in (3.2), ro as in Lemma 8.18 in (3]
Suppose Ao € X§ such that < Ag,a >> C for all @ € ®*. Thus, by (3.2), the
bundle EV(Y) — SV(1) has both (MG) and (Z).

Now, we fix one such Ap and let as in [3:

s1 = Sup{r > 0: ||Ar — Ao|| < r implies (MG) and (Z) for EV() — gV}
We see that s; > ro. Suppose s; is finite. It follows from Lemma 8.18 in (3]
that there exists s, > s; such that the open ball B(s;), radius s, and center 0,
contains B(s;)U {accessible from B(s1)}. Then, by applying Lemmas 8.15 and
8.16 in [3] we see that properties (M G) and (Z) carry over from B(s1) to B(ss3).
That contradicts the choice of s;. So s; is infinite. This completes the proof of
our proposition. []

3.2. Mazimally Real Polarization. Fix a basic datum (H,B,xV(1), let
S =G.B C X and u = CodimgS.

Proposition 3.2. If B is maximally real then the (Z) part of (3.2) is true.

P r oof. Recall that G has a cuspidal parabolic subgroup P = MA.Ny
associated to H, such that B C P. Here H = T x Awith T = HNn K, A =
exp(AN G). Then SUW = H N\ G and SUM) fibres over P\ G with holomorphic

fibres T\ M. Let EV(Y) — §U(1) be irreducible, A = dxV V|, € ¥* and xZW =
XYW} zwray, where TUM s the inverse image of T in HV() under the U(1)-
covering projection. We see that dxg(l)lT = A|r. Suppose that EU(1)|T\M is

sufficiently negative. Then, it follows from Lemma 9.3 in (3] that the maps

HP(T\ M,E"®l\pr) (xonny = A° (M, T, B0 M, x5 V) (3.3)

are isomorphisms of (M,K N M)-modules, these modules nonzero just for
p = dimg(T \ (K N M)]. Let Z? and BP denote the corresponding spaces of
closed and exact smooth (K N M)-finite EV(D_valyed (0, p)-forms on T\ M, and
9Z® and °BP denote the corresponding spaces with “smooth” replaced by “for-
mal power series” for the coefficients. Then as in [3], it follows from (3.3) that
BP\ ZP = OB? \ °ZF as (M, K N M)-modules, where the isomorphism is induced
by ZP — °ZP, Taylor series at 1.7T.

Applying the Poincare’ Lemma to the fibres = Ny of the fibration H\ G —
H.Nyg \ G = SY(1) we see that A”(G,H,B,XU(I)) can be computed from the
complex of left K-finite, right KNM invariant, functions from K to the Zuckerman
complex for T \ M. So, as in [3], we see that

HP(sY;BYW) ey — 47(G, H, B,x7 W)

is surjective. Since here each side is induced from the corresponding side of (3.3),
then the surjection is an isomorphism. [J



On globalization over U(1)-covering ... 69

Proposition 3.3. If B is maximally real then the (MG) part of (3.2) is
true.

Proof. Suppose that EV(1) — gU(1) jg irreducible, A = de(l)[,y € X*. Let
A=v+i0, v €1 (T NG)* deep in the negative Weil chamber of ®(M, T). We see
that HP(SU(1); gU(1)) = H"(C’;{”G_(SU(I); W;{EU(I)®A'N§_U(,,)) vanishes except
in degree py = dim¢(7T \ K N M) and Hrpo(sU(1), EU(I)) =W is the C—* induced
representation Indg , v, (7 ® €%). The induced module HPo(SU(), EU()) has
finite length because 5 is irreducible. Then, as in the proof of Lemma 9.8 in [3],
we see that W is (M G) and the operator dgr (1, has closed range. In particular, W
inherits a Fréchet topology from the space C;("G(SU(U; 3 EV() g APPNZoG))-
This completes the proof of our proposition. [

Now, we suppose that 8 is maximally real polarization. Propositions 3.1, 3.2
and 3.3 thus show that EV(1) — SU(1) gatisfies both (MG) and (Z). Combining
this with Propositions 2.1, 2.2 and 2.3 we obtain.

Theorem 1. For any maximally real polarization (H,B,xV (1), there are

topological isomorphisms between Fréchet G-modules

HY(CT(H\ GEYM @ AN") = HP(Ct,,, (5YM); 73EYD @ ANy )
U(l))

which are canonically and topologically isomorphic to the action of G on the
maximal globalization of A?(G, H, B, XU(I)).D

= HPT(§; O(E

4. CHANGE OF POLARIZATION

In this section, as in [3] we formulate a dual statement on change of po-
larization and then show that Theorem 1 holds also for arbitrary basic datum
(H,B,xY(M), Suppose that H = Gr is fixed. Let B C G be a polarization such
that ¥ C B and B is not maximal real. Lemma 7.2 in {3 gives us a complex simple
root a such that a ¢ &7. Denote @g = S, ®", By = S§,8 and So = G.B,.

Given v € (G, X), we can view 7 as an element of (¥®U(1)c)*. Since ¥ is
the Cartan subalgebra of Yc, we obtain a representation e7: FU(1) _, C*. Then
we have vector bundles Lg(l) - Sg(l) and Lg(l) — SV, Applying Lemma
10.6 in 3] we obtain G-equivariant morphisms of complexes.

