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Let X be a topological space, and let U = (Ui )i∈I be an open
covering of X .
Let F be a sheaf of abelian groups on X .
For each p, define the qth cochain group of F as

Cq(U ,F) =
∏

(i0,i1,...,iq)∈I q+1

F(Ui0,...,iq)

Thus a q−cochain is a family

f = (fi0,...,iq) such that fi0,...,iq ∈ F(Ui0,...,iq)

We define the coboundary map d : Cq → Cq+1 by setting

(df )i0,...,iq+1 =

q+1∑
k=0

(−1)k f
i0,...,îk ,...,iq+1

∣∣
Ui0,...,iq+1
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At the 0 level, d sends 0−cochain (fi ) to the 1−cochain (gij) where

gij = fi − fj

At the 1 level, d sends 1−cochain (fij) to the 2−cochain (gijk)
where

gijk = fjk − fik + fij

The elements of Zq(U ,F) := Kerdq are called q−cocycles.

The elements of Bq(U ,F) := Imdq−1 are called q−coboundaries.
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We can check that d2 = 0, so we get a complex C ·(U ,F)

0 −−−−→ C 0 −−−−→ C 1 −−−−→ ... −−−−→ Cq −−−−→ ...

We define the qth cohomology group of F , with respect to the
covering U , to be

Hq(U ,F) = Hq(C ·(U ,F))

Example

H0(U ,F) = F(X )
Thus H0(U ,F) is independent of U .
This is not true in general.

H1({C∗},Z) = 0 but H1({U1,U2},Z) = Z
where U1 = C∗ \ R− and U2 = C∗ \ R+ .
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We would like to associate to every sheaf F a cohomology group
which does not depend on the covering.

Definition

An covering B = (Vk)k∈K is called finer than U = (Ui )i∈I ,
denoted B < U , if there is a mapping τ : K → I such that

Vk ⊂ Uτk for every k ∈ K .

In this case, τ induces a mapping on q−cochains

τ : Cq(U ,F)→ Cq(B,F)

by the formula
(τ f )i0,...,iq = fτ i0,...,τ iq

∣∣
Vi0,...,iq
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Proposition

The mapping τ commutes with d , thus it defines homomorphisms

H(τ) : Hq(U ,F)→ Hq(B,F)

The mapping H(τ) is independent of the choice of τ .

1 (d(τ f ))i0,...,iq =
∑q

k=0(−1)k(τ f )i0,...,îk ,...,iq

=
∑q

k=0(−1)k f
τ i0,...,τ̂ ik ,...,τ iq

= (df )τ i0,...,τ iq = (τ(df ))i0,...,iq .

Thus dτ = τd .

2 Suppose that τ and τ ′ are both refining maps.

Fix h = [(f )] ∈ Hq(U ,F).
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Then H(τ)(h) is presented by (τ f ) and H(τ ′)(h) is presented by

(τ ′f ), where

(τ f )i0,...,iq = fτ i0,...,τ iq and (τ ′f )i0,...,iq = fτ ′i0,...,τ ′iq .

Form the (q − 1)−cochain (b) defined by

bl0,...,lq−1 =

q−1∑
k=0

(−1)k fτ l0,...,τ lk ,τ ′lk ,...,τ ′lq−1 .

We see that d(b) = (τ ′f )− (τ f ).

Therefore H(r)(h) = H(r ′)(h).
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We denote H(τ) by tU
B .

Proposition

The refinement map tU
B is injective when q = 1.

Consider a cocycle f = (fij) ∈ Z 1(U ,F) s.t tU
B ([f ]) = 0.

There exists g = (gk) ∈ C 0(B,F) s.t fτk,τ l = gk − gl on Vk ∩ Vl .

Then gk − gl = fτk,τ l = fi ,τ l − fi ,τk on Ui ∩ Vk ∩ Vl

and thus fi ,τk + gk = fi ,τ l + gl .

Applying sheaf axioms to the family (Ui ∩ Vk)k∈K ,
one obtains hi ∈ F(Ui ) s.t hi = fi ,τk + gk .

Thus fij = ft,τk + fτk,j = hi − hj on Ui ∩ Uj ∩ Vk for any k ∈ K .

Then on Ui ∩ Uj , fij = hi − hj .

Therefore, [f ] = [d(h)] = 0 ∈ H1(U ,F).
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The relation < between coverings of X is directed.

It is clear that tU
U = id and tB

V ◦ tU
B = tV

U if V < B < U .

Thus the collection {Hq(U ,F)}U is a directed system.

Definition

The qth cohomology groups of X with coefficient F is defined by

Hq(X ,F) := lim
−→

Hq(U ,F)
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From the definition, an element of Hq(X ,F) is a class [α,U ]
where U is a covering of X and α ∈ Hq(U ,F).

