Nguyen Quang Khai

April 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table of Contents

2 Cohomology computation

3 Comparison of Čech Cohomology and Sheaf Cohomology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let X be a topological space, and let $\mathscr{U} = (U_i)_{i \in I}$ be an open covering of X.

Let $\mathcal F$ be a sheaf of abelian groups on X.

For each p, define the qth cochain group of \mathcal{F} as

$$C^q(\mathscr{U},\mathcal{F}) = \prod_{(i_0,i_1,\ldots,i_q)\in I^{q+1}} \mathcal{F}(U_{i_0,\ldots,i_q})$$

Thus a q-cochain is a family

$$f = (f_{i_0,...,i_q})$$
 such that $f_{i_0,...,i_q} \in \mathcal{F}(U_{i_0,...,i_q})$

We define the coboundary map $d: C^q \to C^{q+1}$ by setting

$$(df)_{i_0,...,i_{q+1}} = \sum_{k=0}^{q+1} (-1)^k f_{i_0,...,\hat{i_k},...,i_{q+1}} |_{U_{i_0,...,i_{q+1}}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

At the 0 level, d sends 0-cochain (f_i) to the 1-cochain (g_{ij}) where

$$g_{ij}=f_i-f_j$$

At the 1 level, d sends 1-cochain (f_{ij}) to the 2-cochain (g_{ijk}) where

$$g_{ijk}=f_{jk}-f_{ik}+f_{ij}$$

The elements of $Z^q(\mathscr{U},\mathcal{F}) := Kerd^q$ are called q-cocycles.

Ł

The elements of $B^q(\mathcal{U}, \mathcal{F}) := Imd^{q-1}$ are called *q*-coboundaries.

We can check that $d^2 = 0$, so we get a complex $C(\mathcal{U}, \mathcal{F})$

 $0 \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \dots \longrightarrow C^q \longrightarrow \dots$

We define the *qth* cohomology group of \mathcal{F} , with respect to the covering \mathscr{U} , to be

$$H^{q}(\mathscr{U},\mathcal{F})=H^{q}(C^{\cdot}(\mathscr{U},\mathcal{F}))$$

We can check that $d^2 = 0$, so we get a complex $C(\mathcal{U}, \mathcal{F})$

 $0 \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \dots \longrightarrow C^q \longrightarrow \dots$

We define the *qth* cohomology group of \mathcal{F} , with respect to the covering \mathscr{U} , to be

$$H^q(\mathscr{U},\mathcal{F})=H^q(C^{\cdot}(\mathscr{U},\mathcal{F}))$$

Example

H⁰(
$$\mathscr{U}, \mathcal{F}$$
) = $\mathcal{F}(X)$
Thus H⁰(\mathscr{U}, \mathcal{F}) is independent of \mathscr{U} .
This is not true in general.
 H¹({ \mathbb{C}^* }, \mathbb{Z}) = 0 but H¹({ U_1, U_2 }, \mathbb{Z}) = \mathbb{Z}
where $U_1 = \mathbb{C}^* \setminus \mathbb{R}_-$ and $U_2 = \mathbb{C}^* \setminus \mathbb{R}_+$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We would like to associate to every sheaf \mathcal{F} a cohomology group which does not depend on the covering.

Definition

An covering $\mathscr{B} = (V_k)_{k \in K}$ is called finer than $\mathscr{U} = (U_i)_{i \in I}$, denoted $\mathscr{B} < \mathscr{U}$, if there is a mapping $\tau : K \to I$ such that

 $V_k \subset U_{\tau k}$ for every $k \in K$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We would like to associate to every sheaf \mathcal{F} a cohomology group which does not depend on the covering.

Definition

An covering $\mathscr{B} = (V_k)_{k \in K}$ is called finer than $\mathscr{U} = (U_i)_{i \in I}$, denoted $\mathscr{B} < \mathscr{U}$, if there is a mapping $\tau : K \to I$ such that

$$V_k \subset U_{\tau k}$$
 for every $k \in K$.

