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INFORMATION SEMIMODULES AND
ABSORBING SUBSEMIMODULES
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Dedicated to Professor Nguyen Dinh Tri on his siztieth birthday

Abstract. The purpose of this short survey is to introduce the notion of an information
semimodule and indicate some of the apphcations such structures in theoretical computer science.
Also, we unll indicate some of the mathematical theory available for information semimodules by
brinqing Poyatos’ construction of a version of the Jordan - Holder theorem for information semi-
modules. To this end, we make use of the notion of an absorbing subsemimodule of a semimodule,
studied independently by Poyatos and Takahashs.

1. THERE ARE PLENTY OF INFORMATION ALGEBRAS OUT THERE

A semuring is a aonempty set K on which operations of addition and multi-
plication have been defined such that the following conditions are satisfied:

1) (R,+) is a commutative monoid with identity element Op;

2) (R,.) is a monoid with identity element 15 # Og;

3) Multiplication distributes over addition from either side;

4) Ogr =0 =rOgp for allr € R. :

We will usually write 0 instead of Og and 1 instead of 15 if there is no room
for confusion. Also, multiplication will normally be written as concatenation. We
will always denote R \ {0} by R*. We will follow the standard conventions: if a
is an element of a semiring R and k is a positive integer then thesuma+ ...+ a
(k summands) will be denoted by ka and the product a...a (k factors) will be
denoted by a*. We also set a® = 13 for all @ € R*. For a detailed introduction to
the theory of semirings, as well as many examples and applications of this theory,
refer to [Golan, 1991].

A semiring R is zerosumfree if it satisfies the condition that r +s € R™ for all
r € R” and all s € R. Countably complete semirings are always zerosumfree, as
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are those partially-ordered semirings in which 0 is the unique minimal element. See
[Golan, 1991] for details. Thus, for example, the semiring of linear relational oper-
ators introduced in [loannidis & Wong, 1990] to describe the opertors performed
on the relations in a database systems is zerosumfree. Note that a zerosumfree
semiring is as far from being a ring as possible: for every nonzero element r of a
ring R there exists an element s such that r + s = 0. A semiring R is entire if it
satisfies the condition that rs € R* for all r € R* and all s € R™. It is clear that a
sufficient condition for a semiring R to be entire is that it be left multiplicatibely
cancellative, namely if sr = rs’ implies that s = &’ for all r € R*. Similarly, a suf-
ficient condition for R to be entire is that it be right multiplicatively cancellative.
Thus, in particular, a division semiring, i.e. a semiring in which every nonzero
element has a (two-sided) multiplicative inverse, is surely entire.

Entire zerosumfree semirings arise naturally in graph theory, especially in
the consideration of path problems, and prove considerable information about the
structure of graphs. See, for example, [Gondran & Minoux, 1984]|. With this
in mind, Kuntzmann [1972] called such structures information algebras (algébres
de renseignement). The semiring N of nonnegative integers, the semiring Q* of
nonnegative rational numbers, and the semiring R of nonnegative real numbers
are all natural examples of information algebras. With these examples obviously in
mind, in [Eilenberg, 1974], information algebras are called as “positive semirings” .
and many other authors follow this terminology. However, “positive” is also used
in a different sense in semiring theory, and so it is best to avoid its use in this
context. Iwano and Steiglitz [1990] have defined the structure of an information
algebra on the set of all convex polygons, with the sum of two polygons being
taken to be the convex hull of their vector summation. Another important class of
information algebras consists of those semirings of the form (R, max, min), where
R is some bounded totally-ordered set having minimal element 0 and maximal
element 1. In particular, we can take R to be B = {0,1} or I = [0, 1], obtaining
the boolean semiring and the fuzzy semiring respectively. If R is an integral domain
then the semiring of all ideals of R is an information algebra. A division semiring
is either an information algebra or a division ring [Mitchell & Sinutoke, 1982].

One of the most widely studied and applicable semirings is an information
algebra: if A is a nonempty set then the free monoid FA is the set of all finite
strings @, a3 ... a, of elements of A. (Note: this set is usually denoted A*; here we
have deliberately chosen a nonstandard notation in order not to cause sonfusion
with the use of * given above.} This can be turned into a monoid by taking mul-
tiplication to be concatenation of strings. The identity of this monoid is just the
empty string, which we denote by [J. The elements of A are called symbols or let-
ters and the elements of FA are called words. Subsets of FA are called (formal)
languages on A. The set sub(FA) of all formal languages on A has the struc-
ture of an information algebra in which addition and multiplication are defined by
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L+L' =LUL" and LL' = {ww'| w € L and w' € L'}. The additive identity
of this semiring is ¢ while its multiplicative identity is {{1}. This information
algebra was first considered as part of Kleene’s algebraic formulation of the theory
of machines [Kleene, 1956} and lies at the heart of modern algebraic automata
theory. For further details refer to [Berstel & Reutenauer, 1988], [Eilenberg, 1974],
Lallement, 1979] or [Salomaa & Soittola, 1978]. If S = {L C FA|L = ¢or [J € L}
then S is an information subalgebra of sub(F 4).

Another important example of an information algebra is the following. Let
R = RU{~} and define operations @ and ® on R by setting a®b = max{a, b} and
a®b=a-+b Then (R,®,®) is a zerosumfree division semiring and so is an in-
formation algebra, called the schedule algebra, having very important applications
in optimization theory, graph theory, and the modeling of industrial processes.
Refer, for example, to [Cuninghame-Greene, 1979]. Similarly, (R U {cc}, min, +)
is an information algebra with important applications in graph theory and opti-
mization, such as the solution of the shortest-path problem {Gondran & Minoux,
1984]. This semiring has a subsemiring (NU {00}, min, +) which is an information
algebra as well and has important applications in the theory of formal languages
and automata theory, including the study of the nondeterministic complexity of a
finite automaton; it is also used for cost minimization in operations research. See
‘Mascle, 1986] and [Simon, 1988]. For a generalzation of this construction in which
R is replaced by -an arbitrary linearly-ordered abelian group, refer to [Butkovic,
1985].

