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INFORMATION SEMIMODULES A}ID
ABSORBING SUBStrMIMODULtrS

JONATHAN S" GOLAN

Dedicated to Professor Nguyen Dinh Tri on his strtieth birthday

Abstract. The purpse ol this short suruey is to intrduce the notion ol an informatil:n
semimdrfu, and indieate some ol the apphcatioru such structutas in theorcticd comprder science.
Abo, we uill indicale some ol the matlumatical thnry availdle lor inlormailon seminahiles by
bingtng Poyatos' cotutruction ol a uersion ol the Jordan - Hrjlder theorcrn for inlormdion semi-
mdules. To this end, we ttuolce rurie ol the notion ol an absorbing subsemimdule ol a semimdule,
studid indep.ndently bg Poyotos ond T&dresfui.

1. THERE ARE PLENTY OF INFORMATION ALGEBRAS OUT THERE

A. semiring is a nonempty set .R on which operations of addition and multi-
pl ication have been de5ned such that the fol lowing condit ions are satisf ied:

l) (8, *) is a corrmutative monoid with identity element 0p;
2) (R,.) is a monoid with identity element lB I Op;
3) Multiplication distributes over addition from either side;
4) Opr - 0R : rQp for al l  r € R.
We will usually write 0 instead of 0p and l instead of 1p if there is no room

for confusion. Also, multiplication will normally be written as concatenation. We
will always denote E \ {0} by ft.. We will follow the standard conventions: if a
is an element of a semiring R and fr is a positive integer then the sum o * ... * a
(t summands) will be denoted by /co and the product a . . . a (k factors) will be
denoted by oft.  We also set oo:lR for al l  a €.R'. For a detai led introduction to
the theory of semirings, as well as many examples and applications of this theory,
refer to IGolan, 1991].

A semiring R is zerosumfree if it satisfies the condition that r-l-s € E- for all
r € R' and all ,s € R. Countably complete semirings are always zerosumfree, as
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are those partially+rdered semirings in which 0 is the unique minimal element. See

[Golan, 1991] for details. Thus, for example, the semiring of linear relational oper-
ators introduced in [Ioannidis & Wong, 1990] to describe the opertors performed

on the relations in a database systems is zerosumfiee. Note that a zerosumfree
semiring is as far from being a ring as possible: for every nonzero element r of a
ring R there exists an element s such that r*s:0. A semiring R is entireif it
satisfies the condition that rs € fi* for all r € R* and all s € ft*. It is clear that a
sufficient condition for a semiring ,R to be entire is that iI be left multiplicatiuely
cancellat i tse, namely i f  sr: ro' implies that s: s' for al l  r €,R-. Similarly, a suf-
ficient condition for R to be entire is that it be right multiplicatively cancellative.
Thus, in particular, a diuision semiring, i.e. a semiring in which every nonzero
element has a (two-sided) multiplicative inverse, is surely entire.

Entire zerbsumfree semirings arise naturally in graph theory, especially in
the consideration of path problems, and prove considerable information about the
structure of graphs. See, for example, [Gondran & Minoux, f984]. With this
in mind, Kuntzmann [1OZZ] called such structtres int'ormation algebras (algibres
d,e renseignement). The semiring N of nonnegative integers, the semiring Q* of
nonnegative rational numbers, and the semiring R+ of nonnegative real numbers
are all natural examples of information algebtas. With these examples obviously in
mind, in [Eilenberg, 1974], information algebras are called as "positive semirings"
and many other authors follow this terminology. However, "positive" is also used
in a different sense in semiring.theory, and so it is best to avoid its use in this
context. Iwano and Steiglitz [fooO] have defined the structure of an information
algebra on the set of all convex polygons, with the sum of two polygons being
taken to be the convex hull of their vector summation. Anothei important class of
information algebras consists of those semirings of the form (R, max, min), where
R is some bounded totally-ordered set having minimal element 0 and maximal
element 1. In particular, we can take ,R to be B = {0,1} or I : [0,1], obtaining
l}ne boolean semiring and the fvzzy semiring respectively. If R is an integral domain
then the semiring of all ideals of .R is an information algebra. A division semiring
is either an information algebra or a division ring [Mitchell & Sinutoke, 1982].

One of the most widely studied and applicable semirings is an information
algebra: if ,4 is a nonempty set then the free monoid F A is the set of all finite
str ings ataz...o,. of elements of A. (Note: this set is usually denoted A*; here we
have deliberately chosen a nonstandard notation in order not to cause sonfusion
with the use of * given above.) This can be turned into a monoid by taking rnul-
tiplication to be concatenation of strings" The identity of this monoid is just the
empty string, which we denote by fl. The elements of A are called symbols or let-
ters and the elements of F,4 are called words. Subsets of F,4 are called (formal)
languoges on A. The set sub(FA) of all formal languages on A has the struc-
ture of an information algebra in which addition and multiplication are defined by
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L -  L '  :  L U L ' a n d  L L '  :  { r * ' l w  €  L  a n d w t €  L ' } .  T h e  a d d i t i v e  i d e n t i t y
of this semiring is @ while its multiplicative identity is {D}. This information
algebra was first consiclered as part of Kleene's algebraic formulation of the theory
of machines [Kleene, 1956] and lies at the heart of modern algebraic automata
theory. For further details refer to [Berstel & Reutenauer, 1988], fEilenberg,l974),. La l l emen t ,  

f 979 ]  o r [Sa lomaa&So i t t o la ,  1978 ] .  I f  S :  {LCFAIL :$o r  n  e  I }
then S is an information subalgebra of sub(F,A).

Another important example of an information algebra is the following. Let
R : RU{-} and define operations @ and I on ̂ R by sett ing oOb: max{a,b} arrd
a 8 6 : a 16. Then (R, O,8) is a zerosumfree division semiring and so is an in-
formation algebra, called the schedule algebra, having very important applications
in optimization theory, graph theory, and the modeling of industrial processes.
Refer; for example, to [Cuninghame-Greene, 1979]. Similarly, (R u {*},rnin,f)
is an information algebra with importanb applications in graph theory and opti-
mization, such as the solution of the shortest-path problem lGondran & Minoux,
19841. This semiring has a subsemiring (N u {*}, min, +) rvhich is an information
algebra as well and has important applications in the theory of formal languages
and automata theory, including the study of the nondeterministic complexity of a
f inite automaton; i t  is also used for gost minimization in operations research. See
\fascle, 1986] and ISimon, 1988]. For a generalzation of this construction in which

R is replaced by-an arbitrary linearly-ordered abelian group, refer to [Butkovic,
le85 l .

If R is a semiring which is not a ring then 1 * r * 0 for all r € R. In this
case, we set P(f i) :  {0} U {1 + r lr e R} and note the fol lowing resulr.

