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ON CONTINUOUS RINGS WITH
CHAIN CONDITIONS

LE VAN THUYET

Dedicated to Professor Nguyen Dinh Tri on his siztieth birthday

Abstract. In this paper, results on artinian rings, especially on QF nings, are obtained
and presented.

1. INTRODUCTION

For a right or left self-injective ring R the following conditions are equivalent:

i) R is quasi-Frobenius

ii) R has ACC on right annihilators

iii) R has ACC on essential right ideals
(see C. Faith [10] and Dinh Van Huynh, Nguyen V. Dung and R. Wisbauer {7]).

Inspired by this result, several authors investigated chain conditions in con-
tinuous rings, e.g. (3], [4], [11],... In this paper we follow this line and prove some
more results on continuous rings satisfying weaker forms of ACC on annihilators
or on essential right ideals. We also obtain results of rings with the restricted
minimum condition on left ideals.

2.PRELIMINARIES

All rings R considered here are associative with identity and all modules are
unitary. Let M be a left R-module. Then the socle of M is denoted by Soc(M).
A submodule N of M is essential in M (denoted by N — M) if for each non-zero
submodule L of M, LN M # 0. M has finite uniform dimension if M does not
contain an infinite direct sum of non-zero submodules. For a subset A of aring R,
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r(A) and I(A) denote the right and left annihilators of A in R, respectively. For a
module M, we denote by E(M), J(M) and Z(M) the injective hull, the Jacobson
radical and the singular submodule of M, respectively.

A module M is called a CS module if for every submodule A of M there

exists a direct summand A~ (denoted by A* &, M) containing A such that
A — A*. M is called a continuous module if M is a CS module and for every

submodule A and B of M with 4 = B and B & M implies 4 & M. A ring
R is called left (right) continuous if R is as a left (right, respectively) R-module
continuous.

A ring R is said to be orthogonally finite if there is no infinite set of or-
thogonal idempotents in R, and R is called a ring of enough idempotents if the
identity of R can be written as a sum of a finite number of orthogonal primitive
idempotents of R. We have the implication:

Orthogonally finite = enough idempotents.
However, the converse is not true in general, see for example [5, p. 112].
The following results are used repeatedly in our paper:

Lemma 2.1 ([16, Theorem 1.2]).Any left continuous ring R satisfies the
following conditions:

t) For any idempotent e and left ideal A contained in Re, there exists an
idempotent f in Re such that Rf is an essential extension of A in R.

11) If Rg N Rh = O for idempotents g and h, then Rg + Rh is generated by
an tdempotent of R.

Lemma 2.2 (16, Theorem 4.6]).If R is a left continuous ring, then Z(rR) =
J(R); R/J(R) is a regular left continuous ring and idempotents modulo J(R) can
be lifted.

Lemma 2.3. If R is a left CS ring having enough idempotents, then R is
a direct sum of indecomposable uniform left ideals.

P r oo f. By definition we have R = Re; © ... ® Re,, where each Re; is an

indecomposable left ideal and {e;}7_, is a set of primitive orthogonal idempotents.
Since every Re; is again a C'S module, it follows that all Re; are uniform.

k
Lemma 2.4 ([12, Theorem 13]). Let M = @ M;. Then M is continuous

1=1
if and only if each M; is continuous and M; - injective for j + i.
Lemma 2.5 ([16, Theorem 7.10]).Suppose R is a two-sided continuous, two-
sided artinian ring. Then R is a quasi-Frobenius ring.
Lemma 2.6 ([4, Lemma 6]).Let R be a semiprimary ring with ACC on left

annihilators such that Soc(gR) = Soc(RR) ts finitely generated as a right ideal.
Then R s right artinian.
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3. RESULTS

First we consider continuous rings with restricted chain conditions on anni-
hilators. Motivated by [2, Theorem 1], we get

Theorem 3.1. Suppose R is a left continuous ring and H is an ideal of
R. If H has a decomposition as a left ideal

H:@H,-

i€l
such that each H; is indecomposable and the ring R/H is orthogonally finite, then
I is finite.