If R is a semiring which is not a ring then 1 + r # 0 for all » € R. In this
case, we set P(R) = {0} U {1 + r|r € R} and note the following result.

1.1 PROPOSITION: If R is a semiring which is not a ring then P(R) is
a subsemiring of R which is an information algebra.

Let R be a semiring and let (X, ) be a finite factorization monoid, namely
a monoid satisfying the condition that for each £ € X there set {(z/,2") € X x
X|z"z" = z} is finite. On the set R << X >> of all functions from X to R define
operations of addition and multiplication as follows:

1) (f +9)(2) = f(z) + g(z);

2) (Fg)(z) = YXAS(2")g(e")|z" 2" = z};
for all z € X and f,g € R << X >>. This is a semiring called the convolution
semiring in X over R. The semiring R << X >> has a subsemiring R < X >=
{f € R << X >> |f(z) # 0 for only finitely-many elements z of X}, called the
monotd semiring in X over R. Of course, R < X >= R << X >> if X is finite.
If X = F A for some nonempty set 4 then R << FA >> is the semiring of formal
power series in A over R and R < FA > is the semiring of formal polynominals
in A over R. If A = {t} we follow the usual convention and write R|[t] instead of
R < F{t} >. Let A be a nonempty set and let § be a symmetric and transitive
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relation on A. The partially commutative free monoid M(A, 8) is the quotient of
the monoid FA by the congruence relation generated by the set of all pairs of
the form (ab,ba) with (a,b) € 8. Then R < M(A,0) > is entire if and only if
R is entire [Duchamp & Thibon, 1988] and so we see that R < M(A,08) > is an
information algebra if and only if R is.

1.2 PROPOSITION [Hebisch & Weinert, 1990b]: If R is an infor-
mation algebra and X is a finite factorization monoid then any subsemiring of
R << X >> containing R < X > is an information algebra.

The convers~ of Proposition 1.2 is not necessarily true. Conditions under
which it is have been investigated in [Hebisch & Weinert, 1990b]. In particular,
if X is a right - absorbing monoid and R is a semiring then R < X > is an
information algebra if and only if R is. Similarly, if X is the free abelian group
generated by an arbitrary set then R < X > is an information algebra if and only
if R is. (Note that, in this case, X does not have the finite factorization property
so R << X >> cannot be defined.)

The conditions of being zerosumfree and entire are independent and there
are plenty of semirings satisfying one of these conditions but not the other. For
example, if R is a commutative integral domain then R is entire but not zerosum-
free. Entire semirings which are not zerosumfree have been studied in [Hebisch &
Weinert, 1990]. On the other hand, if R is a commutative ring which is not an
integral domain then the semiring of all ideals of R is zerosumfree but not entire.
Countably complete semirings, which have important applications in theoretical
computer science, are zerosumfree but not necessarily entire and hence not nec-
essarily information algebras [Krob, 1987]. A linkage between the two conditions
does exist, however, for finite semirings.

1.3 PROPOSITION [Hebisch & Weinert, 1990a|: Every finite entire
semiring which is not a ring is an information algebra.

Any semiring R can be embedded in an information algebra R? constructed
in the following manner: let u be an element not in R and set R® = Ru{u}. Extend
the operations of addition and multiplication on R to R by setting r4+u = u+r = r
forallr € R and ru = ur = ufor all r € R?. It is straightforward to verify that R®
is an information algebra satisfying having additive identity equal to u. Actually,
in order for R? to be an information algebra we can even relax the conditions
on a semiring and insist only that (R,+) be a commutative semigroup rather
than a monoid or than it is a monoid but that condition (4) in the definition of
a semiring is not completely satisfied. Such a situation occurs in the following
examples coming from theoretical computer science.

To begin with, let us consider the following model of nondeterministic com-
puter programs defined in [Main & Black, 1989]. We are given a nonempty set D
of “states” in which the computer can be, one of which is the distinguished state
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1 of being in an unending loop. Let R be the family of all relations r on D ( i.e.

nonempty subsets of D x D) satisfying the condition that (.L,d) € r if and only if

d =1. The operations of addition and multiplication on R are defined as follows :
1)r+s=rus;

2) rs = {(d,d") € R|there exist an element d' € D such that (d,d') € r and
(d',d") € s}. ‘

Then (R, +) is a commutative monoid with identity element. 0 = (L, 1)
and (R,.) is a monoid with identity element 1 = {(d,d)|d € D}. Moreover,
multiplication distributes over addition from either side while Or = 0 for al r €
R. It is not true, however, that 70 = O for all r € R. Therefore R is not a
semiring. Nonetheless, it can be embedded in an information algebra R? by the
above construction. We also note that R' = {r € R|r0 = 0} is a subsemiring of R.

The elements of R correspond to nondeterministic programs on D. Addi-
tion corresponds to a nondeterministic choice (“either r or s”) and multiplication
corresponds to sequential composition (“first r then s”).

. Related to this example is the notion of a command algebra defined in [Hes-
selink, 1990], which is in turn a special case of the process algebras studied in
[Baeten, Bergstra & Klop, 1987]. Such an algebra consists of a set R on which
operations of addition ( nondeterministic choice) and multiplication ( sequential
composition) are defined such that (R, +) is an idempotent commutative semi-
group, (R,.) is a semigroup, and multiplication distributes over addition from
either side. Such algebras lack both an additive and a multiplicative identity
so that R?, defined as above, still lacks a multiplicative identity. This can be
remedied by the process of Dorroh eztension: embed R? in S = R? x N via the
map a +— (a,0) and define operations of addition and multiplication on S by
(a,n) + (a’,n') = (a + a',n + n') and (a,n)(a’,n) = (na’ + n'a + aa’,nn'). This
turns S into an information algebra having multiplicative identity (u,1), where u
is the additive identity of R?.

