Tra cứu tài liệu

  1. Jost, Jürgen Compact Riemann surfaces. An introduction to contemporary mathematics. Universitext. Springer-Verlag, Berlin, 1997.
  2. Jost, Jürgen Riemannian geometry and geometric analysis. Second edition. Universitext. Springer-Verlag, Berlin, 1998.
  3. Jost, Jürgen Riemannian geometry and geometric analysis. Third edition. Universitext. Springer-Verlag, Berlin, 2002
  4. Jost, Jürgen Riemannian geometry and geometric analysis. Fifth edition. Universitext. Springer-Verlag, Berlin, 2008.
  5. Jost, Jürgen Riemannian geometry and geometric analysis. Seventh edition. Universitext. Springer, Cham, 2017.
  6. Jost, Jürgen Mathematical methods in biology and neurobiology. Universitext. Springer, London, 2014.
  7. Jost, Jürgen Postmodern analysis. Translated from the German manuscript by Hassan Azad. Universitext. Springer-Verlag, Berlin, 1998. 
  8. Jost, Jürgen Mathematical concepts. Springer, Cham, 2015.
  9. Jost, Jürgen Dynamical systems. Examples of complex behaviour. Universitext. Springer-Verlag, Berlin, 2005.
  10. Jost, Jürgen Partial differential equations. Graduate Texts in Mathematics, 214. Springer-Verlag, New York, 2002. 
  11. Jost, Jürgen Geometry and physics. Springer-Verlag, Berlin, 2009.
  12. Jost, Jürgen Differentialgeometrie und Minimalflächen. Springer-LehrbuchSpringer-Verlag, Berlin, 1994.
  13. Jost, Jürgen Nonlinear methods in Riemannian and Kählerian geometry. Second edition. DMV Seminar, 10. Birkhäuser Verlag, Basel, 1991.
  14. Jost, Jürgen Bosonic strings: a mathematical treatment. AMS/IP Studies in Advanced Mathematics, 21. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2001.
  15. Jost, JürgenLi-Jost, Xianqing Calculus of variations. Cambridge Studies in Advanced Mathematics, 64. Cambridge University Press, Cambridge, 1998.
  16. Albeverio, Sergio(D-BCHM)Jost, Jürgen(D-MPI-NS)Paycha, Sylvie(F-STRAS)Scarlatti, Sergio(I-ROME2) A mathematical introduction to string theory. Variational problems, geometric and probabilistic methods. London Mathematical Society Lecture Note Series, 225. Cambridge University Press, Cambridge, 1997. 
  17. Ay, NihatJost, JürgenLê, Hông VânSchwachhöfer, Lorenz Information geometry. Springer, Cham, 2017.
  18. Eschenburg, Jost-HinrichJost, Jürgen Differentialgeometrie und Minimalflächen. (German) [Differential geometry and minimal surfaces] Second edition. Springer, Berlin, 2007
  19. Riemann, Bernhard  On the hypotheses which lie at the bases of geometry.  Edited and with commentary by Jürgen Jost. Expanded English translation of the German original. Classic Texts in the Sciences. Birkhäuser/Springer, [Cham], 2016.
  20. Zeidler, Eberhard Nonlinear functional analysis and its applications. I. Fixed-point theorems. Springer-Verlag, New York,1986. 
  21. Zeidler, Eberhard Nonlinear functional analysis and its applications. II/A. Linear monotone operators. Springer-Verlag, New York, 1990. 
  22. Zeidler, Eberhard Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer-Verlag, New York, 1990.
  23. Zeidler, Eberhard Nonlinear functional analysis and its applications. III. Variational methods and optimization. Springer-Verlag, New York, 1985. 
  24. Zeidler, Eberhard Nonlinear functional analysis and its applications. IV. Applications to mathematical physics. Springer-Verlag, New York, 1988.
  25. Zeidler, Eberhard Applied functional analysis. Applications to mathematical physics. Applied Mathematical Sciences, 108. Springer-Verlag, New York, 1995. 
  26. Zeidler, Eberhard Applied functional analysis. Main principles and their applications. Applied Mathematical Sciences, 109. Springer-Verlag, New York, 1995. 
  27. Zeidler, Eberhard Quantum field theory. I. Basics in mathematics and physics. A bridge between mathematicians and physicists. Springer-Verlag, Berlin, 2006.
  28. Oxford users' guide to mathematics. Edited by Eberhard Zeidler with W. Hackbusch and H. R. Schwarz. Oxford University Press, Oxford, 2004.
  29. Arnolʹd, V. I. Geometrical methods in the theory of ordinary differential equations. Second edition. Springer-Verlag, New York, 1988. 