Two classes [α,U ] and [β,V ] are the same if there exists a
covering B with B < U and B < V such that

tU
B (α) = tV

B(β).

Corollary

H1(X ,F) = 0
if and only if

H1(U ,F) = 0 for all open covering U .
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1 H0(X ,F) = F(X )

2 If X is a compact Riemann surface, H0(X ,O) = C
3 H0(P1,M ) = C(x)

4 For any q ≥ 1, Hq(X ,Fp) = 0 where X is a space and Fp is a
skyscraper sheaf at p ∈ X .

Consider [α,U ] ∈ Hq(X ,Fp).

The covering U has a refinement B = (Vi ) such that the point p
is contained in only one Vj .

Thus Cq(B,Fp) ∼= Fp(Vj) and Zq(B,Fp) = 0,

i.e. Hq(B,Fp) = 0 and [α,U ] = [tU
B (α),B] = 0.
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Theorem

Let X be a Riemann surface. Then H1(X ,E ) = 0

Proposition (partition of unity)

On any paracompact differentiable manifold X , one has partition
of unity for any open covering U = {Ui},i.e there is a set of C∞−
functions {ϕi} such that

every point in X has a neighborhood meeting only finitely
many of the sets Supp(ϕi )

Supp(ϕi ) ⊂ Ui∑
ϕi = 1
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Theorem

Let X be a Riemann surface. Then H1(X ,E ) = 0

We will show that H1(U ,E ) = 0 for every covering U = {Ui}.
Let (fij) be a 1−cocycle, i.e fjk − fik + fij = 0 for all (i , j , k) ∈ I 3.
In particular, it implies fii = 0 and fij = −fji .
The C∞−function ϕj fij on Uij may be differentiably extended to
all of Ui by zero outside Uij .

Set gi = −
∑

j ϕj fij ∈ E (Ui ), then

gj−gi = −
∑
k

ϕk fjk +
∑
k

ϕk fik =
∑
k

ϕk(fik−fjk) =
∑
k

ϕk fij = fij

so that (fij) = d(gi ) is a coboundary.
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Similarly, by setting

gi0,...,iq−1 = (−1)n
∑
k

ϕk fi0,...,iq−1,k

we can show that

Proposition

For any q ≥ 1 and F ∈ {E ,E 1,E (1,0),E (0,1),E 2}

Hq(X ,F) = 0
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Theorem

Suppose X is a simply connected Riemann surface. Then

1 H1(X ,C) = 0

2 H1(X ,Z) = 0
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We will show that H1(U ,C) = 0 for every covering U = {Ui}.
Let (cij) be a 1−cocycle. Since Z 1(U ,C) ⊂ Z 1(U ,E ) and
H1(X ,E ) = 0, there exists (fi ) ∈ C 0(U ,E ) such that cij = fi − fj
on Uij .
Since dcij = 0, it follows that dfi = dfj on Uij . Thus there exists
ω ∈ E (1)(X ) such that ω

∣∣
Ui

= dfi . Thus dω = 0, then there exists

f ∈ E (X ) such that df = ω.
Set

ci := fi − f on Ui .

Therefore dci = dfi − df = ω − ω = 0 on Ui , ci is locally constant,
i.e., (ci ) ∈ C 0(U ,C).
On Uij , one has

cij = fi − fj = (fi − f )− (fj − f ) = ci − cj ,

and thus (cij) is a coboundary.
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Theorem (Leray)

Suppose F is a sheaf of abelian group on the topological space X
and U = {Ui} is an open covering of X such that H1(Ui ,F) = 0
for every i ∈ I . Then

H1(X ,F) ∼= H1(U ,F).
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Example

H1(C∗,Z) = Z

Let U1 = C∗ \ R−, U2 = C∗ \ R+ and U = {U1,U2}. Since Ui is
simply connected, H1(Ui ,Z) = 0. Thus H1(C∗,Z) = H1(U ,Z).
Since Z(Ui ) = Z and Z(U1 ∩ U2) = Z× Z, we have the complex

0 −−−−→ C 0 = Z2 −−−−→ C 1 = Z6 −−−−→ C 2

So B1 = {(0, 0, b2 − b1, b2 − b1, b2 − b1, b2 − b1) : b2, b1 ∈ Z}
= {(0, 0, a, a, a, a) : a ∈ Z}

and Z 1 = {(0, 0, a12,−a12) : a12 ∈ Z2}
= {(0, 0, a, b,−a,−b) : a, b ∈ Z}.

Thus H1(C∗,Z) ∼= H1(U ,Z) ∼= Z.
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Similarly, one can show that

1 H1(C∗,C) = C
2 H1(C \ {p1, ..., pn},Z) = Zn
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Similarly, we can define Hq(X ,P) where P is a presheaf on X .
Let φ : P → G be a morphism of presheaves and B < U are
coverings of X .
Then φ induces a mapping on q−cochains

φ : Cq(U ,P)→ Cq(U ,G)

by the formula
(φf )i0,...,iq = φ(fi0,...,iq).