In this case, au induces a mapping on q-cochains

$$\tau: C^q(\mathscr{U}, \mathcal{F}) \to C^q(\mathscr{B}, \mathcal{F})$$

by the formula

$$(\tau f)_{i_0,...,i_q} = f_{\tau i_0,...,\tau i_q} |_{V_{i_0,...,i_q}}$$

Proposition

The mapping τ commutes with d, thus it defines homomorphisms

$$H(\tau): H^q(\mathscr{U}, \mathcal{F}) \to H^q(\mathscr{B}, \mathcal{F})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The mapping $H(\tau)$ is independent of the choice of τ .

Proposition

The mapping τ commutes with d, thus it defines homomorphisms

$$H(\tau): H^q(\mathscr{U}, \mathcal{F}) \to H^q(\mathscr{B}, \mathcal{F})$$

The mapping $H(\tau)$ is independent of the choice of τ .

$$\begin{aligned} & (d(\tau f))_{i_0,...,i_q} = \sum_{k=0}^q (-1)^k (\tau f)_{i_0,...,\widehat{i_k},...,i_q} \\ & = \sum_{k=0}^q (-1)^k f_{\tau i_0,...,\widehat{\tau i_k},...,\tau i_q} = (df)_{\tau i_0,...,\tau i_q} = (\tau(df))_{i_0,...,i_q}. \\ & \text{Thus } d\tau = \tau d. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 Suppose that τ and τ' are both refining maps.

Fix
$$h = [(f)] \in H^q(\mathcal{U}, \mathcal{F})$$
.

Then $H(\tau)(h)$ is presented by (τf) and $H(\tau')(h)$ is presented by $(\tau' f)$, where

$$(au f)_{i_0,...,i_q} = f_{ au i_0,..., au i_q} ext{ and } (au' f)_{i_0,...,i_q} = f_{ au' i_0,..., au' i_q}.$$

Form the (q-1)-cochain (b) defined by

$$b_{l_0,...,l_{q-1}} = \sum_{k=0}^{q-1} (-1)^k f_{\tau l_0,...,\tau l_k,\tau' l_k,...,\tau' l_{q-1}}.$$

We see that $d(b) = (\tau' f) - (\tau f)$. Therefore H(r)(h) = H(r')(h).

We denote
$$H(\tau)$$
 by $t_{\mathscr{B}}^{\mathscr{U}}$.

Proposition

The refinement map $t_{\mathscr{B}}^{\mathscr{U}}$ is injective when q = 1.

We denote $H(\tau)$ by $t_{\mathscr{B}}^{\mathscr{U}}$.

Proposition

The refinement map $t_{\mathscr{B}}^{\mathscr{U}}$ is injective when q = 1.

Consider a cocycle $f = (f_{ii}) \in Z^1(\mathcal{U}, \mathcal{F})$ s.t $t^{\mathcal{U}}_{\mathscr{Q}}([f]) = 0$. There exists $g = (g_k) \in C^0(\mathscr{B}, \mathcal{F})$ s.t $f_{\tau k, \tau l} = g_k - g_l$ on $V_k \cap V_l$. Then $g_k - g_l = f_{\tau k, \tau l} = f_{i, \tau l} - f_{i, \tau k}$ on $U_i \cap V_k \cap V_l$ and thus $f_{i,\tau k} + g_k = f_{i,\tau l} + g_l$. Applying sheaf axioms to the family $(U_i \cap V_k)_{k \in K}$. one obtains $h_i \in \mathcal{F}(U_i)$ s.t $h_i = f_{i,\tau k} + g_k$. Thus $f_{ij} = f_{t,\tau k} + f_{\tau k,j} = h_i - h_j$ on $U_i \cap U_j \cap V_k$ for any $k \in K$. Then on $U_i \cap U_i$, $f_{ii} = h_i - h_i$. Therefore, $[f] = [d(h)] = 0 \in H^1(\mathcal{U}, \mathcal{F}).$

The relation < between coverings of X is directed.

It is clear that $t^{\mathscr{U}}_{\mathscr{U}} = \mathit{id}$ and $t^{\mathscr{B}}_{\mathscr{V}} \circ t^{\mathscr{U}}_{\mathscr{B}} = t^{\mathscr{V}}_{\mathscr{U}}$ if $\mathscr{V} < \mathscr{B} < \mathscr{U}$.

Thus the collection $\{H^q(\mathscr{U}, \mathcal{F})\}_{\mathscr{U}}$ is a directed system.