1.1 PROPosrrroN: If  R is a semiring which is not a r ing rf ien p(ft) is
a -.ubsemiring of R which is an information algebru.

Let B be a semiring and let (X,- ) be a f inite faetorization monoid, namely
a monoid satisfying the condition that for each c € X there set {(r/, r,,) € X x
x x'-2" : r) is f inite. on the set R << x )) of al l  functions from X to i? define
operations of addition and multiplication as follows:

t )  ( l  +  g) ( " )  :  f ( r )  +  s( r ) ;
z)  ( f  s ) ( ' )  : , I { / ( r ' )g( r ' t ) l r t -x t t :  

" } ;f o r  a l l  z € X  a n d / , g € R < < X  > > .  T h i s i s a s e m i r i n g c a l l e d  t h e  c o n u o l u t i o n
;emir ing in  x  over .R.  The semir ing,B << x >> has a subsemir ing R < x  >-
{f e n << x >> l/(") I  o for only f initely-many elements r of x}, cal led the
monoid semiring in X over .8. of course, R < X )- .R << X >> if  X is f inite.
If X : FA for some nonempty set ,4 then It << F'{ }} is the semiring of formal
pouer series in .4 over -R and ,R < FA > is the semiring of formal polynominals
in -,4, over a. If e : {t} we follow the usual convention and write .Rifl instead of
R < F{t} ).  Let A be i nonempty set and let d be a symmetric unj transit ive
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relation on A. The partially cornmutatiue free monoid M(A,d) is the quotient of

the monoid FA by the congruence relation generated by the set of all pairs of

the form (ab,ba) with (4, b) e 0. Then R < M(4,0) > is entire if and only if

.R is entire [Duchamp & Thibon, 1988] and so we see that R < M(A, d) > is an

information algebra if and only if r? is.

1.2 PROPOSITION [Hebisch & weinert, 1990b]: If .R.is an infot-

mation algebra and X is a finite factorization monoid then any subsemiring of

R << X >> containing R < X ) is an information algebta.

The conversr of Proposition 1.2 is not necessarily true. Conditions under

which it is have been investigated in [ilebisch & Weinert, 1990b1. In particular,

if X is a right - absorbing monoid and R is a semiring then n <,X > is an

information algebra if and only if R is. Similarly, if X is the free abelian group

generated by an arbitrary set then R < X ) is an information algebra if and only

if ,R is. (Note that, in this case, X does not have the finite factorization property

so R << X >> cannot be defined')
The conclitions of being zerosumfree and entire are independent and there

are plenty of sernirings satisfying one of these conditions but not the other. For

example, if l? is a commutative integral domain then R is entire but not zerosum-

free. Entire sennirings which are not zerosumfree have been studied in [Hebisch &

Weilert, 1990]. On the other hand, if ,R is a commutative ring which is not an

integral dornain then the semiring of all ideals of R is zerosumfree but not entire.

Countably complete semirings, which have important applications in theoretical

computer science, are zerosumfree but not necessarily entire and hence not nec-

essarily information algebras [Krob, 1987]. A linkage between the two conditions

does exist, however, for finite semirings.

1.S PROIIOSITION [Hebisch & 
'Weinert, 

1990alz Every finite entire
semiring wtrrich is not a fing is an information algebra.

Any semiring R can be embedded in an information algebra R0 constructed
in the following manner: let u be an element not in R and set Rd : RU{u}. Extend
the operations of addition and multiplication on R to Re by setting r lu, : ll*r : r
fora l l  r  e  Re andru- : r ! , r :  u fora l l  r  €  R0. I t  iss t ra ight forwardtover i fy  that  R0
is an information algebra satisfying having additive identity equal to u. Actually,
in order for r?d to be an information algebra we can even relax the conditions
on a semiring and insist oniy that (n, +) be a commutative semigroup rather
than a monoid or than it is a monoid but that condition (a) in the definition of
a semiring is not completely satisfied. Such a situation occurs in the follbwing
exarnples coming from theoretical computer science.

To begin with, let us consider the following model of nondeterministic com-
puter programs defined in [Main & Black, 1989]. We are given a nonempty set D
of "states" in which the c;-rmputer can be, one of which is the distinguished state
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I of being in an unending loop. Let -B be the family of all relations r on D ( i.e.
nonempty subsets of D x D) satisfying the condition that (J-, d) e r if and only if
d,:I. The operations of addition and multiplication on .E are defined as follows :

1 ) r * s : r U s ;
2) rs: {(d,d.") € Rlthere exist an element dt e D such that (d,,d,,) € r and

(dt ,d t ' )  e  s \ .
Then (n, +) is a commutative monoid with identity element 0 : (f ,I)

and (R,.) is a monoid with .identity element I : {(d,,d.)ld e \. Moreover,
multiplication distributes over addition from either side while 0r : 0 for al r €
R. It is not true, however, that r0 : 0 for all r € R. Therefore R is not a
semiring. Nonetheless, it can be embedded in an information algebra Rd by the
above construction. We also note that R' : {r € RlrO : 0} is a subsemiring of R.

The elements of .B correspond to nondeterministic prograrns on D. Addi-
tion corresponds to a nondeterministic choice ("either r or s") and multiplication
corresponds to sequential composition ("first r then s").

Related to this example is the notion of a command, olgehra defined in [Hes-
selink, f990], which is in turn a special case of the process algebras studied in
[Baeten, Bergstra & Klop, 1987]. Such an algebra consists of a set .R on which
operations of addition ( nondeterministic choice) and multiplication ( sequential
composition) are defined such that (R, +) is an idempotent commutative semi-
group, (.R,.) is a semigroup, and multiplication distributes over addition from
either side. Such algebras lack both an additive and a multiplicative identity
so th.t .Rd, defined as above, still lacks a multiplicative identity. This can be
remedied by the process of Dorroh ertension; embed .R0 in S : Rd x N via the
map o - (a,0) and define operations of addition and multiplication on S by
( o , n )  * ( o ' , n ' ) :  ( a *  a t , n * n t )  a n d  ( a , . n ) ( o ' , n , )  -  ( n o , * n t a *  a a t , n n , ) .  T h i s
turns 5 into an information algebra having multiplicative identity (u,l), where u
is the additive identity of Ra

An interpretation of the element 0 in a general process algebra is given in
[Baeten & Bergstra, lg90], where it is understood to mean the process of "pred-
icatable failure", which the system under consideration will try' to avoid if at all
possible (as opposed to "deadlock", which the system may enter but cannot try
to avoid).