P roof Suppose that I is an infinite set. Since R is left continuous, there
exists an idempotent e of R such that H < Re. Since I is infinite, e ¢ H. We can
e

find a set of orthogonal idempotents in R/H as follows.
Stepl. Write I = Ay UTy with |[A] = |T';| = |A;], where UJ denotes disjoint
union and |- | denotes the cardinality. Let B = @ H) and C; = @ H,. Then
A r,

H = B, & C;. By Lemma 2.1, there exists B, C}{ contained in Re such that
Bi<» By S Rand €y = €} & R. Hence By + C, = Bl + C!. Since R is left
e (=

continuous, B} & C} =2 R,say B ®C{®T = R. Note that H — B{®C] — Re.
It follows that B} @ C] < Re and whence Re = B, & C! @ (Ren T),ie. B o Cj

is a direct summand of Re, however B} ® C} — Re hence Re = B & C}. So

there are elements e; € B, f; € C| and e = e; + f,. Whence e; = re and then
€1 = ere. Similarly, fi = fie. Now we are going to prove Re; = Bj. In fact,
Rey — B. If z € B} then z = r’e for some r' € R, hence z(l —¢e) = 0 and
T = ze = z(e; + f1) = zey + zf;. Thus zf; = z — ze, € BincC| =0, ie.
T = ze; € Rey. So Rey = Bj. Similarly, Rf; = C}.

We claim that e;, f; are orthogonal idempotents. We have e¢; = e =
ei(er + f1) = €2 + e fi. It follows that e; f; = el —e € B, nC! = 0. Thus
e1f1 = 0 and e = e;. Similarly,fie = 0 and f2 = f,.

Since By, C| are not finitely generated, e; ¢ Byand f, ¢ C;. We prove that
er ¢ H, fi ¢ H. In fact, if not, suppose e; € H then Rey — H = B; @ C;. Since
B; — Re,, it follows that Re; = B; © (Ci N Rf), ie. B; is a direct summand
of Req, however since B, t» Re;, it follows that B; = Re;, a contradiction.

Similarly, g ¢ H.
Step 2. Repeat the above argument on Cy, writing 'y = A, U Ty with
IT1| = [A2] = [T2]. Asinstep 1, let By = /é\BH and Cy = IgBH. Then C, = B, ® C,

and Rf; = Re; ® Rf, where ey and f, are-orthgonal iderr-lpotents. Now we claim
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that ey, eq, fo are orthogonal. Indeed, e; = exfy, fo = fof) and e  f; = f1e; =0,
so ege; = exfre; = 0 and foey = fofie; = 0. Also 0 = e1f; = ey(es + f2) =
e1eg + ey fo, it follows that —eje; = e1f2 € ReaNRf; = 0. Hence eje2 = e1f2 = 0.
Of course, €2, f2 ¢ H.

Step 3. Assuming ej,e2,...,€n, fn are orthogonal idempotents obtained
by writing A = Ay U Az U ... UA, UT, with |A;] = |T;] = |A|, then T, =
Anyi UTnyy with |Apyi| = [Tnt1] = |A] as above yields orthogonal idempo-

tents {e1,... y€n,€nt+1, fnt+1}. Asinstep 1, eache; ¢ H and f,.1 ¢ H. Then the
set {e; + H,ey + H,...} gives an infinite set of orthogonal idempotents of R/ H,
a contradiction. Hence I is a finite set.

The following corollary extends a result of Armendariz and Park [2, Theorem
1]. \

Corollary 3.2.Suppose R is a left continuous ring and the ring R/Soc(gR)
is orthogonally finite. Then Soc(rR) ts a finitely generated left R - module.

Corollary 3.3. If R is a left continuous ring and R/Soc(grR) s orthogo-
nally finite, then R 1s a semiperfect ring.