Definition

The *qth* cohomology groups of X with coefficient \mathcal{F} is defined by

$$H^q(X,\mathcal{F}) := \lim_{\longrightarrow} H^q(\mathscr{U},\mathcal{F})$$

From the definition, an element of $H^q(X, \mathcal{F})$ is a class $[\alpha, \mathscr{U}]$ where \mathscr{U} is a covering of X and $\alpha \in H^q(\mathscr{U}, \mathcal{F})$.

Two classes $[\alpha, \mathscr{U}]$ and $[\beta, \mathscr{V}]$ are the same if there exists a covering \mathscr{B} with $\mathscr{B} < \mathscr{U}$ and $\mathscr{B} < \mathscr{V}$ such that

 $t^{\mathscr{U}}_{\mathscr{B}}(\alpha) = t^{\mathscr{V}}_{\mathscr{B}}(\beta).$

Corollary

$$H^1(X,\mathcal{F})=0$$

if and only if

 $H^1(\mathscr{U}, \mathcal{F}) = 0$ for all open covering \mathscr{U} .

$$H^0(X,\mathcal{F}) = \mathcal{F}(X)$$

2 If X is a compact Riemann surface, $H^0(X, \mathscr{O}) = \mathbb{C}$

3
$$H^0(\mathbb{P}^1,\mathscr{M})=\mathbb{C}(x)$$

For any q ≥ 1, H^q(X, F_p) = 0 where X is a space and F_p is a skyscraper sheaf at p ∈ X.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$H^0(X,\mathcal{F}) = \mathcal{F}(X)$$

2 If X is a compact Riemann surface, $H^0(X, \mathscr{O}) = \mathbb{C}$

3
$$H^0(\mathbb{P}^1, \mathscr{M}) = \mathbb{C}(x)$$

4 For any $q \ge 1$, $H^q(X, \mathcal{F}_p) = 0$ where X is a space and \mathcal{F}_p is a skyscraper sheaf at $p \in X$.

Consider $[\alpha, \mathscr{U}] \in H^q(X, \mathcal{F}_p).$

The covering \mathscr{U} has a refinement $\mathscr{B} = (V_i)$ such that the point p is contained in only one V_i .

Thus
$$C^{q}(\mathscr{B}, \mathcal{F}_{p}) \cong \mathcal{F}_{p}(V_{j})$$
 and $Z^{q}(\mathscr{B}, \mathcal{F}_{p}) = 0$,
i.e. $H^{q}(\mathscr{B}, \mathcal{F}_{p}) = 0$ and $[\alpha, \mathscr{U}] = [t^{\mathscr{U}}_{\mathscr{B}}(\alpha), \mathscr{B}] = 0$.

Theorem

Let X be a Riemann surface. Then $H^1(X, \mathscr{E}) = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Let X be a Riemann surface. Then
$$H^1(X, \mathscr{E}) = 0$$

Proposition (partition of unity)

On any paracompact differentiable manifold X, one has partition of unity for any open covering $\mathscr{U} = \{U_i\}$, i.e there is a set of C^{∞} -functions $\{\varphi_i\}$ such that

 every point in X has a neighborhood meeting only finitely many of the sets Supp(φ_i)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Supp
$$(\varphi_i) \subset U_i$$

$$\sum \varphi_i = 1$$

Theorem

Let X be a Riemann surface. Then $H^1(X, \mathscr{E}) = 0$

We will show that $H^1(\mathscr{U}, \mathscr{E}) = 0$ for every covering $\mathscr{U} = \{U_i\}$. Let (f_{ij}) be a 1-cocycle, i.e $f_{jk} - f_{ik} + f_{ij} = 0$ for all $(i, j, k) \in I^3$. In particular, it implies $f_{ii} = 0$ and $f_{ij} = -f_{ji}$. The C^{∞} -function $\varphi_j f_{ij}$ on U_{ij} may be differentiably extended to all of U_i by zero outside U_{ij} .

Set
$$g_i = -\sum_j \varphi_j f_{ij} \in \mathscr{E}(U_i)$$
, then

$$g_j - g_i = -\sum_k \varphi_k f_{jk} + \sum_k \varphi_k f_{ik} = \sum_k \varphi_k (f_{ik} - f_{jk}) = \sum_k \varphi_k f_{ij} = f_{ij}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

so that $(f_{ij}) = d(g_i)$ is a coboundary.