The mapping φ commutes with d , thus it defines homomorphisms

φ∗ : Hq(U ,P)→ Hq(U ,G).

One has φ∗ ◦ tU
B = tU

B ◦ φ∗.
By passing to limit, we get homomorphisms

φ∗ : Hq(X ,P)→ Hq(X ,G).
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Proposition

Let X be any topological space.
An exact sequences of presheaves on X

0→ P ′ → P → P ′′ → 0

induces a long exact sequences

0→ H0(X ,P ′)→ H0(X ,P)→ H0(X ,P ′′)→ H1(X ,P)→ ...

→ Hq(X ,P ′)→ Hq(X ,P)→ Hq(X ,P ′′)→ Hq+1(X ,P ′)→ ...
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For any covering U , the exact sequence of presheaves

0→ P ′ → P → P ′′ → 0

induces an exact sequence of complexes

0→ C ·(U ,P ′)→ C ·(U ,P)→ C ·(U ,P ′′)→ 0

which in turn induces the long exact sequences

0→ H0(U ,P ′)→ H0(U ,P)→ H0(U ,P ′′)→ H1(U ,P)→ ...

→ Hq(U ,P ′)→ Hq(U ,P)→ Hq(U ,P ′′)→ Hq+1(U ,P ′)→ ...

Since direct limits preserve exactness, we obtain the desired exact
sequence.
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Proposition

Let X be a paracompact space, P a presheaf whose associated
sheaf is the zero sheaf, then Hq(X ,P) = 0 for all q.

Let [s,U ] ∈ Hq(X ,P) where U is a locally finite cover of X .
For x ∈ X , let Bx be an open neighborhood of x intersecting only
a finite number of elements U1, ...,Ul of U .
One can assume that each Ui contains x .
Thus there is an open neighborhood Wx of x contained in
Bx ∩ U1 ∩ ... ∩ Ul s.t

αi0,...,iq

∣∣
Wx

= 0 for every {io , ..., iq}, where s = [(αio ,..,iq)].

Let W = (Wx)x∈X .
Thus W is a refinement of U and tU

W (s) = 0, i.e. [s,U ] = 0.
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Proposition

Let X be a paracompact space,let P be a presheaf.
Then the natural morphism

Hq(X ,P)→ Hq(X , P̂)

is an isomorphism.
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One has an exact sequences of presheaves

0→ Q1 → P → P̂ → Q2 → 0

Splitting this into short exact sequences

0→ Q1 → P → G → 0 and 0→ G → P̂ → Q2 → 0,

where G = P/Q1.

Since Q̂1 = Q̂2 = 0, one has

Hq(X ,Q1) = Hq+1(X ,Q1) = Hq(X ,Q2) = Hq+1(X ,Q2) = 0.

From the long exact sequences of cohomology groups, we have

Hq(X ,P) ∼= Hq(X ,G) ∼= Hq(X , P̂).
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From these results, we obtain

Proposition

Let X be a paracompact space.
An exact sequences of sheaves on X

0→ F ′ → F → F ′′ → 0

induces a long exact sequences

0→ H0(X ,F ′)→ H0(X ,F)→ H0(X ,F ′′)→ H1(X ,F)→ ...

→ Hq(X ,F ′)→ Hq(X ,F)→ Hq(X ,F ′′)→ Hq+1(X ,F ′)→ ...

Using an exact sequence of presheaves

0→ F ′ → F → P → 0

where P = F/F ′.
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Proposition

If F is an injective sheaf on a topological space X , then

H i (X ,F) = 0

for all i > 0.

Lemma 2.4+Proposition 2.5, Algebraic Geometry - R.Hartshorne.
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Proposition

Let X be a paracompact space.
For any sheaf F on X , we have isomorphisms

Hq(X ,F) ∼= Hq
sheaf (X ,F) for all q ≥ 0

between Č ech cohomology and sheaf cohomology.

For q = 0, H0(X ,F) = F(X ) = H0
sheaf (X ,F).

For the general case, embed F in an injective sheaf G and let Q be
the quotient sheaf

0→ F → G → Q → 0

One gets a long exact sequence of Č ech cohomology groups.
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Since G is injective, one has an exact sequence

0→ F(X )→ G(X )→ Q(X )→ H1(X ,F)→ 0

and isomorphisms

Hq(X ,Q) ∼= Hq+1(X ,F)

for each q ≥ 1.

Comparing with the long exact sequence of sheaf cohomology and
using induction, we obtain the desired isomorphisms.
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Thank You For Listening!
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