Proof. By Corollary 3.2, Soc(g R) contains no infinite family of orthogonal
idempotents. By Lemma 2.2, R/J is a left continuous regular ring. R/J also has
no infinite set of orthogonal idempotents, if not, by lifting of idempotents we can
find an infinite family {e;} of orthogonal idempotents of R. Then {e, + Soc(g R)}
is a family of orthogonal idempotents in R/Soc(g R). By above, Soc(g R) contains
a finite family of orthogonal idempotents, hence {e, + Soc(r R)} is infinite, this
contradicts the orthogonal finiteness of R/Soc(gR). Thus R/J is semisimple. By
Lemma 2.2, R is a semiperfect ring.

Corollary 3.3 extends results of S. K. Jain, Lépez- Permouth and S. T. Rizvi
[11], V. Camillo; M. F. Yousif {3, Lemma 13|, and Armendariz, Park [2,Corollary
2l

Theorem 3.4. If R is a left continuous ring and R/Soc(gR) has ACC on
left annihilators, then R is semiprimary.

P r o o f. Note that if a ring R has ACC on left annihilators then it is or-
thogonally finite, because if not, then there exists an infinite chain of annihilators:

ller,eg,...) — lea,e3,...) — l(es,e4,...
(e1,€2 )#(23 )?&(6364 ) &

a contradiction. Hence by Corollary 3.3, R is semiperfect. We use a technique of
[2, Theorem 3] to show that J is nilpotent. Put S = Soc(grR). Let {ay,a,,.. .}
be a subset of J. Let (a1 R + §)/S—(aia2R + S)/S<... be a descending chain
of subsets of R/S. Then {((a1R + S)/S)=l((a1a2R + S)/S)—.... Since R/S
has ACC on left annihilators, there exists a positive integer ¢t such that:
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l((aras...atR + S)/S) = l((a1az...a:...a:4x R+ S)/S), Vk = 0,1,...(%).

By Lemma 2.2, J(R) = Z(gR), hence S.J =0, i.e. S=!(J).
Thus for every n, S=I(J)=l(a1,az,... ,a,). We will prove that

I((a1...anR+ S)/S)=l(aia;...anan41)/S=l((ay-..anan 1R+ S)/8).

In deed, let 6 + S € I((ay...anR + S)/S), then bajay...a, €
Sol(J)=l(any1). It follows that bajay...ana,; = 0, ie. b € l(aya;...
@nGn41), hence b+ S € l(ajas...any1)/S. It is clear that

lay...ans1)/S=l((a1...an 1 R+ S)/S)

and by (*), it follows that l{a;...a:a:41)/S = l{a1a;...a1a¢4y ... a1,4)/S, k =
0,1,... therefore I(a; ...aia;4;) = l(a1ay ... 0041 ...a1414%), K =0,1,... Par-
ticularly l(ay...aia:41) = l(araz...a1a¢41a442). We shall prove that

aiaz...ataty; = 0. In fact, note that I(a;42) o, R because a;2 € J = Z(grR).

Take y € l(as42) N Rayay ... ata;41. Thenya; o = 0and y = zaja,... aia;, 1, for
some z € B. Thus 0 = ya; 2 = za1a2...0ta141a 42,502 € l(a ay. .. QtG¢410a142)
=l{ayaz...a1a;.1). Thus y = zajay...a:a;,; = 0. We have l(a;42) N Raya,...
aia;y = 0, it follows that Rajas...a¢y; = 0, especially ajaz...a;a;47 = 0.
Hence J is left T-nilpotent and the ideal (J + S5)/S of the ring R/S is also left
T-nilpotent. Since R/S has ACC on left annihilators and by (5, Lemma 1.33],
(J 4+ S)/S is nilpotent, there exists a positive integer m such that J™<S. Thus
Jmtl 8. J =0, i.e. J is nilpotent. This proves that R is semiprimary.

Corollary 3.5 (Jain, Lépez-Permouth and Rizvi [11, Theorem 3] and
Camillo and Yousif [3, Corollary 7]). Let R be a left continuous ring with ACC on
essential left ideals. Then R is left artinian.

Proof. By (7 Lemma 2| R/soc(grR) is left noetherian. Using Lemma
3.17 we see that R is then left noetherian. Hence Theorem 3.4 shows that R is
semiprimary. Thus R is left artinian.

By using the technique of proving Lemma 2.6, we can show the following:

Lemma 3.6. If R is a semiprimary ring such that R has ACC on left
annmihilators and R satisfies the following conditions:

1) Soc(grR)—Soc(Rg) and

11) (SocRRg)R is finitely generated.
Then R 1s right artinian.

P roof We prove the lemma by induction on the index of nilpotency
of J. Suppose J"~! # o0 and J™ = 0 for some positive integer n. If n =1, it is
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clear that the lemma holds. Suppose the result is true for every k < n. Since
R has ACC on left annihilators, there exists a finite subset {j;,...,Jjm} of J
such that r(J) = r({J1,... ,Jm}). Since R/J is semisimple, Soc(rR) = r(J) and
Soc(Rg) = I(J). Let R = R/Soc(grR). Clearly R is a semiprimary ring with
J(R)™~! = 0 and R retains the ACC on left annihilators. Now, if Jz = 0 and
z € %, then Jz C.r(J) .C I(J),ide. 0= (Jz)J = J(zd),\ie.. 2] C r(J). Thus

zJ =0, i.e. Soc(f—ﬁ) C Soc(Rg). Consider the R-homomorphism f from R to
é JiR defined by f(z) = (51%Z,... ,Jmz) (f is well-defined because Soc(rR) =
i=1

~

(J)). Moreover, f is a monomorphism because r(ji,... ,jm) = Soc(RR_). Since
f(Soc(Rg)) C Soc(Rg) which is finitely generated, it follows that Soc(Rgr) and

hence Soc(Ry) is finitely generated. Now by induction hypotheses, R is right
artinian. Since Soc(gR) C Soc(Rr), it follows that Soc(rR) is right artinian,

hence R is right artinian. The lemma is proved.

Theorem 3.7. Let R be a left continuous ring. If R has ACC on left
annihilators and (SocRpg) g is finitely generated, then R is right artinian.

P roof. First R is semiperfect by Lemma 2.3. On the other hand, since
R/J is semisimple we have I[(J) = Soc(Rg), however, since R is left continuous,
Soc(gR).J = 0. Hence Soc(gR) C Soc(Rg). Note that R/Soc(gR) has also ACC
on left annihilators. By Theorem 3.4, R is semiprimary. From this and Lemma
3.6, it follows that R is right artinian.

Corollary 3.8 ([4, Theorem 1}). If R 1s left and right continuous and R
has ACC on left annihilators, then R 1s a QF ring.

P roof. We can directly apply Theorem 3.7. But we can also prove as
follows: Since R satisfies ACC on left annihilators, R is orthogonally finite. By
Lemma 2.3, R is a direct sum of uniform right ideals and uniforin left ideals,
especially (SocRg)r is finitely generated. By Theorem 3.7, R is right artinian.
Moreover, since R is right and left continuous, it follows that

SOC(RR) = SOC(RR).

By [15, Theorem 3.5], R is a QF ring.

The condition “Soc(Rg) is a finitely generated right R-module” in Theorem
3.7 is not superfluous as we can see from the following example:

Example: (Faith [9,7.11". 1]). Let R = Q(z1,...,Z,,...) the rational
function field in infinitely many indeterminates, and let S = Q(z%,z%,... , z2 )\

y by e e

let f(z,) = 22, f(a) =a Va € Q,Vi. Thus f is a ring epimorphism, and dim Rg =

0.
Let :

R R

=0 5)
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then (g ‘5) is a right ideal of A, for any S-subspace V of R. Consider the

subring (A, f) constructed via the homomorphism f : R — S, then we cut down
to just three left ideals:

03(3 g), (g g),and(A,f).

(A, f) is clearly a left continuous ring satisfying ACC on left annihilators. Note
that Soc(A, f) is not a finitely generated right (A, f)-module. (A4, f) is also not a
right artinian ring because the right ideals

0oV
0 O
of A is also right ideals of (4, f).
Now we obtain the following theorem which shows that with some additional
conditions a continuous ring can become quasi-Frobenius.