An interpretation of the element O in a general process a.lgebra is given in
[Baeten & Bergstra, 1990], where it is understood to mean the process of “pred-
icatable failure”, which the system under consideration will try to avoid if at all
possible (as opposed to “deadlock”, which the system may enter but cannot try
to avoid). ,

If R and S are semirings then a function v : R — S is a morphism of
semirings if and only if :

1) 7(0r) = Og;
) (IR) = Lg;
3) y(r +1') =~A(r) + y(r') for all r,7’' € R;

4) y(rr') = q(r)y(r") for all r,7' € R.

A morphism of semirings which is both injective and surjective is called an
isomorphism. If there is an isomorphism between semirings R and S we write
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R=S.

We remark that the embedding of R into R’ is not a morphism of semirings
since it does not preserve additive identities. Also, note that a morphic image
of an information algebra needs not be an information algebra, which suffices to
show that the class of information algebra is not, a variety . We also note that this
class is, clearly, not closed under taking direct products as well. If B = {0,1} is
the boolean semiring (with idempotent addition and multiplication) and R is an
arbitrary semiring then the function v : R — B defined by 4(0) = 0 and ~(r) = 1
for r # 0 is a morphism of semirings if and only if R is an information algebra.

Finally, for t{he record, we mention some rather obvious algebraic properties
of information algebras. Clearly an information algebra can have no nonzero
nilpotent elements nor any nonzero nilpotent ideals. An element a of a semiring R
is complemented if and only if there exists an element b of R satisfying ab = ba = 0
and a+b = 1. Complemented elements are important in the study of semirings, and
central complemented elements are used to determine direct-sum decompositions.
See [Golan, 1991] for details. If R is an information algebra, however, R cannot
have any complemented elements other than 0 and 1.

2. OVER INFORMATION ALGEBRA WE CONSTRUCT
INFORMATION SEMIMODULES

If R is a semiring then a commutative monoid (M, +) with additive identity
Om is a left R-semimodule if there exists a function R x M — M, denoted by
(r,m) — rm and called scalar multiplication, which satisfies the following condi-
tions for all elements r and r’ of R and all elements m and m’ of M

1) (rr')m = r(r'm);

2) r(m+ m') = rm + rm/;

3) (r +¢')m =rm=-r'm;

4) 1pm = m;

5) TOM o OM = ORm.

Right R - semimodules are defined in an analogous manner. We will usually
work with left semimodules, with the corresponding results for right semimodules
taken as proven without explicit mention. Any semiring is clearly both a left and
right semimodules over itself. When we speak of a semiring as a semimodule over
itself, we will mean a left semimodule unless the contrary is specifically indicated.
Again, we will denote M \ {0ps} by M*.

We begin with an example : A left seminearring is a structure (P, +,.) satis-
fying all of the axioms of a semiring exept that distributivity of mutiplication over
addition from the right may not hold. That is to say, if a, b, and ¢ are elements of
P then a(b + ¢) = ab + ac but (b+ c)a is not necessarily equal to ba + ca. Such
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structures arise, inter alia, in the study of shift maps on semimodules, as seen in
[Golan, 1991]. They also arise naturally in the study of process algebras in the
sense of [Baeten, Bergstra & Klop, 1987] or [Baeten & Weijland, 1990|. In this
situation we have a set of “processes” on which we have defined two operations:
+ (“alternative composition”) and . (“sequential composition). If (P, +,.) is a
left seminearring then P, = {kljk € N} is a subsemiring of P since it is easy
to verify that in P, both distributive laws hold. Moreover, if {Sili N} is a
chain of subsemirings of P then so is U{S:|i € N}. Therefore, by Zorn’s Lemma,
every seminearring has a maximal subsemiring R. Moreover, P is clearly a left
-semimodule.

A similar situation occurs for the quemirings introduced in [Elgot, 1976] to
study computation using abstract automata. A quemiring is a structure of the
form R x M, where R is a semiring and M is a left R-semimodule, on which
addition is defined componentwise and multiplication is given by (a, m).(a’,m') =
(aa’,am’+m). This is not a semiring since (a,m).(0,0) = (0,0) only when m0 = 0.
Also, while right distributivity of multiplication over addition always holds, left
distributivity holds only sometimes. However, the quemiring B x M certainly
contains R’ = {(a,0)|a € R} as a subsemiring and can profitably be studied as a
left R’-semimodule.

A left R-semimodule having more than one element is nontrivial. An R-
semimodule M is zerosumfree if and only if it satisfies the condition that m +m' e
M* for all € M* and all m' € M. 1t is entire if and only if it satisfies the
condition that rm € M* for all r € R* and all m € M”. A semimodule which is
both zerosumfree and entire is an information semsimodule.

2.1 PROPOSITION: A semiring R is an information algebra if and only
if there exists a nontrivial left information R-semimodule.

If M is a left R-semimodule then a nonempty subset N of M is a subsemi-
module of M if and only if it is closed under taking sums and scalar products.
Clearly {0} is always a subsemimodule of a left R-semimodule M. A left R - semi-
module which has no subsemimodules other thap {0} and itself is simple. If N and
N' are subsemimodules of a left R-semimodule M then N+ N' = {n+n'lne N
and n’ € N’} is a subsemimodule of M containing both N and N’. If 4 is a
nonempty family of subsemimodules of a left R - semimodule M then N4 is a
subsemimodule of M, as is 2 A= T, 5 my|m; € U4 for each 1}

Let R be a semiring and let M be a left R-semimodule. Furthermore,
let ideal(R) be the set of all ideals of R and let ssm(M) be the set of all sub-
semimodules of M. Then ideal(R) has a natural semiring structure (see [Golan,
1991] for details) and (ssm(M),+) is a left ideal(R)-semimodule, with addi-
tion in ssm(M) being defined as above and scalar multiplication being given by
ANi=H{B Bl +anzpla; €I; 2, € N} for all T € ideal(R) and N € ssm(M).
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If A is a nonempty subset of a left R-semimodule M then the set RA of
all elements of M of the form aymq + ...+ a,m, with a; € R and m; € A,is
a subsemimodule of M and, indeed, is the intersection of all subsemimodules of
M containing A, called the subsemimodule of M generated by A. By convention,
we set RO = {0}. If RA = M then A is a set of generators for M. A nonempty
subset A of a left R-semimodule M is weakly linearly independent if and only if
for any finite subset {z1,...,2z,} of A and finite subset {a;,... ,a,} of R we
have > a;z; only when a; = 0 for all t; it is linearly independent if and only
if for any finite subset {:1:],“.. ;Zn} and A and finite subsets {a;,...,a,} and
{b1,... by} of R, we have ) a;z; = 5 b;z; only when a; = b; for all 1 < i < n.
If M is an information semimodule then any nonempty subset of M~ is weakly
linearly independent. A [weakly] linearly independent set of generators for a left R-
semimodule M is a [weak/ basis for M. These notions are discussed in | Takahashi,
1984b).