If .R and S are semirings then a function ,y i R --+ ,S is a rnorphism of
semirings if and only if :

1) r(on) :  o*i
2)  t ( tn) :  l " i
3) r(t * 

" ')  
- ,y(r) + 1(r ') for al l  r,rt  € R;

 )  1( r r t )  :1( r \1( r ' )  for  a l l  r , r '  €  R.
A morphism of semirings which is both injective and surjective is called an

isomorphism. If there is an isomorphism between semirings R and ,S we write
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n = s .
We remark that the embedding of R into Rd is not a morphism of semirings

since it does not preserve additive identities. Also, note that a morphic image
of an information algebra needs not be an information algebra, which suffices to
show that the class of information algebra is not a variety . We also note that this
class is, clearly, not closed under taking direct products as well. If. B : {0, f } is
the boolean semiring (with idempotent addition and multiplication) and R is an
a,rbitrary semiring then the function 1: R --+ B defined by f(0) :0 and i(") : f
for r / 0 is a morphism. of semirings if and only if .R is an information algebra.

Finally, for the record, we mention some rather obvious algebraic properties
of inforrnation algebras. Clearly an information algebra can have no nonzero
nilpotent elements nor any nonzero nilpotent ideals. An element a of a semiring R
is cornplemented if and only if there exists an element 6 of R satisfying ab : ba : O
and a*6 : 1. Complemented elements are important in the study of semirings, and
central complemented elements are used to determine direct-sum decompositions.
See [Golan, 1991] for details. If R is an information algebra, however, R cannot
have any complemented elements other than 0 and 1.

2. OVER INFORMATION ALGEBRA WE CONSTRUCT
INFORMATION SEMIMOD ULES

If l? is a semiring then a commutative monoid (M, +) with additive identity
01a is a left R-semimod.ule if there exists a function R x M -, M, denoted by
(r,*) e rrn and called scalar multiplicatron, which satisfies the following condi-
tions for all elements r and r' of E and all elements rn and mt of M ;

I )  ( r r ' )m:  r ( r 'm) ;
2) r(m + *') :  rm + rm'l
3) (r + rt\m - rm 1- r'rn;
4) Lpnr, - nni
5) rDy - Oya : ORm.
Right R - semimodules are defined in an analogous manner^ We will usually

work with left semimodules, with the corresponding results for right semimodules
taken as proven without explicit mention. Any semiring is clearly both a left and
right semimodules over itself. When we speak of a semiring as a semimodule over
itself, we will mean a left semimodule unless the contrary is specifically indicaterl,
Again, we wil l  denote M \ {O-} by M*.

We begin with an example : A left seminearring is a structure (p, +, ") satis-
fying all of the axioms of a semiring exept that distributivity of mutiplication over
addition from the right may not hold. That is to say, if a,b, and c are elements of
P then a(b + c) : ab * oc but (b + c)a is not necessarily equal to ba * ca. Such
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structures arise, inter alia, in the study
[Golan, 1991]. They also arise naturall
sense of [Baeten, Bergstra & Klop, 1g€
situation we have a set of .processes" {
* ("alternative composition;) and . (..
left seminearring then p6 : {frf 1ft e I
to verify that in p6 both distributive
chain of subsemirings of p then so is U.
every seminearring has a maximal subs
r?-semimodule.

A similar situation occurs for the quemirings introduced in [Elgot, 1gT6] tostudy computation using abstract automata. A quemiring is a strricture of theform -R X M, where R is a semiring and, M is a tert R-semimodule, on whichaddition is defined componentwise and multiprication is given by (o, *i.@,,*,) :
(y.a' ,arn-'1rn). This is not a semiring since (a, m) (0,0) : (0,0) onry when rnO : 0.Also, while right distributivity of multiplication ovei addition always holds, leftdistributivity holds only sometimes. However, the quemiring .R x M certainly
:o:t1i"r R' : {(a,O)la e .R} as a subsemiring and can profitably be studied as aleft -R'-semimodule.

A left R-semimodule having more than one element is nontriuial. An ^R-semimodule M is zerosumfree if and only if it satisfies the condition that m + m, €M* for all e M. and all m, e M. It is enfrre if and only if it satisfies thecondit ion that rm € M'for al l  r € R" and al l  m € M-. A semimodule which isboth zerosumfree and entire is an fnfar mation $emimod.ure.

2'r PROPOSITION: A semiring R is an information algebra if and onlyif there exrsts a nontriviar left information R-semimodure.

lf M is a left -E-semimodule then a nonempty subset N of M is a subsemi_module of M if and only if it is closed under trr.ing sums and scalar products.c lea r l y {o } i sa lwaysasubse rn imo t lu leo fa le f tR - . " r r " imod t leM.A le f tR -semi -
module which has no subsemimodules other,than {0} and itself is sintple:.lr ry 

"naN' are subsemimodules of a left E-semimodule lti fh"n .nr * N, : {n + n,ln e Nand n' € N') is a subsemimodure of M containing both N and N,. If .d is anonempty family of subsemimodules of a left B - Jemimodule M then o.{ is asubsemimodule of M, as is I A : {mr + .. .  + mtlm; € UA f..  *.fr" i}."
Let R bL a semiring and ret M be a reft r?-semimodule, Furthermore,let ideal(-R) be the sdt of all ideals of ft and t* s;i"1u4 be the set of all sub-semimodules of M.' Then ideal(^B) has a

l.9ntl 
for detai ls) and (ssrn(M),+; i ,  ,

tion in ssm(M) being defined * uborr" 
"I N :  { o t r r + . " . +  a n r n l a ; € I ;  x ; € N }
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If A is a nonempty subset of a left R-semimodule M then the set .R.4 of
all elements of M of the form alrnr * . . . * anrnn with a; € R and m; € A,is
a subsemimodule of. M and, indeed, is the intersection of all subsemimodules of
M containing .4, called the subsemimodule of M generated by A" By convention,
we set R6: {0}. I f  RA: M then A is a set of generators fot M. A nonempty
subset A of a left -R-semimodule M is weakly linearly independent if and only if
f o r  any  f i n i t e  subse t  { r t , . . . , r n }  o f  A  and  f i n i t e  subse t  {o r , . . . , an }  o f  .B  we
have I o;*; oniy when ai : O for all t; it is linearly iniependenf if and only
i f  f o r  any  f i n i t e  subse t  { " r , . . . , r n }  and  ,4 ,  and  f i n i t e  subse ts  {o r , . . . , a r , }  and
{6t , . . .  ,6r , }  o f  .R,  we have Lotr t  

- -  
Db;r t  on ly  when a i :  b i  for  a l l  l  < .  i  1n.

If M is an information semimodule then any nonempty subset of M- is weakly
linearly independent. A [weakly] linearly independent set of generatons for a left R-
semimodule M is a fweak] 6csfs for M. These notions are discussed in I Takahashi,
1e84bl.