Similarly, by setting

$$g_{i_0,...,i_{q-1}} = (-1)^n \sum_k \varphi_k f_{i_0,...,i_{q-1},k}$$

we can show that

Proposition

For any $q \geq 1$ and $\mathcal{F} \in \{\mathscr{E}, \mathscr{E}^1, \mathscr{E}^{(1,0)}, \mathscr{E}^{(0,1)}, \mathscr{E}^2\}$

$$H^q(X,\mathcal{F})=0$$

・ロト・西ト・山田・山田・山口・

Theorem

Suppose X is a simply connected Riemann surface. Then 1 $H^1(X, \mathbb{C}) = 0$ 2 $H^1(X, \mathbb{Z}) = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We will show that $H^1(\mathscr{U}, \mathbb{C}) = 0$ for every covering $\mathscr{U} = \{U_i\}$. Let (c_{ij}) be a 1-cocycle. Since $Z^1(\mathscr{U}, \mathbb{C}) \subset Z^1(\mathscr{U}, \mathscr{E})$ and $H^1(X, \mathscr{E}) = 0$, there exists $(f_i) \in C^0(\mathscr{U}, \mathscr{E})$ such that $c_{ij} = f_i - f_j$ on U_{ij} . Since $dc_{ij} = 0$, it follows that $df_i = df_j$ on U_{ij} . Thus there exists $\omega \in \mathscr{E}^{(1)}(X)$ such that $\omega|_{U_i} = df_i$. Thus $d\omega = 0$, then there exists $f \in \mathscr{E}(X)$ such that $df = \omega$. Set

$$c_i := f_i - f$$
 on U_i .

Therefore $dc_i = df_i - df = \omega - \omega = 0$ on U_i , c_i is locally constant, i.e., $(c_i) \in C^0(\mathscr{U}, \mathbb{C})$. On U_{ij} , one has

$$c_{ij} = f_i - f_j = (f_i - f) - (f_j - f) = c_i - c_j,$$

and thus (c_{ij}) is a coboundary.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

Theorem (Leray)

Suppose \mathcal{F} is a sheaf of abelian group on the topological space X and $\mathscr{U} = \{U_i\}$ is an open covering of X such that $H^1(U_i, \mathcal{F}) = 0$ for every $i \in I$. Then

$$H^1(X,\mathcal{F})\cong H^1(\mathscr{U},\mathcal{F}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Example

 $H^1(\mathbb{C}^*,\mathbb{Z})=\mathbb{Z}$

Let $U_1 = \mathbb{C}^* \setminus \mathbb{R}_-$, $U_2 = \mathbb{C}^* \setminus \mathbb{R}_+$ and $\mathscr{U} = \{U_1, U_2\}$. Since U_i is simply connected, $H^1(U_i, \mathbb{Z}) = 0$. Thus $H^1(\mathbb{C}^*, \mathbb{Z}) = H^1(\mathscr{U}, \mathbb{Z})$. Since $\mathbb{Z}(U_i) = \mathbb{Z}$ and $\mathbb{Z}(U_1 \cap U_2) = \mathbb{Z} \times \mathbb{Z}$, we have the complex

$$0 \longrightarrow C^0 = \mathbb{Z}^2 \longrightarrow C^1 = \mathbb{Z}^6 \longrightarrow C^2$$

So $B^1 = \{(0,0,b_2 - b_1, b_2 - b_1, b_2 - b_1, b_2 - b_1) : b_2, b_1 \in \mathbb{Z}\}\$ = $\{(0,0,a,a,a,a) : a \in \mathbb{Z}\}\$ and $Z^1 = \{(0,0,a_{12}, -a_{12}) : a_{12} \in \mathbb{Z}^2\}\$ = $\{(0,0,a,b,-a,-b) : a,b \in \mathbb{Z}\}.\$ Thus $H^1(\mathbb{C}^*,\mathbb{Z}) \cong H^1(\mathscr{U},\mathbb{Z}) \cong \mathbb{Z}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Similarly, one can show that

1
$$H^1(\mathbb{C}^*,\mathbb{C}) = \mathbb{C}$$

2 $H^1(\mathbb{C} \setminus \{p_1,...,p_n\},\mathbb{Z}) = \mathbb{Z}^n$

(ロ)、(型)、(E)、(E)、 E) の(()