2.2 PROPOSITION: Let R be an information algebra. A left R-semi-
module M is an information semimodule if and only if it has a weak basis.

A complete classification of all cyclic information semimodules over the in-
formation algebra N of natural numbers is given in [Takahashi, 1985].

If M is a left R-semimodule then V(M) = {m € M|m 4 m’ = 0 for some
element m' of M} is surely a subsemimodule of M. The semimodule M is zerosum-
free precisely when V(M) = {0}. At the opposite extreme, a left R-semimodule
M is an R-module if and only if V(M) = M.

A subsemimodule of a zerosumfree [resp. entire| left R-semimodule is again
zerosumfree [resp. entire]. Thus the class of information semimodules is closed
under taking subsemimodules. If N is an information subsemimodule of a left
R-semimodule M then N § N' = {0} U{n+n/[n € N and n' € N'} is a
subsemimodule of N + N’ which contains N but does not necessarily contain N’.
If me M weset T(m)=Rm§ M.

An element w of a left R-semimodule M is tnfinite in M if and only if w+m =
w for all m € M. If w and w' are infinite elements of M then w = w + w' = w'.
‘Thus any left R-semimodule M can have at most one infinite element. The element
w is strongly infinite in M if and only if rw = w for all r € R*. If the semiring R is
antisimple then every infinite element of a left R-semimodule is strongly infinite.
Indeed, in this situation any element r of R* is of the form 1 + ¢/ for r' € R* and
sorw.= (1+r')w = w+r'w = w. If M has a strongly-infinite element w then the
set C(M) = {0,w} is the cruz of M; if M has no strongly infinite elements we set
C(M) = {0}. Note that C(M) os always an information subsemimodule of M. We
say that M is cructal if and only if M = C(M). Otherwise it is nonerucial. If w is
a strongly-infinite element of a left R-semimodule M and if N is a subsemimodule
of M then N U {w} is also a subsemimodule of M. Also, we note that if w is a
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strongly-infinite element of a left R-semimodule M then T'(w) = C(M). K w is a

. strongly-infinite element of a left N-semimodule M then for each element m of M

the set W(m) = {m’ € M|m + m' = w} U {0} is a subsemimodule of M. Clearly
C(M) C W (m) for each m € M.

Let R be a semiring and let M be a left R-semimodule. If (X,*) is a finite
factorization monoid then, as we have seen in Section 1, we can define the semiring
R << X >> and its subsemiring R < X >. Moreover, if M << X >> is the
set of all.-functions from X to M then M << X >> has the structure of a left
R << X >>-semimodule if we define addition and scalar multiplication as follows:
ifu,ve M << X >>and f € R << X >> then:

1) (v +v)(z) = u(z) + v(z);

2) (fu)(z) = ZA{f(z")u(s")|z"2" = z}.

Moreover, if M < X >= {u € M << X >> |u(z) # 0 for only finitely-many
elements & of X} then M < X > is a left R < X >-semimodule. Moreover,
if R is an information algebra and M is an information left R-semimodule then
M << X >> is an information left R << X >>-semimodule and M < X > is
an information left R < X >-semimodule.

We have already seen that strongly-infinite elements can exist in R-semi-
modules only when R is an information algebra. A strongly - infinite element w of
an R-semimodule M is primitive in M if and only if m + m’ = w for all elements
m and m' of M*. Thus, for example, if M has a strongly-infinite element w then
w is a primitive element of C(M).

We now note an example due to [Goldstern, 1985]. Let R = {ap,a;..
b, b1, ...} on which we have operations of addition and multiplication defined by

1) a; + a5 = a;4; for all 1,5 €N;

)

~3

biap = anb; = ag for all 7 €N;

8) byay = a;b; = b; for all 1 eN.

This is a semiring with additive identity a; and multiplicate identity a;
having a strongly-infinite element by which is not primitive.

If R is an information algebra then Poyatos [1972] has shown that one can
always adjoin a strongly infinite element to any left R-semimodule. Indeed, if M
is such a semimodule and if w is an element not in M one can define a semi-
module structure on M{w} = M U {w} by setting m + w = w + m = w for all
m € MU {w},rw = w for all r € R", and Ow = Oar. This construction can
be iterated. Let M be a left R-semimodule and let {wy,ws,...} be a countably-
infinite set of distinct elements not in M. Let N = M{w,} and, for each 1 > 1,

)
2) b; + b; = by for all 1,5 EN;
3) a; +b =b;+aj=by,wherek=17—jifi>jandk =0if7 < j;
4)aa]—a” for all 7,7 €NN;
5) b;b, = by for all 1,5 €N,
6)baJ = @i b= bo for all : €N and all j > I;
)
)
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let N; = N;_i{w;}. Then each N; is a subsemimodule of N;,;, and all of them
are subsemimodules of N = UN;. In NV we note that:

1) m + w; = w; for all m € M and all ¢ > 1;

2) w; + W = Wpax(i,y) for all 3,7 > 1;

3) rw; = w; for all r € R* and all s > 1.