  30. Arnold, Vladimir I. Lectures on partial differential equations. Translated from the second Russian edition by Roger Cooke. Universitext. Springer-Verlag, Berlin; Publishing House PHASIS, Moscow, 2004.
  31. Audin, MichèleDamian, Mihai Morse theory and Floer homology. Translated from the 2010 French original by Reinie Erné. Universitext. Springer, London; EDP Sciences, Les Ulis, 2014.
  32. Bott, RaoulTu, Loring W. Differential forms in algebraic topology. Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982.
  33. Diamond, FredShurman, Jerry  A first course in modular forms. Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005.
  34. Dierkes, UlrichHildebrandt, StefanKüster, AlbrechtWohlrab, Ortwin Minimal surfaces. I. Boundary value problems.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 295. Springer-Verlag, Berlin, 1992. 
  35. Dierkes, UlrichHildebrandt, StefanKüster, AlbrechtWohlrab, Ortwin Minimal surfaces. II. Boundary regularity.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 296. Springer-Verlag, Berlin, 1992. 
  36. Dierkes, UlrichHildebrandt, StefanSauvigny, Friedrich  Minimal surfaces.  Revised and enlarged second edition.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 339. Springer, Heidelberg, 2010.
  37. Dierkes, UlrichHildebrandt, StefanTromba, Anthony J. Global analysis of minimal surfaces. Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 341. Springer, Heidelberg, 2010.
  38. Dierkes, UlrichHildebrandt, StefanTromba, Anthony J. Regularity of minimal surfaces. Revised and enlarged second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 340.Springer, Heidelberg, 2010.
  39. Evans, Lawrence C. Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
  40. Giaquinta, MarianoHildebrandt, Stefan  Calculus of variations. I.  The Lagrangian formalism. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310. Springer-Verlag, Berlin, 1996.
  41. Giaquinta, MarianoHildebrandt, Stefan  Calculus of variations. II. The Hamiltonian formalism. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 311. Springer-Verlag, Berlin, 1996.
  42. Gustafson, Stephen J.Sigal, Israel Michael Mathematical concepts of quantum mechanics. Universitext. Springer-Verlag, Berlin, 2006.
  43. Hsiao, George C.Wendland, Wolfgang L.  Boundary integral equations. Applied Mathematical Sciences, 164.Springer-Verlag, Berlin, 2008.
  44. Husemoller, Dale Fibre bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994.
  45. Khesin, BorisWendt, Robert  The geometry of infinite-dimensional groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 51. Springer-Verlag, Berlin, 2009.
  46. Kunze, Markus  Non-smooth dynamical systems. Lecture Notes in Mathematics, 1744. Springer-Verlag, Berlin, 2000
  47. Lang, Serge Algebra. Revised third edition. Springer-Verlag, New York, 2002.
  48. Marathe, Kishore  Topics in physical mathematics. Springer-Verlag London, Ltd., London, 2010.
  49. Wolfgang König, Jürgen Spekels (Editors) Karl Weierstraß (1815-1897). Springer Spektrum, Wiesbaden, 2016. 
  50. Maurin, Krzysztof The Riemann legacy. Riemannian ideas in mathematics and physics. Translated from the Polish by Jerzy Kowalski-Glikman. Mathematics and its Applications, 417. Kluwer Academic Publishers Group, Dordrecht, 1997. 
  51. Novikov, S. P.Taimanov, I. A.  Modern geometric structures and fieldsGraduate Studies in Mathematics, 71.American Mathematical Society, Providence, RI, 2006.
  52. Remmert, Reinhold  Theory of complex functions. Graduate Texts in Mathematics, 122. Readings in Mathematics.Springer-Verlag, New York, 1991. 
  53. Remmert, Reinhold  Classical topics in complex function theory. Translated from the German by Leslie Kay. Graduate Texts in Mathematics, 172. Springer-Verlag, New York, 1998. 
  54. Rybakowski, Krzysztof P.   The homotopy index and partial differential equations. Universitext. Springer-Verlag, Berlin,1987. 
  55. Stein, Elias M.Shakarchi, Rami  Fourier analysis. An introduction. Princeton Lectures in Analysis, 1. Princeton University Press, Princeton, NJ, 2003.
  56. Struwe, Michael  Plateau's problem and the calculus of variations. Mathematical Notes, 35. Princeton University Press, Princeton, NJ, 1988. 
  57. Zorich, Vladimir A.  Mathematical analysis. I. Universitext. Springer-Verlag, Berlin, 2004.
  58. Zorich, Vladimir A.  Mathematical analysis. II. Universitext. Springer-Verlag, Berlin, 2004.
  59. Zorich, Vladimir Mathematical analysis of problems in the natural sciences. Springer, Heidelberg, 2011. 
LAST_UPDATED2