2.2 FROPOSITION: .Let R be an information algebra. A left ft-semi-
module Iv{ is an information semimodule if and only if it fras aweak basis.

A complete classif ication of al l  cycl ic information semimodules over the in-
tbrntation alget'ra N of natural numbers is given in fTakahashi, 1g85].

I f  & f  i s  a  l e f t  E -semimodu le  then  V (M) :  {m€  M lm*m,  :0  fo r  some
element m' af ,rt{} is surely a subsemimodule of M. The semimodule M is zerosum-
free precisely when v (M) : {0}. At the opposite extreme, a left fi-semimodule
.&f is an R-rnodule if and only if V (M) - Jy[ .

A subsemimodule of a zerosumfree [resp. entire] left E-semimodule is again
zerosurnfree [resp. entire]. Thus the class of information semimodules is closed
under taking subsemimodules. If N is an information subsemimodule of a left
R -semimodu le  M then  N  $  N ' :  {0 }U  {n *n , l n  €  N-  and  n ,  e  N , }  i s  a
subsemimodule of l{ * N' which contains N but does not necessarily contain ly'r.
n f  m € M w e  s e t T ( r n )  : R m E M .

An elernent u of a left .R-semimodule M \s infinitein M if and only if utffr, -
w for al l  m € M. If  u, 'and u)'  are inf inite elements of M then u : w *,u, :1r,.
'Ihus any left ft-semimodule M can have at most one infinite element. The element
u is strongly infi,nite \n M if and only if rw : w for all r € .8" . If the semiring _R is
antisimple then every infinite element of a left ,R-semimodule is strongly infinite.
indeed, in this situation any element r of R- is of the form 1 * r, foi r, € .R- and
so ru:  (1+ r t )w == w{r 'w:  u ' .  I f  M has ast rongly- in f in i tee lem'ent  ru  then the
set C(M) : {0,tr,'} is the crur of M; if M has no strongly infinite elements we set
C(h[) : {0}. Note that C(M) os always an information subsemimodule of M. We
say that M is crucial if and only if M : C (M). Otherwise it is noncrucia/. If w is
a strongly-infinite elemenL of a left r?-semimodule M and if l/ is a subsemimodule
of lt[ then l[ u {r} is also a subsemimodule of M. Also, we note that if u is a
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strongly-infinite element of a left R-semimodule M lhen T(w) : C(M). If u is a
. strongly-infinite element of a left N-semimod:ule M then for each element m of M
the set w(*): {mt e Mlrn*m' : u} u {o} is a subsemimodule of M. clearly
C(M) c W (rn) for each m € M.

Let R be a semiring and let M be a left R-semimodule. If (X,- ) is a finite
factorization monoid then, as we have seen in Section l, we can define the semiring
.R << X >> and its subsemiring R < X >. Moreover, if M << X >> is the
set of all functions from X to M then M << X )) has the structure of a left
R << X >>-semimodule if we define addition and scalar multiplication as follows:
i f  u ,u  €  M <<X >>  and  /  €  R  <<  X  >>  then :

1)  (u  + u)(c)  :  u( r )  +  u(c) ;
z)  ( f  

" ) ( " )  
:  D{ / ( " ' ) " ( r t ' ) lx ' *x t t  

-  x} .
Moreover, if M < x >- {u € M << x >> l"(") t' o for only finitely-many
e lemen tsco f  X l thenM <  X  >  i sa le f t .R  <  X  > -semimodu le .  Moreove r ,
if -E is an information algebra and M is an information left R-semimodule then
M << x >> is an information left R << x ))-semimodule and, M < X > is
ari information left R ( X >-semimodule.

We have already seen that strongly-infinite elements can exist in R-semi-
modules only when R is an information algebra. A strongly - infinite element z.r of
an R-semimodule M is primitiue \n M if and only if rn * m' : tu for all elements
rn and mt of M-. Thus, for example, if M has a strongly-infinite element u., then
ur is a primitive element of C (M).

we now note an example due to  [Goldstern,  1g8s] .  Let  R = toc, ,er . . .  ,
bo,br , . "  )  o t t  which we have operat ions of  addi t ion and mul t ip l icat ion def incd by:

1)  o t  + a j  :  a ;+ j  for  a l l  2 ,7 €N;
2)  b;  + b j  :  bo for  a l l  i ,7  €N;
3)  a,  - l  b ;  :  b ;  I  a j  :b6,  where k  :  i - j  i f  i  >  7 an<l  f t  :  0  i f  f  <  j ;
4)  a ,a,  -  a i j  for  a l l  f  ,1  €N;
5)  b,bt  :  bo for  a l l  i ,1  €N;
6)  b;a,  :  a jb t :60 for  a l l  f  eN and a l l  - f  >  1;
7) b;a6 =. o,r,tbt: d,o for al l  i  eN;
8 )  6 '41  :  a tb i :  6 ;  f o r  a l l  i  eN .
This is a semir ing with addit ive ident iLy ctr . ,  arrd mult ipl icate

having a strongly- inf ini te element bo which is not pr i rni t ive.
ident i t y  o1

If  B is an information algebra then Poyatos l tOlZl  has shown that one can
always adjoin a strongly inl in i te elernent to any lerf t  R-sernirnodule. Indeed, i f  M
is such a setnintodule and i f  t i r  is an element not in ,Lf  one can def ine a semi-
module structure on I t4 {w} :  I t . I  U {r}  bV se[t , ing m t  7,u :  LD * rm :  ln for al l
nz € Jv[ u {r} ,  rrr  :  t r . ,  for al l  r  € .R' ,  and ow :  o*r.  This construct ion can
be i te ra ted .  Le t  I t {  be  a  le f t  .R-semi rnodu le  and le t  {u - r1  ,102, . . . }  b "  a  countab ly -
inf ini te set of  dist inct elements not in Iv[ .  LeL l f r  -  lvI{ tu1} and, for each i ,  > l ,
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let Ni : N;_r{r;}. Then each N; is a subsemimodule of Nr+r, and all of them

are subsemimodules of N : UN;. In .l[ we note that:

l ) m + u ) i : I D i  f o r a l l  m € M  a n d a l l - > l ;

2 )  * t *w i :  umax{ i , i }  f o r  a l l  i , i  >  l ;

3\ ru;: ?ui for al l  r € R* and al l  f  > 1'

If N is a nonzero subsemimodule of a left ,R-semimodule M, set P(N, M) :

{ *  €  M l rm *n  €N*  fo r  a l l  r  €  .R  and  a l l  n  €  N* }  :  { ^  €  M lRm*  N*  :