If N is a nonzero subsemimodule of a left R-semimodule M, set P(N, M) =
{me Mlrm+n¢e€ N*forallr € Randalln € N*} = {m € M|Rm + N* =
N*}. Clearly 0ps € P(N,M) and P(N,M) is a subsemimodule of M. Moreover,
P(M,M) = {m € M| no nonzero multiple of m has an additive inverse }. Thus
we surely have V(M) N P(M,M) = {Om}. If N # {Op} and P(N, M) has an
infinite element then that element must belong to N. By convention, we also set
P({0pr}, M) = M for every left R-module M.

2.3 PROPOSITION: If N is a subsemimodule of a left R- semimodule
M then:

1) N C P(N, M) if and only if N is zerosumfree;

2) P(N,P(N,M)) = P(N,M) for any subsemimodule N of a left R-semi-
module M;

3) If M' is a subsemimodule of M then P(N,M') = P(N,M) 0 M';

4) If {M;|¢ € Q} is a family of R-semimodules and N is a subsemimodule of
M = 0{M;i € Q} then P(N,M) = n{P(N,M;)|i € Q};

5) If {N;|s € 1} is a family of subsemimodules of M satisfying N\N; = N
then NP(N;,M) C P(N,M);

6) If M’ is a subsemimodule of P(N,M) then N + M' = NUM' and N
§ M' = N.

If M and N are left R-semimodules then a map o« : M — N is an R-ho-
momorphism if and only if (m + m')a = ma + m'a and (rm)a = r(ma) for all
m,m' € M and r € R. Note that we follow the standard convention of writ-
ing homomorphism as acting on the side opposite scalar multiplication so that
homomorphism of right R-semimodules will be written as acting on the left. A
bijective R-homomorphism is an R-tsomorphism. The kernel of an R-homomor-
phism a : M — N of left R-semimodules is ker(a) = {m € M|ma = Ox}. This
is surely a subsemimodule of M. Indeed, this subsemimodule of M which is sub-
tractive, i.e. it satisfies the condition that if m’ € ker(a) and m’' + m € ker(a) for
some m € M then m € ker(a). Subtractive subsemimodules play an important
part in the development of semimodule theory. See [Golan, 1991] for details. If o
and B are R-homomorphisms from a left R-semimodule M to a left R-semimod-
ule N then the map a + § from M to N defined by a + 8 : m — ma + mp is
also an R- homomorphism. Indeed, it is easy to see that the set Homg(M, N)
of all R-homomorphisms from M to N is a monoid (=N-semimodule) under this
operation, the identity element of which is the constant map m — 0.
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Let M be a left R-semimodule. An R-homomorphism from M to itself is
called an R-endomorophism of M. The set Endgr(M) of all R-endomorphisms
of M is a semiring under the operations of addition and multiplication defined
by setting m(a + ) = ma + mp and m(af) = (ma)B for all m € M and all
a,B € Endg(M). The additive identity of Endg(M) is the map given by m — 0
for all m € M and its multiplicative identity is the map given by m — m for all
meM.

If M is a left R-semimodule and S = Endg(M) then M is a right S-
semimodule, with scalar multiplication defined by m.ac = ma for all m ¢ M and
acs.

For example, let A be a nonempty set and as before, let S = sub(F A} be the
semiring of all formal languages on A. Following the terminology of [Abramsky &
Vickers, 1990] we say that a transition system (P,—) over A consits of a nonempty
set P together with a subset — of P x A x P, where we write p > ¢ instead of
(p,a,q) €—. The elements of A are the atomic actions of the transition system,
while the elements of P are the processes of the system.

Each element a of A defines a function 6, : sub(P) — sub(P) given by
ml, = {q € P|p > g for some p € m}. We can expand this notion by defining 4.,
for each w € F A recursively as follows:

1) If w = [OJ then 8, is the identity map;

2) If w = va for v € FA and a € 4 then mb,, = (m#,)d,.

Furthermore, if L € S then we can define a function 8, : sub(P) - sub(P) by
setting mfy = U{mb,|w € L}. Moreover, (sub(P},U) is a left B- semimodule.
If L € S then 1 is a B-endomorphism of sub(P) for each L € S and, indeed,
{0L|L € S} is a subsemiring of the semiring of B-endomorphisms of sub(P).
Moreover, the map L +— 6, is a morphism of semirings from S to the semiring of
B-endomorphisms of sub(P). Thus sub(P) is canonically a right S-semimodule,
where, for each m € sub(P) and each L € S, we have mL = {q € P|p 3 ¢ for
some p € M and w € L}. This semimodule is zerosumfree but not necessarily
entire. If S’ is the subsemiring of S satisfied by §’ = {L € S|L =0 or O € L}
then sub(P) is an information S'-semimodule.

Let R be an information algebra and let {(M;, +;)|i € Q} be a family of
information left R-semimodules each of which has a strongly-infinite element w;,.
Without loss of generality, we can assume that the M, are aisjoint as sets. Set
M = U{M; \ C(M;)|: € 2} U {0,w}, where 0 and w do not belong to any of the
M;. Define addition and scalar multiplication of elements of M as follows:

1)0+m=m+0=mandr0=0forallme M and all r € R;

2)w+m:m+w:wa.ndrw:wforallmEMandallrER;

3) f m,m’ € M \ {0,w} then m + m' is defined to be m +; m’ if both m
and m/ belong to M; \ C(M;) for some ¢ € ; otherwise, m + m/ = w;

4) If m € M;\ C(M;) then rm is the same as the corresponding value in M,.
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It is straightforward to check that M, as definde above, is an informatien semi-
module having a strongly-infinite element w. Moreover, for each ¢ € {1 we have
an injective R- homomorphism A; : M; — M which sends the zero-element 0; of
M; to 0, sends w; to w, and sends each element of M; \ C(M;) to itself. We will
denote the semimodule M constructed in this way by L;c,M;.

An important method of constructing surjective R-homomorphisms of semi-
modules is via R-congruence relations. An equivalence relation = on a left R-
semimodule M is an R-congruence relation if and only if m = m’/ and n = n'
imply that m+n =m’ +n' and rm = rm’ for all r € R. If = is an R- congruence
relation on M and if m € M then we denote the equivalence class of m with respect
to this relation by m/= and set M /== {m/= |m € M}. We can define operations
of addition and scalar multiplication on M/= by setting m/= +n/== (m + n)/=
and r(m/=) = (rm)/= for all m,n € M and all r € R. These operations turn
M /= into a left R-semimodule, called the factor semimodule of M by =. Moreover,
we have a surjective R-homomorphism M — M /= defined by m — m/= for all
m € M. For further details and examples of congruence relations on semimodules,
refer to [Golan, 1991]. ‘

If R is an information algebra then any nontrivial information subsemimod-
ule of a left R-semimodule M can be “contracted” to a strongly-infinite element
of a factor semimodule of a subsemimodule of M. Indeed, let R be an information
algebra and let N be a nontrivial information subsemimodule of a left B-semimod-
ule M. Let M’ be a subsemimodule of P(N, M) properly containing N. Define a
relation - n on M’ by setting m-ym' if and only if m = m’ or {m,m'} C N~. It is
straightforward to check that this is an R-congruence relation on M’ and so we can
define the factor semimodule M'/-y. Indeed, if m € M’\ N then m/-ny = {m} so
M'/[-n is just [M'\ N"|U {w}, where w is a strongly-infinite element, of M /-5 If
a: M’ — M’'/[-y is the canonical surjection deficned by a:m— m/-y then a is
not injective unless N has precisely two elements. On the other hand, we always
have ker(a) = {0}. i

For notational convenience, we will denote the semimodule M'/-n by
M'//N and, for each element m of M', we will write m//N instead of m/- .
Thus m//N = {m} for all m € M’ \ N and m//N = {w} for all n € N~. Follow-

ing |Takahashi, 1984], we will call M’//N the Rees factor semimodule of M’ by
N.

3. INFORMATION SEMIMODULES HAVE
ABSORBING SUBSEMIMODULES

We now introduce a constrution first given by Poyatos (1972, 1973a, 1973b)]

in his construction of a version of the Jordan - Hélder theorem which would hold
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for semimodules, and later studied independently in [Takahashi, 1984a]. A sub-
semimodule N of a left R-semimodule M is absorbing if and only if it is entire
and M = P(N,M). In this case we write N C M. That is to say, N = M if
and only if N is entire and M + N* = N~. This surely implies that N is zero-
sumfree. Indeed, an entire left R-semimodule M is an information semimodule if
and only if M C M. Thus we see that absorbing subsemimodules are information
subsemimodules. The converse need not be true. By Proposition 2.1 we see that it
is meaningful to talk about the existence of nontrivial absorbing subsemimodules
only for semimodules over information algebras. If n € N then {0}u{i € N|i > n}
is an absorbing subsemimodule of N.

Trivially, {Ops} C M for every left R-semimodule M. If w is an infinite
element of a semimodule M then w is strongly infinite if and only if {0,w} C M.
Let M be an entire subsemimodule. If N is a subtractive subsemimodule of M
satisfying the condition that N = (M \ M') U {0} is a subsemimodule of M then
surely N C M. Thus, for example, if M is a left N-semimodule which is not an
abelian group then V (M) satisfies the given condition andso N = (M\V (M))u{0}
is an absorbing subsemimodule of M.

3.1 PROPOSITION: For subsemimodules N,N', M’ of a left R-semi-
module M we have:

1)IfNEM and NC M' then NT M’;

2) If NT M' then M' C P(N,M);

3) If N is zerosumfree then N T P(N, M);

4) If A is a nonempty family of absorbing subsemimodules of M having
intersection N then N C M

5) If A is a nonempty family of absorbing subsemimodules of M having union
N then N C M;

6) If N,N' T M then NN N' # {0} and N+ N' T M, where in this situation
we in fact have N + N' = Nu N/;

7)IfNC M then NnM' T M';

8) If M is entire and N,N' C M then N §N' C NN N’;

9) If NT M then N U N’ is a subsemimodule of M.

Thus, in particular, from (2) and (3) of Proposition 3.1 we see that if N is
an information subsemimodule of a left R- semimodule M then P(N, M) is the
largest subsemimodule of M containing NV as an absorbing subsemimodule.

We also note that, by (4) and (5) of Proposition 3.1, the family assm(M)
of all absorbing subsemimodules of M is a sublattice of the lattice ssm(M) of all
subsemimodules of M. Indeed, this lattice is distributive by Proposition 3.1 (6).

The following example is in [Takahashi, 1984a): Let R be an antisimple
semiring. If M is a left R-semimodule which is not a group then N = {0} U [M \
V(M)] is an absorbing subsemimodule of M. Indeed, it is clearly closed under
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addition. If n € N* and r € R* then r = 1+ s for some s € R. Thus rn +n’' =0
implies that n + (sn +n') = 0, which is impossible, proving that rn € N. Finally,
letme Mandne N*=M\V{(M). f m+n¢ N* then there exists an element
m' of M satisfying 0 = m +n +m' = n+ (m + m’), contradicting the assumption
that n.€ N*.. Thus N C M. We also note the converse: if N T M and N satisfies
the condition that M \ V(M) C N* then M\ V(M) = N*forif z € V(M) N N*
then there exists an element y of V(M)* satisfying y + = = 0, contradicting the
fact that M + N* = N*. ’

Let M be a left R-semimodule containing an entire simple submodule Ny,
let ssm(M) be the set of all subsemimodules of M, which we have already noted
is'a left semimodule over the semiring ideal(R) if all ideals of R. LetU = {N €
ssm(M)|N D No}. If {0} # I € ideal(R) and N € U then IN D INy = Nq.
Thus U’ = U U {{0}} is an absorbing subsemimodule of ssm(M).

Let R be an information algebra and let {M;|1 € Q} be a family of infor-
mation left R-semimodules, each of which has a strongly-infinite element. Let
M = U;cqM; and, for each 7 € fl,let A; : M; — M be the injective R-homomor-
phism. Then M;\; C M for each 1 € f).