Similarly, we can define $H^q(X, \mathcal{P})$ where \mathcal{P} is a presheaf on X. Let $\phi : \mathcal{P} \to \mathcal{G}$ be a morphism of presheaves and $\mathcal{B} < \mathcal{U}$ are coverings of X. Then ϕ induces a mapping on q-cochains

$$\phi: C^q(\mathscr{U}, \mathcal{P}) \to C^q(\mathscr{U}, \mathcal{G})$$

by the formula

$$(\phi f)_{i_0,...,i_q} = \phi(f_{i_0,...,i_q}).$$

The mapping ϕ commutes with d, thus it defines homomorphisms

$$\phi_*: H^q(\mathscr{U}, \mathcal{P}) \to H^q(\mathscr{U}, \mathcal{G}).$$

One has $\phi_* \circ t_{\mathscr{B}}^{\mathscr{U}} = t_{\mathscr{B}}^{\mathscr{U}} \circ \phi_*$. By passing to limit, we get homomorphisms

$$\phi_*: H^q(X, \mathcal{P}) \to H^q(X, \mathcal{G}).$$

Proposition

Let X be any topological space. An exact sequences of presheaves on X

$$0 \to \mathcal{P}' \to \mathcal{P} \to \mathcal{P}'' \to 0$$

induces a long exact sequences

$$0 \to H^0(X, \mathcal{P}') \to H^0(X, \mathcal{P}) \to H^0(X, \mathcal{P}'') \to H^1(X, \mathcal{P}) \to \dots$$
$$\to H^q(X, \mathcal{P}') \to H^q(X, \mathcal{P}) \to H^q(X, \mathcal{P}'') \to H^{q+1}(X, \mathcal{P}') \to \dots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For any covering \mathscr{U} , the exact sequence of presheaves

$$0
ightarrow \mathcal{P}'
ightarrow \mathcal{P}
ightarrow \mathcal{P}''
ightarrow 0$$

induces an exact sequence of complexes

$$0 \to C^{\cdot}(\mathscr{U}, \mathcal{P}') \to C^{\cdot}(\mathscr{U}, \mathcal{P}) \to C^{\cdot}(\mathscr{U}, \mathcal{P}'') \to 0$$

which in turn induces the long exact sequences

$$\begin{split} 0 &\to H^0(\mathscr{U}, \mathcal{P}') \to H^0(\mathscr{U}, \mathcal{P}) \to H^0(\mathscr{U}, \mathcal{P}'') \to H^1(\mathscr{U}, \mathcal{P}) \to \dots \\ &\to H^q(\mathscr{U}, \mathcal{P}') \to H^q(\mathscr{U}, \mathcal{P}) \to H^q(\mathscr{U}, \mathcal{P}'') \to H^{q+1}(\mathscr{U}, \mathcal{P}') \to \dots \end{split}$$

Since direct limits preserve exactness, we obtain the desired exact sequence.

Proposition

Let X be a paracompact space, \mathcal{P} a presheaf whose associated sheaf is the zero sheaf, then $H^q(X, \mathcal{P}) = 0$ for all q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

Let X be a paracompact space, \mathcal{P} a presheaf whose associated sheaf is the zero sheaf, then $H^q(X, \mathcal{P}) = 0$ for all q.

Let $[s, \mathscr{U}] \in H^q(X, \mathcal{P})$ where \mathscr{U} is a locally finite cover of X. For $x \in X$, let B_x be an open neighborhood of x intersecting only a finite number of elements $U_1, ..., U_l$ of \mathscr{U} . One can assume that each U_i contains x. Thus there is an open neighborhood W_x of x contained in $B_x \cap U_1 \cap ... \cap U_l$ s.t

$$\alpha_{i_0,...,i_q}|_{W_x} = 0$$
 for every $\{i_o,...,i_q\}$, where $s = [(\alpha_{i_o,...,i_q})]$.

Let $\mathscr{W} = (\mathscr{W}_x)_{x \in X}$. Thus \mathscr{W} is a refinement of \mathscr{U} and $t^{\mathscr{U}}_{\mathscr{W}}(s) = 0$, i.e. $[s, \mathscr{U}] = 0$.