-ld.). Clearly 011a € P(N,M) and P(N'M) is a subsemimodule of M. Moreover,
P(M,LI) : {* € Ml no nonzero multiple of na has an additive inverse }. Thus
we surely have V{M) n P(M,M) : {O,rn}. If N + {o,ra} and P("/V,M) has an
infinite element then that element must belong to ,l[. By convention, we also set
P({oirn}, M) : M for every left R-module M '

2.3 .PROPOSITION: If N is a subsemimodule of a left R- semimodule
M then:

IJ N C P(N, M) if and only if N is zerosumfreel
2) P(I,I,P(N, M)) : P(N, M) for any subsemimodule 1{ of a left R-semi-

module M;
3) If  M' r 's a subsemimodule of M t len P(N, M'): P(N, M) nMt;

4) If {M,li € O} is a family of R-semimodules and N is a subsemr'module of
M :  n{M; lu  € n}  then P(N,M) :  n{P(N,  Mi) l i  €  O} ;

5) If {N,la e n} is afamily of subsemr'modules of M satisfying t-lN; : N
then nP(N,  ,M) I  P(N,M);

6) If Mt is a subsemimodule of P(N, M) then N + Mt : N U Mt and N

$  & / ' :  N .

If M and N are left R-semimodules then a map a : M - N is an R-ho-
momorphisrn if and only it (m I m')a: ma * mta and (rrn)a -: ,(ma) for all
m,nl' € M and r € R. Note that we follow the standard convention of writ-
ing homomorphism as acting on the side opposite scalar multiplication so that
homomorphism of right -R-semimodules will be written as acting on the left. A
bijective E-homomorphism is an R-rsomorphism. The kernel of an .R-homomor-
phism a ; M -+ N of left .R-semimodules is /cer(a) : {m € Mlma: 0.,v}. This
is surely a subsemimodule of M. Indeed, this subsemimodule of M which is su6-
t roc t i ue , i . e .  i t sa t i s f i es thecond i t i on tha t i f  m 'e  ke r (a )andm' *m€ lce r (a )  f o r
some m e M then rn € ker(a). Subtractive subsemimodules play an important
part in the developrnent of semimodule theory. See [Golan, 1991] for details. If o
and, p are -R-homomorphisrns from a left E-semimodule M to a left .R-semimod-
ule N then the map d * 0 fram M ta N defined by o * 0, * H mat * rn| is
also an.R- homomorphism. Indeed, it is easy to see that the set Ilorr-rp(M,N)
of all R-homomorphisms from M to N is a monoid (:N-semimodule) under this
operation, the identity element of which is the'constant map rn r+ 0.
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Let M be a left R-semimodule. An R-homomorphism from M to itself is
called an R-endomorophism of M. The set End,p(M) of all R-endomorphisms
of M is a semiring under the operations of addition and multiplication defined
by setting m(a -t fi) : ma I mp and *("F) : (ma)p for all rn e fu[ and all
u,0 € Endp(M). The addit ive identity of Endp(M) is the map given by m *-, A
for all m € M and its multiplicative identity is the map given by rn + nl for all
m e M .

lf M is a left ,R-semimodule and S : EndR(M) Lhen M is a right S-
semimodule, with scalar multiplication definedby m.a: rrld. for all m {: M and
a k  s .

For example, let -4 be a nonempty set and as before, let S : sz6(F,4) be the
semiring of all formal languages on A. Following the terminology of [Abranisky &
Vickers, 1990] we say that a transition system (P, r) over A consits of a nonenrpty
s e t  P  t o g e t h e r w i t h  a s u b s e t  - -  o f  P x  A x  P , w h e r e w e w r i t e  p \  q  i n s t e a d o f
(p,o,q) €-. The elements of A are the atomic actions of the transit ion system,
while the elements of P are the processes of the system.

Each element a of A defines a function 0o : sub(P) --* sublP) given by
rn|o: {q e Plp 3 q for some p e *}. we can expand this notion by defining d,,,
for each w €E A recursively as follows:

1) If ro - n then du, is the identity map;
2)  I f  w :  uafor  u  € FA and o €,4 then m0* :  ( .m0, , )0o.

Furthermore, if L € S then we can define a function 01 : sub(P) -- sub(p) bv
sett ing m0n - u{rn|- lw e L}. Moreover, (sub(P),u) is a left B- semimodule.
If , € ,9 then 07 is a B-endomorphism of sub(P) for each L e s and, indeed,
{|LIL e S} is a subsemiring of the semiring of B-endomorphisms of sub(P).
Moreover, the map L ,- 0 t, is a morphism of semirings from 5 to the semiring of
B-endomorphisms of sub(P). Thus sub(P) is canonically a right ^g-semimodule,
where, for each m e sub(P) and each L € 5, we havemL: {q e plp 3 qfor
some p € M and u € I). This semimodule is zerosumfree but not necessarily
entire. If ,9' is the subsemiring of ,9 satisfied by ,S, : {L € .Sl, : 0 or tr € ,}
then sub(P) is an information ,5t-semimodule.

Let,R be an information algebra and let {(Mn,+;)l i  e o} be a family of
information left .B-semimodules each of which has a strongly-infinite element u;,..
Without loss of generality, we can assume that the M; are hi.loint as sets. Set
Iv[ :  o{Mi \ c(t\{) l f  e ni u {0,?r}, where 0 and u do not belong to any of the
M;. Define addition and scalar multiplication of elements af IuI as follows:

1 )  0+  n t  :  r n , *0  :  m  and rQ :0  fo r  a l l  m  €  M and  a l l  r  €  Rz
2 )  w * m : m * w :  u ,  a n d  r u ) : n )  f o r  a l l  m €  M  a n d  a l l  r  €  R :
3 )  I f  m ,Tn '  €  M \  {0 ,u ' }  t hen  rn * rn ,  i s  de f i ned  to  be  m* ;mt i f  bo th  m

and m' belong to IVi \  C(M) for some f e O; otherwise, mI m, : w:
 ) It m € M \ C(Mi) then rrn is the same as the corresponding value in 14.
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It is straightforward to check that M, as definde above, is an information semi-
module having a strongly-infinite element ur. Moreover, for each l € O we have
an injective E- homomorphism \; : M; '-+ M which sends the zero-element 0; of
M; to 0, sends ur; to ur, and sends each element of M; \ C(Mr) to itself. We will
denote the semimodule M constructed in this way by lJ;ErM;.

An important method of constructing surjective .R-homomorphisms of semi-
modules is via .R-congruence relations. An'equivalence relation : on a left -B-
semimodule M is an r?-congruence relation if and only if m - n1,t and n = nl
imply that ne I n: rn' + nt and rrn : rn' for all r € R. If : is an .R- congruence
relation on M and if rn € M then we denote the equivalence class of rn with respect
to this relation by rnl= and set M f =: {*l= lrn e M}. We can define operations
of addit ion and scalar mult ipl ication on M l= by sett ing rnl= +nl=: (rn + n) l :
and r(mf =) : (rm)l: for all m,n € M and all r e R. These operations turn
M l= into a left R-semimodule, called the factor semimodule of h[ by =. Moreover,
we have a surjective,-R-homomorphism M ---+ Ml= defined by ** ml= for all
m € M. For further details and examples of congruence relations on semimodules,
refer to IGolan, 1991].