Note that if R is an information algebra then it is zerosumfree and so R C R
but it does not follow from this that if R is an information algebra then every
nontrivial left R-semimodule has a nontrivial entire subsemimodule. Thus, for
example, N is an information algebra but any nontrivial additive abelian group is
a left N-semimodule having no nontrivial absorbing subsemimodules.

If M and N are disjoint left R-semimodules then a Takahashi extension of
M by N is a left R-semimodule T the underlying set of which is M U N* and the
operations of addition and multiplication on which are so defined that N C T.
These extensions were first considered in [Takahashi, 1984a). We will denote the
family of all Takahashi extensions of M by N by Tak(M, N). By what we have
already seen, a necessary condition for Tak(M, N) to be nonempty is that N be
an information semimodule. If N is an information R-semimodule then a function
¥ from N~ to N~ is a translation if and only if ¥(n +n') = ¥(n) + n’ = n + Y(n')
for all n,n’ € N~. Denote the set of all translations of N~ by tr(N*); this set
is always nonempty since it surely contains the identity map. It is also closed
under composition of functions and, indeed, is easily seen to be a monoid under
composition.

An element m of a left R-semimodule M is cancellable if and only if m+m' =
m+m' implies m’ = m” for all m/, m" € M. The semimodule M is cancellative if
and only if every element of M is cancellable. See [Golan, 1991] for details. If N is
an information semimodule having a nonzero cancellable element ng then tr(N )
is an abelian monoid. Indeed, if ng is a cancellable element of N~ then for v and
¥ in tr(N~) and n € N we have pi(n + no) = p(n) + ny = P(n) + p(ny) and
Yi(n+no) = n+¢p(no) = ¢(r) +o(no) and so pY(n) +no = Yp(n) +no. Since
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ng is cancellable, this implies that pi(n) = p(n) for all n € N*.

If T € Tak(M, N) then each element m of M induces a translation ©m €
tr(N*) given by ¢,,(z) = m + z. Thus we have a function o7 : M — tr(N~)
given by o1 : m — ¢,,,, and this is in fact a morphism of monoids since ety =
©mPme, for all m,m' € M. This morphism satisfies the additional condition:

(*) Ifr € R, m€ M, and n € N* then r[pr(m)(n)] = or(rm)(rn).

A morphism of monoids from M to tr(N*) with this property will be called ad-
missible. Thus, for example, if M is any left R-semimodule and N is an infor-
mation semimodule disjoint from M then the morphism £ : M — tr(N~) defined
by &(m)(n) = n is admissible. The set of all admissible morphisms from the
monoid (M, +) to tr(N*) will be denoted by Adm(M, N). If @ is the operation
on Adm(M, N) defined by setting (a & f)(m) = a(m)p(m) for all m € M then
(Adm(M, N),®) is a monoid with identity element ¢. If N has a nonzero can-
cellable element then, by what we have noted above, this monoid is abelian (i.e.,
it is a N-semimodule).

Let ¢ be an admissible morphism of monoids from a left R- semimodule M
to tr(N~), where N is an information left R- semimodule dissjoint from M. Set
T = M U N~ and define the operations of addition and scalar multiplication on T
as follows:

1) If m,m’ € M then m + m’ and rm are the same as in M;

2) If n,n’ € N* then n + n’ and rn are the same as in N;

3) If me& M and n € N* then m+n =n+m=p(m)(n).

This turns T into a left R-semimodule having N as an absorbing subsemimodule
and M as a subtractive subsemimodule; hence it is a Takahashi extension of M
by N. Thus there is a bijective correspondence between the set of all Takahashi
extensions of M by N and the set of all admissible morphisms of monoids from
M to tr(N™). If o : M — tr(N~) is an admissible morphism of monoids, we will
denote by M ®, N the Takahashi extension of M by N defined by .

3.2 PROPOSITION: Let R be a semiring and let « : M - M’ be an R-
homomorphism of left R-semimodules satisfying the condition that ker(a) T M.
IfN'C M’ then N = N'a~ ' C M.

If N is an absorbing subsemimodule of a left R-semimodule M then the left
R-semimodule N'//N is defined for any R -semimodule N’ of M containing N.
It is straightforward to verify that the map N’ N'’//N induces a bijective order
- preserving correspondence between the family of all subsemimodules of M con-
taining N and the family of all subsemimodules of M//N, which in turn restricts
to a bijective correspondence between the family of all absorbing subsemimodules
of M containing N and the family of all absorbing subsemimodules of M//N.
The following result gives a ”converse” of this construction for semimodules over
information algebras.
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3.3 PROPOSITION: Let R be an information algebra andleta: M — N
be an R-homomorphism of left R-semimodules. If w' is a strongly-infinite element

of N contained in Ma then M' = w'a™! U {0} is an absorbing subsemimodule of
M.

3.4. PROPOSITION [Poyatos, 1973a|: Let N and N’ be absorbing
subsemimodules of a left R-semimedule M. Then:

1) NC NUN';

2) NN N'"C N

3) (N U N")//N is R-isomorphic to N'//(N N N').

3.5 PROPOSITION [Poyatos, 1973b]: Let R be an information alge-
bra and let M be a left R-semimodule. If N,N',W and W' are subsemimodules of
M satisfying N' T N and W/ C W, and if U,U’',V and V' are the subsemimodules
of M defined by:

i)U =N U(NnW);

ii)U' = N'U(NnW');

i) V.= W' U (N nW);

iv) V! =W'uU (N' nW);

Then:
1)U'CUandV'CV;

2) Uy (U =My /¥,
From these results we can then conclude the following.

3.6. PROPOSITION [Poyatos, 1973al: If N C N' are proper ab-
sorbing subsemimodules of a left R-semimodule M then (M//N)//(M//N') is
R-isomorphic to M//N'.