Chin (S s 3BV W @ 4PN, ) —

Cooy (Y05 m BV @ LYW @ pr+iNy, L) (4.1)
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and (4.1) restricts to a morphism of subcomplexes
C;\G(SU(I)’ ;(EU(I) ® ApN;gm) g
Cats(8YM; 3 EVW @ LI @ AP INGy) - (4.2)
Let C_,,“,(SU“) Ty -EV() @ LU(I) ® A'N%, () be the subcomplex of the

complex C~ "’(.S’U(l) % EV(D @ LU(I) ® ANy, () consisting of forms w and
550(1)&) vanish on (0,1) vectors tangent to the fibres of su) -, Sg(l).
Applying the Dolbeault Lemma we see that the inclusion

CS—;(;J“) (SU(I) * EU(I) ®LU(1) QA NsU(l))

c(s'W; rxEW QLM @ ANLy0)  (4.3)

induces isomorphisms on cohomology. On the other hand, we obtain the morphism
of complexes

c~(s¥W; r3EVM g APNoi) =
C‘;;’“,(SU(‘), BV ®LU(‘)®AP+‘NS,,“)) (4.4)

Let Bo, = B+ Go = Bo + §—. Denote by X, the flag manifold of parabolic
subalgebras of Gc which are Int(§c)-conjugate to B, and consider the orbit S, =
G.B, C X. The natural projection p, : X — X, is holomorphic, and there exists'
a homomorphism p% ) : XU — XY™ such that Pa O Tx = Tx, O pe ) where
Tx, ® 3(‘) — X is the natural projection.

Let U, C S, be an S,-open subset whose U, is compact and has an X,-
open neighborhood over which p, : X — X, holomorphically trivial. Let U, S o s
S¢M  (pIM)1r5} (Us) and YYD = sYD) 0 (YD) =1221(D,) we see that
(4 4) localizes to maps

o U5 5BV 0 40N -

C;:(x‘) sy (U7; 3B O LIV e AP INGo o)) (4.5)

Let Cl(UU(l))“’ and Bd(UU( ))"‘ denote germs of neighborheod of Cl(UU(l))
and Bd(UY V) in STOUSYM . The analogue of (A.9) in [3] for ST™) i

C“"(CI(U(?“}); FUQ) ® Ac—pN;m”)r

C.—Q(UU'(I); 7l'* EU(l) ®AN"‘ 0 ) == 4.6
e o 55 C“’(-Bd(Ug(l));FU(U ® A*"PN v i
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where ¢ = dimcg Sp and FUV() = EV(D) g ng;).*.2a-
Similarly, we have

C.;;;)(” (UU(I); W;{EU(I) ®LZS)AP+1N;~U(1)) R4
0
\ ~ NU(I) —_ =
C;’-’(U(CI(UOU(I)) ; F ® A" PNgu ()
o

T (4.7)

Cyy (BTG V)~ B @ Ae-PNL () )!

where ¢ + 1 = dimcpg Sq, F V() = (7% EV) @ L[_],(ll)) ® ngg_a, (see [3,§13]).
Then, by a similar argument in [3, §13] we obtain the dual statement, as follows:

( The restriction maps

S -
c (1) (CI(UOU(I))N; F = ® A-Nxs'm)) It

I{U(l),s0

Cruin (CUU ™M) UV @ ANy )
| BdwlWy~; 77" g AN: -
Hlf(l),séftl)( ( 0 ) ) ® SU(L))_’

]

& U1 8
CHU(!)(Bd(UO | ))1 FU(I) ® A ng’(l))

induce tsomorphisms in cohomology. [

We know as in [3] that the restriction maps (4.8) are continuous and surjec-
tive, and are dual via (4.6) and (4.7) to the maps of (4.5). Thus, it follows from
(4.8) that we obtain the following statement

Suppose that xU(Vis irreducible, A = dxU)|y € ¥+,

suppose further that 2 <A +p—a,a> [/ < a,a > (4.9)
18 not a positive integer.

Then (4.1) induces an isomorphism of cohomology groups. [

Theorem 2. Fix H, and suppose that B is not maximal real. Then, for ar-
bitrary basic datum (H, B,xV(")), the bundle EV(1) — §U() has both properties
(MG) and (Z). In other words, Theorem 1 holds for arbitrary basic data of the
form (H, B, xV).

P r o of. By using Propositions 3.2 and 3.3 we may assume by induction on
dim SYM — dim 5Y{Y that every EV() SZM has both (MQG) and (Z). Since
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the cohomologies and maps that occur in Theorem 1 all are compatible with co-
herent continuation, we may as in [3] assume that 2 < A+ p— a, a0 > / < a,a >
is not a positive integer, where xV (1) is irreducible and A = de(1)| ¥ € X*. Then,
by applying Lemma 10.15 in (3}, it follows from (4.9) that

pus(8Y; iy EV D ®L'MN @ ANZy))

has both properties (MG) and (Z). This completes the proof of our theorem.]
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