If R is an information algebra then any nontrivial information subsemimod-
ule of a left R-semimodule M can be *contracted" to a strongly-infinite element
of a factor semimodule of a subsemimodule of M. Indeed, let R be an information
algebra and let N be a nontrivial information subsemimodule of a left B-semimod-
ule M. Let Mtbe a subsemimodule of P(N,M) properly containing N. Define a
relation -N on M' bysett ing nt- Nntt i f  and only i f  rn : m' or {m,m,} eN'. I t  is
straightforward to check that this is an .r?-congruence relation on M,and so we can
def ine thefactor  semimodule Mt f  -N. Indeed,  i f  m € M, \N thenmf -n:  

{m} so
M ' l_ - ! !  i s j us t [M ' \ f f ' ] u {u . ' } ,whereu isas t rong ly - i n f i n i t ee lemen t  t u , j - 1 r . l t
a: Mt -* M'l-x is the canonical surjection deficned by a: rn,-- mf -tt  then a i ,s
not injective unless N has precisely two elements. On the other hand, we always
have ker(a) : {O}.

For notational convenience, we will denote the semirnodule M,f - x bv
M'llN and, for each element m of Mt, we will write ,nl lN instead of mf -7,1.
T h u s n r l  l N : { r n } f o r a l l  r n € M '  \ N a n d  r l l N  = { u } i o r a l l  n € N - .  F o l l o w -
ing [Takahashi, lg84], we wil l  cal l  Mtl lN the .Rees factor semimodule of M,by
N .

3. INFORMATION SEMIMODULT]S HAVE
ABSORBING SUBSEMIMODULES

We now introduce a constrution first given by poyatos [tO7Z, 1g73a, lg7gbl
in his construction of a version of the Jordan - Holder ih"o."- which *""ri i"ij
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for semimodules, and later studied independently in [Takahashi, 1984a]. A sub-
semimodule N of a left -B-semimodile M is ahsorbing if and only if it is entire
and M : P(N,M). In this case we write N e M. That is to say, N a M if
and only if trf is entire and M +N. - N-. This surely implies that N is zero-
sumfree. Indeed, an entire left .R-semimodule M is an information semimodule if
and only if M a M. Thus we see that absorbing subsemimodules are information
subsemimodules. The converse need not be true. By Proposition 2.1 we see that it
is meaningful to talk about the existence of nontrivial absorbing subsemimodules
only forsemimodulesover informationalgebras. If  n € N then {0}u{i € Nlz > n}
is an absorbing subsemimodule of N.

Trivially, {0,1a} a M for every left ft-semimodule M. If r.u is an infinite
element of a semimodule M then ur is strongly infinite if and only if {0,r'rl} C M .
Let M be an entire subsemimodule. If N is a subtractive subsemimodule of M
satisfying the condition that N : (M \ M') U {0} is a subsemimodule of M then
surely N a M. Thus, for example, if M is a left N-semimodule which is not an
abelian group then V(M) satisf ies the given condit ion and so N : (M\y(lZ))u{O}
is an absorbing subsemimodule of M.

3.r PROPosrrloN: For subsemimodu,fes N, N/. lvf '  of a ]eft .R-semi-
module M we have:

l,) If N E M and N q M' tlen N I L4';
2) If  N = M' then M' e P(N,,Lf);
3) If N is zerosumfree then lf I P(,n/,I4);
4) If A is a nonempty family of absorbing su bsemimodules of M having

intersection N then N C M;
5) lf A is a nonempty family of absorbing sub.semim odules of h[ having gnion

N then N E M;
6 )  I f  N , N ' a  M  t h e n  N a N ' +  { 0 }  a n d N + N ' C  M , w h e r e  i n  t h i s  s i t u a t i o n

we in fact have N + l/' : ly' U N';
7 ) I f N C M t h e n N . ' r h t t I M ' ;
8) If  M is entire and N, Nt a Lt t ien N $N'C N n l / , ;
9) I f  N C M then N u N/ is a subsemirnodule of M.

Thus, in part icular, from (2) and (:) of Proposit ion 3.1 we see that i f  N is
an information subsemimodule of a left rt- semimodule M then P(N, M) is the
largest subsemimodule of M containing N as an absorbing subsemimodule.

lVe also note that, bV (a) and (5) of Proposit ion 3.1, the family assm(,tf)
of al l  absorbing subsemimodules of M is a sublatt ice of the latt ice ssm(M) of al l
subsemimodules of M.Indeed, this latt ice is distr ibutive by Proposit ion 3.t (6).

The fol lowing example is in fTakahashi, 1984a1: Let R be an antisimple
sernir ing. If  M is a left ,R-semimodule which is not a group then N : {0} U [M \,
V (M)l is an absorbing subsemimodule of M. Indeed, i t  is clearly closed under

1 3
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addition. If n € N* and r € R* then r : 1 *s for some s € R. Thus rn]- n' : O
.implies that z f (sz * n') - 0, which is impossible, proving that rn € N. Finally,
let rn € M and rz € N* : M\ V(M). I f  m*n f N- then there exists an element
m' of M satisfying 0: rn+n*m' -- n-t (mI*'),  contradict ing the assumption
tha tn€N* .  Thus  NCM.  Wea lsono te theconve rse :  i f  N f  MandNsa t i s f i es
the  cond i t i on  tha t  M \V(M)  g  N*  then  M\V(M) :  - l [ *  f o r  i f  r eV(M)  nN*
then there exists an element y of V (M). satisfying y + r : 0, contradicting the
f a c t t h a t  M + N . : N * .

Let M be a left R-semimodule containing an entire simple submodule No,
let ssm(M) be the set of all subsemimodules of M, which we have already noted
is a left semimodule over the semiring ideal(R) if all ideals of R. LetU : {N €
s s m ( M ) l N  I  N " ) .  I f  { 0 }  * I  e  i d e a l ( , R )  a n d N e  U t h e n l N  f  I N s : 1 r g o .

Thus U' : U u {{0}} is an absorbing subsemimodule of ssm(M).
Let R be an information algebra and let {M,li € 0} be a family of infor-

mation left R-semimodules, each of which has a strongly-infinite element. Let
M : lj;e n ,U{; and, for each i € CI,let ),; : M; --+ M be the injective -B-homomor-
phism. Then M;\; I M for each i € f,l.