Let M be a left R-semimodule having a nonempty family A of absorbing
subsemimodules and let N = UA. By Proposition 3.1(5) we see that N is again
an absorbing subsemimodule of M and, indeed, is the unique maximal absorbing
subsemimodule of M. We will denote this subsemimodule by A(M).

4. COMPOSITION SERIES AND THE JORDAN - HOLDER THEOREM

If M is a semimodule we see that C(M) T M. An absorbing subsemimodule
N of M is quasiminimal if and only if it properly contains C(M) and there is no
absorbing subsemimodule of M properly containing C(M) and properly contained
in N. That is to say, if M is a quasiminimal left R-semimodule then either M has
no proper absorbing subsemimodules or it has precisely one such subsemimodule,
namely its crux. A nontrivial left R-semimodule M is quasisimple if and only if
it is quasiminimal and has no primitive elements. That is to say, a quasiminimal
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left R-module is quasisimple if it either has no strongly - infinite elements or has
one which is not primitive.

If w is a strongly - infinite element of an information R- semimodule M
which has no proper absorbing subsemimodules other than C (M) then we know
by Proposition 3.1(6) that M* + M* equals either M~ or {w}. In the first case,
M is quvasisimple. In the second case, w is a primitive element of M.

Consider the following example [ Poyatos, 1973a]: Let T be a nonempty set
and let z, w be distinct elements not in 7. Define the operation + on X = Tu{z,w}
by setting:

1)t +¢' = wfor all t,t' € T;

2)z+z=z+z=zforall z € X;

3)z+w=w+z=wforall z € X;

Moreover, for each k € N and z € X define the element kz of X as follows:

4) Oz = z;

5) 1z = z;

6) kz=wif k> 1 and z # z;

7) kz = z for all k € N.

Then X becomes a left N-semimodule with strongly- infinite element w. Indeed,
if T is any subset of T then T' U {z,w} is an absorbing subsemimodule of X.
Moreover, w is primitive in X.

From the definitions we see that if N is an absorbing subsemimodule of a left
R-module of M and N’ is an absorbing subsemimodule of M properly containing
N then the following conditions are equivalent:

1) N'//N is quasiminimal;

2) There is no absorbing subsemimodule of M properly containing N and
properly contained in N'. '

We also note that if A(M) # M then, by Proposition 3.4, the R- semimodule
M//A(M) is quasisimple.

4.1 PROPOSITION [Poyatos, 1972,1973a): Let R be an information
algebra. If M is a left R-semimodule and if m is an element of M~ then:

1) m € A(M) if and only if T(m) C M;

2) If m € A(M) then Rm §A(m) is the unique smallest absorbing subsemi-
module of M containing m. Moreover, Rm §A(M) = T(m).

In particular, if m € A(M)* then T(m') C T(m) for all m' € T(m)*. Set
T'(m) = {0} U {m' € T(m)*|T(m') # T(m)}.

4.2. PROPOSITION [Poyatos, 1973b]: Let R be an information
algebra and left M be a left R-semimodule having an absorbing subsemimodule.
Ifm € A(M)* then T'(m) is a maximal proper absorbing subsemimodule of T'(m)

We note that w € A(M) and if m € A(M) then rm + w = w for each r € R
and so w € T'(m). Thus we conclude that C(M) C T(m) for each m € A(M).
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4.3 PROPOSITION [Poyatos, 1972]: Let R be an information algebra
and let M be a left R-semimodule having a strongly-infinite element w. Then:
1) L(M) = {0} U {m € A(M)|T(m) = C(M)} is an absorbing subsemi-
module of M which is the unique maximal subsemimodule N of A(M) satisfying
n+m=w foralln € N* and m € A(M)".
2) If m € A(M)\ C(M) then T(m) = C(M) if and onlly if T(m) is quasi-
minimal. '

4.4 PROPOSITION [Poyatos, 1973a]: Let R be an information al-
gebra and let M be a noncrucial information R- semimodule having a strongly
- infinite element w. Then M is quasisimple if and only if T(m) = M for all
m e M\ C(M).

4.5 COROCLLARY: Let R be an information semiring and let M be
a noncrucial quasisimple information R-semimodule having a strongly - infinite
element w. Then T'(m’) = C(M) for allm' € M \ C(M).

4.6 PROPOSITION [Poyatos, 1973a|: Let R be an information alge- .
bra and let M be a left R-semimodule having a strongly - infinite element w. If N
is a quasiminimal absorbing subsemimodule of M then either N has a primitive
element or it is quasisimple.

If R is an information algebra and M. is a left R- semimodule having an
absorbing subsemimodule then, for every m € A(M), the left R-semimodule
T(m) = T(m)//T'(m) is the principal factor of M at m. By what we have noted
above, T'(m) has a strongly - infinite element,

4.7T PROPOSITION: Let R be an information algebra and let M be a
left R-semimodule having an absorbing subsemimodule. If m € A(M)* then T (m)
either has a primitive element or is quasisimple.

4.8 PROPOSITION [Poyatos, 1973b]: Let R be an information alge-
bra and let M be a left R-semimodule. If N' is a maximal proper absorbing sub-
module of a subsemimodule N of A(M) then N//N' = T(m) for any m € N\ N'.

If M is a left R-semimodule then an absorbing series for M is a descending
chain M = Ny O N; J... 3 N; = C(M) of subsemimodules of M. An absorbing
quasiseries for M is an absorbing series for A(M). Any chain obtained from a given
absorbing series by inserting further terms is a refinement of that series. If new
subsemimodules are actually inserted, such a refinement is proper. Two absorbing
series M =No IN; J...OJN;=CM)and M =Ly 3Ly J... 3L, =C(M)
for M are isomophic if and only if ¢ = s and there is a permutation o of {1,... ,t}
such that N;_y//N; = L,i)—1//Lo(:) for each 1 <1 <.

Finally, we come to Poyatos’ extension of the Jordan - Holder theorem.
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4.9 PROPOSITION [Poyatos, 1973b]: Let R be an information alge-
bra and let M be a left R-semimodule. Then any two absorbing quasiseries of M
have isomorphic refinements.
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