Theorem 3.9. Let R be a left CS right continuous ring. If R satisfies
ACC on essential right ideals, then R is a QF ring.

P roof. By Corollary 3.5, R is right artinian. In parlicular, R is orthogo-
nally finite. By Lemma 2.3, R is a direct sum of uniform right ieals and uniform
left ideals. Moreover, since R is right continuous, it follows that

Soc(Rr) C Soc(rR).
By [15, Theorem 3.5], R is a Q F-ring.

Theorem 3.10. Let R be a left and right continuous ring such that
R/Soc(rR) has ACC on left annihilators. If Soc(R/Soc(rR)) is a finitely gener-
ated right R/Soc(gR)-module, then R is a QF ring.

P r o o f. By the above proof, since R is left and right continuous, it follows
that S = Soc(Rg) = Soc(rR). By Corollary 3.2, S is a finitely generated left R-
module and by Theorem 3.4, R is semiprimary. Thus S is also a, finitely generated
right R-module by Lemma 2.3. Let R = R/S. Similar to the proof of Lemma
3.6, we have Soc(zR) = Soc(R%). From this and Lemma 3.6, it follows that 7 is
right artinian. By Theorem 3.9, R is a QF ring.

Example 3.11 (see |9, Example 7.11'.2,p. 33% ). Two-sided continuousness
in Theorem 3.10 is necessary. C. Faith gave an exarmple as follows: Let R be a ring
with only three left ideals 0, J(R) and R. R is left and right artinian, with the right
composition length 3. Note that R is left continuous but not right continuous. R
is not quasi-Frobenius. Thus a one-sided continuous two-sided artinian ring need
not be quasi-Frobenius.
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Now we obtain a result characterising QF rings by means of left continuous
rings satisfying weaker conditions.

Theorem 3.12. For a ring R the following conditions are equivalent:

i) R is a QF ring.

ii) R is a left continuous right C'S ring satisfying ACC on left annihilators
such that Soc(Rg)is an artinian left R-module.

iii)R is a left continuous ring satisfying ACC on essential left ideals such
that RR®gr R or Rp is a CS module.

P roof. i) = ii) is clear.

ii) = iii). Assume now that R is a left continuous right C'S ring satisfying
ACC on left annihilators. Then R has only a finite set of orthogonal idempotents
in R. Tt is easy to see that R is a direct sum of indecomposable uniform left ideals
and uniform right ideals. By Theorem 3.7, R is a right artinian ring.

By a similar proof as that of Theorem 3.7, we obtain:

Soc(rR) C Soc(RR). (1)

Now with the assumptions that R is right artinian, satisfying (1) and
Soc(Rpg) is an artinian left R-module, we can prove that R is left artinian by
induction on the index of nilpotency of J. This is similar to the proof of Lemma
3.6. Thus ii) = iii).

iii) = i). Assume now that R has ACC on essential left ideals and RR®g R
is a CS module. Moreover R is left continuous. By [11, Theorem 3], R is left
artinian. We also obtain (1). Further, R is also a direct sum of indecomposable
uniform left ideals and a direct sum of uniform right ideals. By [15, Theorem 3.5],
R is a left self-injective ring, proving that R is a QF ring.

For the case, when R is a left continuous right CS ring satisfying ACC on
essential left ideals, see Theorem 3.9.

The proof of Theorem is complete. :

Remark. This Theorem generalizes a recent result of V. Camillo and M. F.
Yousif (4, Theorem 1].

Now we are going to consider a continuous ring with restricted minimum
condition. Following (8], a ring R is called a left CPA ring if every cyclic left
R-module is a direct sum of a projective module and an artinian module, and is
called left RM ring (restricted minimum condition) if for each left essential ideal
I of R, the module R/I is artinian.

Theorem 3.13. If R is a left continuous left CPA ring, then R is left
artinian.

P roof. By [8, Theorem 2.1|,R has a direct decomposition
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RR:A@U(1)®~--$U(t),

where A is an ideal of R such that A is artinian and each U(®) is a uniform left
R-module with Soc(RU(i)) = 0. We will prove that U = 0 for every 1. Assume
on the contrary that U(*) # 0 for some 1. Take 0 # z € UG), then Rz =pr P®r B
where g P is projective and g B is artinian; however Soc(Rz) = 0, it follows that
B =0, i.e. Rz is projective. Now,we consider the R-homomorphism ¢ from R
onto Rz defined by p(r) = rz. Then Rz = R/Kerp. Since Rz is projective, it
follows that R = U") @ Kerp. Since U(Y) = Rz and R is left continuous, it follows
that R = Rz @ V. Hence

UO =RnUY =(RzoV)nUY = Rz o (V nUW).

Since Rz # 0, U is uniform, it follows that V n U®) = 0. Hence U®) = Rz
for every = # 0 of U, showing U (") is simple, a contradiction to Soc(U(i)) = 0.
Therefore U¥) = 0, and gR is artinian.

As a consequence of Theorem 3.13 we have:

Corollary 3.14. If R s a left continuous left RM ring , then R is left
artinian.

Proof. Let A be aleft ideal of R. Then there exists a direct summand
A’ of R such that A = A

R=A"® B.

Therefore R/A = (A'/A) ® B, with g(A’/A) artinian and rB projective.
Hence R is a left C PA ring. By Theorem 3.13, R is left artinian.

As a consequence of Theorem 3.12 and Theorem 3.14 we obtain:

Corollary 3.15. If R i5 a left continuous left RM right C'S ring, then R
s a QF ring.

Corollary 3.16([13, Theorem 3.2]). If R is a left self-injective left RM
ring, then R is a quasi-Frobenius ring. ;

The question whether or not a left continuous right RM ring is left artinian
remains open. The following Theorem 3.18 answers this question in the semiprime
case affirmatively.

Lemma 3.17. ([cf. 7, Lemma 1]). Let M be a finitely generated CS left
R-module. Suppose that M contains an infinite direct sum of nonzero submodules
e E{ABHA. Then the factor module M/H has infinite uniform dimension.

Theorem 3.18. Let R be a left continuous right RM semiprime ring.
Then R is semisimple.

| P roof. Since R is semiprime, § = Soc(grR) = Soc(Rg). By Lemma 2.2,
R/J is a regular left continuous ring and idempotents modulo J (R) can be lifted.
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It is clear that R = R/J is right RM. Let S be the right socle of R. Then R/Sl
has finite uniform dimension as a right R-module by [8, Lemma 2.4], hence R/S,
is semisimple. Since S is also the left socle of R. By Lemma 3.17, RS 1 is finitely
generated. By Corollary 3.2, (S1)= 7 is also finitely generated. Thus R is two-sided
artinian. Therefore S and Sg are finitely generated. By [8, Lemma 2.4], R/S
has finite right uniform dimension, hence R has finite right uniform dimension, k
say. It follows that R contains k independent uniform right ideals Ul, , U such
that:

UR:UIEB---@Uk‘:’RR;

hence (R/U)g is artinian. We also note that for each nonzero submodule V; of
Ui(t = 1,...,k), U;/V; is also artinian, then Up has Krull dimension (at most 1).
Hence R has right Krull dimension (at most 1). Since R is semiprime, it follows
that R is right Goldie. By [5,Corollary 1.15], R has DCC on right annihilators.
Therefore R has ACC on left annihilators. By Theorem 3.4, R is semisimple.

Theorem 3.18 generalizes a result of Dinh Van Huynh in {6, Proposition 2.2].

Remark. After finishing this paper we received a preprint of P. Ara and J. K.
Park: On continuous semiprimary rings, in which Cor. 3.2, Cor. 3.3 and Theorem
3.4 are also obtained.

Acknowledgement. The author wishes to thank Professors Dinh Van Huynh
and Robert Wisbauer for many stimulating discussions and helpful comments.
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