I{ote that if R is an information algebra then it is zerosumfree and so R a R
but it does not follow from this that if ft is an information algebra then every
nontrivial left R-semimodule has a nontrivial entire subsemimodule. Thus, for
example, N is an information algebra but any nontrivial additive abelian group is
a left N-semimodule having no nontrivial absorbing subsemimodules.

If M and N are disjoint left R-semimodules then a Takahashi ertension of
M by N is a left .R-semimodule ? the underlying set of which is M u N. and the
operations of addition and multiplication on which are so defined that N f 7.
These extensions were first considered in [Takahashi, 1984a]. We will denote the
family of all Takahashi extensions of M by N by Tak(M,N). By what we have
already seen, a necessary condition for Tak(M, N) to be nonempty is that N be
an information semimodule. If N is an information ft-semimodule then a function
r p f r o m  N "  t o  N ' i s  a t r a n s l a t i o n  i f  a n d o n l y  i f  , h ( " + n ' ) : , h ( " ) + r L ' :  n + r b ( " ' )
for al l  n,n' e N-. Denote the set of al l  translations of N- by tr(N-); this set
is always nonempty since it surely contains the identity map. It is also closed
under composition of functions and, indeed, is easily seen to be a monoid under
cornposit ion.

An element m of a left R-semimodule M \s cancellable if and only if rn,lmt --
lzlrmt' implies mt : m,'t  for al l  rnt,mtt € M. The semimodule M is cancellat iueif
and only i f  every element of M is cancellable. See lGolan, 1991] for detai ls. I f  N is
an information semimodule having a nonzero cancellable element ns then tr(N.)
is an abelian monoid. Indeed, if ns is a cancellable element of lV- then for p and
r l '  in  t r (N-)  and n € N we have pth(n1 ro)  :  p ,h(n)  *  no -  rh(" )  +9: (n6)  and
,hp ( "  1 ro )  :  r z t r / t p ( "o )  :  r h ( " )+ \D(no )  and  so  e rb (n ) tn6 :  rhe ( " ) *no .  S ince
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z6 is cancellable, this implies that erh(n) : thp(n) for all n € N* .
rf 

" 
€ Tak(M,N) then each element rn of M induces a translation p* €

tr(N-) given by p.,(x) : rn * r. Thus we have a function pr : M -- tr(N=)
given by pr ; n1 + tprn, and this is'in fact a morphism of monoids since prn*rn, :
emgn,, for all ntrnl,' e M. This morphism satisfies the additional condition:

( . )  I f  r  €  R,  m € M, ,  and z € N* then r [pr (^) ( " ) ] :  er ( rm)(rn) .
A morphism of monoids from M to tr(N.) with this property will be called cd-
missible, Thus, for example, if M is any left R-semimodule and N is an infor-
mation semimodule disjoint from M then the morphism e : M -* tr(N-) defined
by e (nz)(n) : n is admissible. The set of all admissible morphisms irom the
monoid (r\a,+) to tr(N') wil l  be denoted by Adm(M,N). I f  O i.  the operation
onAdm(M,N) def ined by set t ing (oO 0)(* ) :  a(* )p(rn)  for  a l tm,  e M then
(Adm(M,N),e) is a monoid with identity ui"^"rrt r.  I f  N has a nonzero can-
cellable element then, by what we have noted above, this monoid is ahelian ( i .e.,
i t  is a N-semimodule).

Let <p be an admissible morphism of monoids from a left R- sc.mirnodule Ay'
to tr(N.), where ly' is an information left ft- semimodule dissjoint frorn I{. Set
T : M U l/- and define the operations of addit ion and scalar mult ipl ication on ?
as follows:

L) If m,m' € M then m I mt and rm are the same as in M;
2) If  nrn' € N* then n * n, and rn are the same as in N;
3 )  I f  m€  M and  z  €  N .  t hen  rn  t  n  :  n  *  m  :  p (m) (n ) .

This turns T into a left .R-semimodule having N as an absorbing subsernimodule
and M as a subtractive subsemimodule; hence it is a Takahashi extension of M
by N. Thus there is a bijective correspondence between the set of all Takahashi
extensions of M by N and the set of all admissible morphisrns of nronoitjs frorn
M to tr(ni -) .  l f  p : M - tr(N') is an admissible morphism of monoids, we wil l
denote by M @o N the Takahashi extension of M by N defined by p.

3.2 PROPOSITION: Let R be a semiring and let a: M , Mt be an R_
homomorphism of left R-semimodules satisfying the condition that ker(cr) ; M.
I f  Nt  a  M'  then N:  N 'a-r  = M.

If N is an absorbing subsemimodule of a left fi-semimodule M then the left
R-semimodule Ntlltrl is defined for any R -semimodule ly'' of M containing 1y'.
I t  is straightforward to verify that the map N, r- Ntl lN induces a bi jective order- preserving correspondence between the family of all subsemimodules of ,4,f con-
taining N and the family of al l  subsemimodules of M I lN, which in turn restr icbs
to a bi jective correspondence between the family of al l  absorbing subscmirnorlules
of M containing N and the family of al l  absorbing subsemimodules of M I lN.The fol lowing result gives a 'converse' of this construction for semirn6dules over
information algebras.
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B.g pROPOSITION z Let R be an information algebra and let a: M --+ N

be an R-homomorphism of left R-semimodules. If w' is a strongly-infinite element

of N contained in Ma then M' : u)'d.-r U {0} is an absorbing subsemimodule of

M.

3.4. PROPOSITION [Poyatos, 1973a]: Let N and Nt be absotbing

subsemimodules of a left R-semimodule M ' Then:

r ) N q N u N ' ;
z ) N n N ' f N ' ;
3) (N u Nt),t lN is R-isomorphic to N' I l(N n N').

3.5 PROPOSITION [Poyatos, 1973b]: Let R be an information alge-

bra and 1et M be a left R-semimodule. If N, N', W andW' are subsemimodules of

M satisfying N' Q N andW' a W, and if  (J,(Jt,V and Vt are the subsemimodules

of M defined by:
i ) U :  N ' u ( N ) W ) ;
i i )  u t  :  N ' u  ( N  n  W ' ) ;
i i i ) V : W '  u ( N n W ) :
i v )  V t  -  W ' u  ( N ' n  W ) ;

Then:
1 ) U t i U  a n d V t C V ;

2) u I lu '  = v I  lv ' .
!'rom these results we can then conclude the following.

3.6. PROPOSITION [Poyatos, 1973a]: I f  N c N' are proper ab-

sorbing subsemimodules of a left R-semimodule M then (M I lN) I lw I lN') is

B-isomorphic to MllN'.

Let M be a left rE-semimodule having a nonempty family I of absorbing

subsemimodules and let N : Ul. By Proposit ion 3.1(5) we see that N is again

an absorbing subsemimodule of. M and, indeed, is the unique maximal absorbing

srrbsemimodule af M. We will denote this subsemimodule by ,a(M).

4 .  CON{POSIT ION SERIES AND THE JORDAN -  HOLDER THEOREM

If 14 is a semimodule we see that C(M) a NL An absorbing subsemimoduk:

N of M is quasiminimal i f  and only i f  i t  properly contains C(M) and there is no

absorbing subsemimodule of M properly containing C(M) and properly contained

in N. That is to say, i f  Af is a quasiminirnal left R-semimodule then either A1 has

no proper absorbing subsemimodules or i t  has precisely one such subsemimodule,

narnely i ts crux. A nontrivial left -R-semimodule M is quasisimple l f  and only i f

i t  is quasiminimal and has no primit ive elements. That is to say, a quasiminimal
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left ,R-module is qua^sisimple if it either has no strongly - infinite elements or has
one which is not primitive.

If ur is a strongly - infinite element of an information ft- semimodule M
which has no proper absorbing subsemimodules other than C(M) then we know
by Proposition 3.1(6) that M* + M* equals either M* or {tr}. In the first case,
M is quasisimple. In the second case, u, is'a primitive element of M.

consider the following example I Poyatos, 1gz3a]: Let T be a nonempty set
and let z,w be distinct elements not in ?. Define the operation * on X : TU{z,w}
by setting:

1)  t  +  t '  :  n)  for  a l l  t , t t  €  T;
2)  x  + z  :  z  *  x  : r  for  a l l  r  €  X;
3) c* rD : u) t x :tr. ,  for al l  c € X;

Moreover, for each /c e N and c € X define the element /cc of X as follows:
4 )  O r :  z ;
5 )  l c :  r ;
6) kr: ur i f  k > 1 and r I  z;
7 ) k z : z f o r a l l f t e N .

Then X becomes a left N-semimodule with strongly- infinite element nr. Indeed,
if ?' is any subset of ? then ?' u {",u} is an absorbing subsemimodule of x.
Moreover, tr., is primitive in X.

From the definitions we see that if N is an absorbing subsernimodule of a left
R-module of M and N' is an absorbing subsemimodule of M properly containing
N then the following conditions are equivalent:

l) N' I lN is quasiminimal;
2) There is no absorbing subsemimodule of M properly containing N and

properly cpntained in N'.
we also note that'tf A(M) f M then,by proposition 3.4, the ft- semimodule

M I I A(M) is quasisimple.

4.r PRoPosrrroN [poyatos, lgz2,l973a]: Let R be an informatian
algebra. If M is a left R-semimo dule and if m is ^n ui"^"nt of M* then:

1) m € A(M) if and only if f(*) . M;
2) It m e A(M) then Rm $a(*) is t.he unique smal/est absorbrng subsem,'-

module of M containing m. Moreover, Rm $,4(M) : T(m)

In particular; if rn e, A(M). tl=. 
".(:"') 

q rlml for all m, e T(m)" . setT'(*) :  {0}  u {* ,  e rQe- l r@) + r@}. '
4.2. PRoPosrrroN [poyatos, rg73b]: Let R be an information

algebra and left M be a \eft R-semimodule having an absorbing subsemimodule"
If m € A(M)* thenT'(*) is a maximal proper absorbingsubsemim odule of T(m).

we note that  u . '  €  A(M) and i f  me A(M) therrm*tu:  u  for  each r  € .8and so w €T(m). Thus we conclude that ciui e iq*'1for each *a-itaq.
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4.3 PROPOSITION [Poyatos, L972]z Let R be an information atrgebra

and let M be a left .R-semimodule .havin g a strongly-infrnite element w. Then:'
1) L(M) : {0} u {* € A(M)lf @) : C(M)} t's an absorbing subsemri-

module of M w.hiclr is t.he unique maximal subsenilmodule N of A(M) satisfying
n I rn : w for aII n € N* and nl e A(M)-.

2) If m € A(M) \ C(M) then T(m) : C(M) if and onlly it T(m) is quasi-

minimal.

4.4 PII,OPOSITION [Poyatos, 1973a]: tr et R be an infarmation al-
gebra and let M he a noncrucial information R- semimodule having a strcngly
- infinite element 'w. Then M is quasisimp/e if and only if T(*) - lvf for al]
m € M \ c ( M ) .

4.5 COROLLARYI Let R be an information semiring and let M be
a noncrucial qua^sisimple information R-semimodule having a strongly - infinite
element w. Then T'(* ') :  C(M) for al l  m' € M \ C(,Vf).

4.6 PROPOSITION [Poyatos, 1973a]: Let R be an information alge-
bra and let M be a left R-semimodule having a strongly - infi.nite element w. lf N
is a quasiminirnal absorbing subsemimodule of M then either N.has a primitive
element or it is quasisimple.

If R is an information algebra and 14. is a left R- sernimodule having an
absorbing subsemimodule then, for every rn € A(M), the left ft-semimodule
f @) : f  (*) l lT'(*) is the principal factor of M at m. By what we have noted
above, f @) has a strongly - infinite element.

4.7 PROPOSITION: Let R be an information algebra and let M be a
Ieft R-semimodule having an absorbing subsemimodule. If m € A(M)' thenT(^)
either ha^s a primitive element or rs quasisimple.

4.8 PROPOSITION [Poyatos, 1973b]: Let R be an information alge-
bra and let M be a left R-senimodule. If N' is a rnaximal proper absorbing sub-
module of a subsemimodule N of A(M) then N I lN' = T(m) for anyrn e i /  \  N'.

If fu[ is a left R-semimodule then an absorbing series for M is a descending
chain M: No -l  Nr f . . .1 Nt:C(M) of subsemimodules of M. An ahsorbing
quasiseriesfot M is an absorbing series fot A(M). Any chain obtained from a given
absorbing series by inserting further terms is a refinement of that series" If new
subsemimodules are actually inserted, such a refi.nement is proper. Two absorbing
s e r i e s  M  :  N a I  N r  I  . . .  f  N t :  C ( M )  a n d  M  :  L o )  L r a . . .  I  t r "  :  C ( M )
fot M ate isomophicif and only i f  t :  s and there is a permutation o of {1,"..  ,r}
such that N;-tl lM = L,(il-rl I L"(;) for each 1 < i < t.

Finally, we come to Poyatos' extension of the Jordan - Hdlder theorem.
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4.9 PROPOSITION [Poyatos,
bra and let M be a left R-semr'module.
fi ave isom orphic rellnements.

1973b]z Let R be an information alge-
Then any two absorbing quasiseries of M
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