Proposition

Let X be a paracompact space,let $\ensuremath{\mathcal{P}}$ be a presheaf. Then the natural morphism

$$H^q(X,\mathcal{P}) \to H^q(X,\widehat{\mathcal{P}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is an isomorphism.

One has an exact sequences of presheaves

$$0
ightarrow \mathcal{Q}_1
ightarrow \widehat{\mathcal{P}}
ightarrow \widehat{\mathcal{Q}}_2
ightarrow 0$$

 \sim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Splitting this into short exact sequences

$$0
ightarrow Q_1
ightarrow \mathcal{G}
ightarrow 0 ext{ and } 0
ightarrow \mathcal{G}
ightarrow \widetilde{\mathcal{P}}
ightarrow Q_2
ightarrow 0,$$

where $\mathcal{G} = \mathcal{P}/\mathcal{Q}_1$.
Since $\widehat{\mathcal{Q}_1} = \widehat{\mathcal{Q}_2} = 0$, one has
 $H^q(X, \mathcal{Q}_1) = H^{q+1}(X, \mathcal{Q}_1) = H^q(X, \mathcal{Q}_2) = H^{q+1}(X, \mathcal{Q}_2) = 0.$

From the long exact sequences of cohomology groups, we have

$$H^q(X,\mathcal{P})\cong H^q(X,\mathcal{G})\cong H^q(X,\widehat{\mathcal{P}}).$$

From these results, we obtain

Proposition

Let X be a paracompact space. An exact sequences of sheaves on X

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

induces a long exact sequences

$$0 \to H^0(X, \mathcal{F}') \to H^0(X, \mathcal{F}) \to H^0(X, \mathcal{F}'') \to H^1(X, \mathcal{F}) \to \dots$$
$$\to H^q(X, \mathcal{F}') \to H^q(X, \mathcal{F}) \to H^q(X, \mathcal{F}'') \to H^{q+1}(X, \mathcal{F}') \to \dots$$

Using an exact sequence of presheaves

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{P} \to 0$$

where $\mathcal{P} = \mathcal{F} / \mathcal{F}'$.

Proposition

If \mathcal{F} is an injective sheaf on a topological space X, then

$$H^i(X,\mathcal{F})=0$$

for all i > 0.

Lemma 2.4+Proposition 2.5, Algebraic Geometry - R.Hartshorne.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Proposition

Let X be a paracompact space. For any sheaf \mathcal{F} on X, we have isomorphisms

$$H^q(X,\mathcal{F})\cong H^q_{sheaf}(X,\mathcal{F})$$
 for all $q\geq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

between Čech cohomology and sheaf cohomology.

Proposition

Let X be a paracompact space. For any sheaf \mathcal{F} on X, we have isomorphisms

$$H^q(X,\mathcal{F})\cong H^q_{sheaf}(X,\mathcal{F})$$
 for all $q\geq 0$

between *Čech* cohomology and *sheaf* cohomology.

For
$$q = 0$$
, $H^0(X, \mathcal{F}) = \mathcal{F}(X) = H^0_{sheaf}(X, \mathcal{F})$.

For the general case, embed ${\cal F}$ in an injective sheaf ${\cal G}$ and let ${\cal Q}$ be the quotient sheaf

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{Q}
ightarrow 0$$

One gets a long exact sequence of $\check{C}ech$ cohomology groups.

Since ${\mathcal{G}}$ is injective, one has an exact sequence

$$0 o \mathcal{F}(X) o \mathcal{G}(X) o \mathcal{Q}(X) o H^1(X,\mathcal{F}) o 0$$

and isomorphisms

$$H^q(X, \mathcal{Q}) \cong H^{q+1}(X, \mathcal{F})$$

for each $q \ge 1$.

Comparing with the long exact sequence of *sheaf* cohomology and using induction, we obtain the desired isomorphisms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comparison of Čech Cohomology and Sheaf Cohomology

Thank You For Listening!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

- 1 Robin Hartshorne, Algebraic Geometry
- 2 Otto Foster, Lecture on Riemann Surfaces
- 3 Grothendieck's Tôhoku paper
- 4 J.P.Serre, FAC
- 5 Rick Miranda, Algebraic Curves and Riemann Surfaces
- 6 Ugo Bruzzo, Derived Functors And Sheaf Cohomology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで