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Definition (Divisors)

Let X be a Riemann surface. A divisor on X is a mapping
D:X—7Z

such that for any compact subset K C X there are only finitely many points
x € K such that D(x) # 0.
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Definition (Divisors)

Let X be a Riemann surface. A divisor on X is a mapping
D:X—7Z

such that for any compact subset K C X there are only finitely many points
x € K such that D(x) # 0.

Definition (Divisors of Meromorphic Functions)

Suppose X is a Riemann surface and Y is an open subset of X. For a
meromorphic function f € .Z(Y) and a € Y define

0 if £ is holomorphic and non-zero at a
ord, () = if f has a zero of order k at a
7))~k iffhasa pole of order k at a

00 if f is identically zero in a n.b.h of a

For any meromorphic function f € .Z(X) \ {0}, the mapping x — ord.(f) is
called the divisor of f.
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Definition (Divisor of Meromorphic = forms)

For a meromorphic 1—form w € .#)(Y). Choose a coordinate n.b.h (U, z) of
a. Then on UN Y one may write w = fdz, where f is a meromorphic function.
Set orda(w) = ord.f. For 1—forms w € .M (X) \ {0} the mapping

x + ordy(w) is called the divisor of w.
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Definition (Divisor of Meromorphic = forms)

For a meromorphic 1—form w € .#)(Y). Choose a coordinate n.b.h (U, z) of
a. Then on UN Y one may write w = fdz, where f is a meromorphic function.
Set orda(w) = ord.f. For 1—forms w € .M (X) \ {0} the mapping

x > ordx(w) is called the divisor of w.

Proposition
For f,g € .#(X)\ {0} and w € .#V(X) \ {0} one has the following relations

(fg) = () + (g), (1/f) =—(f), (fw)=(f)+ (w).
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Definition (Divisor of Meromorphic = forms)

For a meromorphic 1—form w € .#Y(Y). Choose a coordinate n.b.h (U, z) of
a. Then on UN Y one may write w = fdz, where f is a meromorphic function.
Set orda(w) = ord.f. For 1—forms w € .M (X) \ {0} the mapping

x > ordx(w) is called the divisor of w.

Proposition
For f,g € .#(X)\ {0} and w € .#V(X) \ {0} one has the following relations

(fg) = () + (g), (1/f) =—(f), (fw)=(f)+ (w).

| \

Definition

A divisor D € Div(X) is called a principal divisor if there exists a function

f e #(X)\ {0} such that D = (). Two divisors D, D" € Div(X) are said to
be equivalent if their difference D — D’ is a principal divisor.
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Definition
Let X be a compact Riemann surface. Then for every D € Div(X) there are
only finitely many x € X such that D(x) # 0. Hence one can define a mapping

deg : Div(X) — Z
called the degree, by letting

deg(D) := Z D(x).

xeX
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Suppose D is a divisor on the Riemann surface X. For any open set U C X
define Op(U) as follows

Op(U) :={f € #(U)|ord«(f) > —D(x) for every x € U}.

Together with the natural restriction mappings Op is a sheaf (Sheaf of
divisor).
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The Riemann-Roch Theorem
LSheaf of Divisors

Suppose D is a divisor on the Riemann surface X. For any open set U C X
define Op(U) as follows

Op(U) :={f € #(U)|ord«(f) > —D(x) for every x € U}.

Together with the natural restriction mappings Op is a sheaf (Sheaf of
divisor).

Suppose X is a compact Riemann surface and D € Div(X) is a divisor with
degD < 0. Then H(X,0p) = 0.
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The Riemann-Roch Theorem
LSheaf of Divisors

Suppose D is a divisor on the Riemann surface X. For any open set U C X
define Op(U) as follows

Op(U) :={f € #(U)|ord«(f) > —D(x) for every x € U}.

Together with the natural restriction mappings Op is a sheaf (Sheaf of
divisor).

Theorem

Suppose X is a compact Riemann surface and D € Div(X) is a divisor with
degD < 0. Then H(X,0p) = 0.

Proof.

Suppose, to the contrary, that there exists an f € H°(X, Op) with f # 0. Then
(f) > —D and thus

| \

ded(f) > —degD > 0.
However this contradicts the fact that deg(f) = 0. O
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The Riemann-Roch Theorem

Skyscraper Sheaf

Let p € X. Define for an open set U C X.

C ifpeU

ColU) = {o ifpg U’

where the restriction maps are the obvious homomorphisms. Then
i. H(X,C,)=C
ii. HY(X,Cp)=0.
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The Riemann-Roch Theorem

Skyscraper Sheaf

Proposition

Let p € X. Define for an open set U C X.

C ifpeU

Go(U) = {o ifpg U’

where the restriction maps are the obvious homomorphisms. Then
i. H(X,C,)=C
ii. HY(X,Cp)=0.

We also have the following short exact sequence

0—>OD—>OD+P—>CP—>O.
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The Riemann Roch Theorem

By the long exact sequence theorem, we have

0 — H(X,0p) = H*(X,0p1p) = C — H'(X,0p) — H'(X, Opip) — 0.
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The Riemann-Roch Theorem

The Riemann Roch Theorem

By the long exact sequence theorem, we have

0 — H(X,0p) = H*(X,0p1p) = C — H'(X,0p) — H'(X, Opip) — 0.

Theorem (Riemann-Roch)

Suppose D is a divisor on a compact Riemann surface X of genus g. Then
H°(X,0p) and H'(X,Op) are finite dimensional vector spaces and

dimH°(X, Op) — dimH'(X,0p) =1 — g + degD.
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i. The result holds for the divisor D = 0.
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i. The result holds for the divisor D = 0.

ii. Suppose D is a divisor, P € X, and D' = D + P. Suppose that the result
holds for one of the divisors D, D’. The above exact cohomology sequence
can be slit into two short exact sequences. For, let

V :=Im(H°(X,0p) = C)
W:=C/V.

Then dim(V) + dim(W) = 1 = degD’ — degD and the sequences

0 — H(X,0p) — H°(X,0p) — V — 0,
0— W — H'(X,0p) = H'(X,0p) = 0

are exact. This implies that

dimH°(X, Op/) = dimH°(X, Op) + dimV
dimH"' (X, Op) = dimH" (X, Op/) + dimW.
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Therefore,

dimH’(X, Op/)—dimH" (X, Op/)—degD’ = dimH’(X, Op)—dimH" (X, Op)—degD.

iii. An arbitrary divisor D on X may be written
D=P+..+Py— m+1—...—Pn,

where the P; € X are points.
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The Riemann-Roch Theorem

Canonical Divisor

By Serre's duality, we can identify H
divisor K is called canonical divisor.

(X,0p) as Ok—_p(X) with K = (w). The

Proposition

The canonical divisor K on a compact Riemann surface of genus g satisfies

deg(K) =2g — 2.
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The Riemann-Roch Theorem

Canonical Divisor

By Serre's duality, we can identify H
divisor K is called canonical divisor.

(X,0p) as Ok—_p(X) with K = (w). The

Proposition

The canonical divisor K on a compact Riemann surface of genus g satisfies

deg(K) =2g — 2.

Suppose X is a compact Riemann surface of genus g and D is a divisor of on X
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The Riemann-Roch Theorem

Canonical Divisor

By Serre's duality, we can identify H
divisor K is called canonical divisor.

(X,0p) as Ok—_p(X) with K = (w). The

Proposition

The canonical divisor K on a compact Riemann surface of genus g satisfies

deg(K) =2g — 2.

Suppose X is a compact Riemann surface of genus g and D is a divisor of on X l

If D is a divisor such that deg(D) > 2g — 1, then

dimOp(X) = deg(D)+1 —g.

11 /41
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Divisors and Maps to Projective Space

Maps to Projective Space Given by Meromorphic Functions

Definition

Let X be a Riemann surface. A map ¢ : X — P" is holomorphic at a point
p € X if there are holomorphic functions go, ..., g» defined on X near p, not all
zero at p, such that ¢(x) = [go(x) : ... : ga(x)] for x near p. We say ¢ is a
holomorphic map if it is holomorphic at all points of X.

12 /41
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Divisors and Maps to Projective Space

Maps to Projective Space Given by Meromorphic Functions

Definition

Let X be a Riemann surface. A map ¢ : X — P" is holomorphic at a point
p € X if there are holomorphic functions go, ..., g» defined on X near p, not all
zero at p, such that ¢(x) = [go(x) : ... : ga(x)] for x near p. We say ¢ is a
holomorphic map if it is holomorphic at all points of X.

Let X be be a Riemann surface. Choose n+ 1 meromorphic functions
f = (fo, ..., fn) on X, not all identically zero. Define ¢ : X — P" by setting

or(p) = [fo(p) : - : fa(p)]-
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Divisors and Maps to Projective Space

Maps to Projective Space Given by Meromorphic Functions

Definition

Let X be a Riemann surface. A map ¢ : X — P" is holomorphic at a point
p € X if there are holomorphic functions go, ..., g» defined on X near p, not all
zero at p, such that ¢(x) = [go(x) : ... : ga(x)] for x near p. We say ¢ is a
holomorphic map if it is holomorphic at all points of X.

Let X be be a Riemann surface. Choose n+ 1 meromorphic functions
f = (fo, ..., fn) on X, not all identically zero. Define ¢ : X — P" by setting

or(p) = [fo(p) : - : fa(p)]-

Note that a priori, ¢r is defined at p if
i. pis not a pole of any f;
ii. pis not a zero of every f;

iii. ¢r is a holomorphic map at all such points p where it is defined.
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If the meromorphic functions {f;} are not all identically zero, then the map
¢r : X — P" given above extends to a holomorphic map defined on all of X.
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Divisors and Maps to Projective Space

If the meromorphic functions {f;} are not all identically zero, then the map
¢r : X — P" given above extends to a holomorphic map defined on all of X.

Proof.

Fix a point p € X, and let n = min;ord,(f;). We can choose a n.b.h of p such
that no f; has a pole other than possibly at p, and there are no common
zeroes's to the f/s, other than possibly at p. Hence if we choose a local
coordinate z on X centered at p, then every f;(z) is holomorphic for z near 0
but z # 0, and there is no z near 0 which is a common root to every f;. Hence
for z # 0, we have

| A

or(2) = [h(z) : ... f(2)]
=[z7"h(z):...: 27 "f(2)]
= [go(2) : ... - ga(2)]-

13 /41
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Proposition

Let ¢ : X — P" be a holomorphic map. Then there is an (n + 1)—tuple of
meromorphic functions f = (fo, ..., f,) on X such that ¢ = ¢¢. Moreover if two
(n+ 1)—tuples f = (fy, ..., f») and g = (go, ..., &) of meromorphic functions
induce the same map, so that ¢r = ¢, as holomorphic maps to P, then there
is a meromorphic function \ on X such that gi = \f; for every i.
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The Riemann-Roch Theorem

Divisors and Maps to Projective Space

Proposition

Let ¢ : X — P" be a holomorphic map. Then there is an (n + 1)—tuple of
meromorphic functions f = (fo, ..., f,) on X such that ¢ = ¢¢. Moreover if two
(n+1)—tuples f = (fy,...,f,) and g = (go, -.., &) of meromorphic functions
induce the same map, so that ¢r = ¢ as holomorphic maps to P", then there
is a meromorphic function \ on X such that gi = \f; for every i.

The above proposition then gives a 1 — 1 corespondence between the set of
holomorphic maps from X to P and the projective space ]P)Z/t(x)
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Divisors and Maps to Projective Space

Complete Linear System

Definition
The set of all effective divisors linearly equivalent to D is called the complete
linear system and is denoted by |D|.
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Divisors and Maps to Projective Space

Complete Linear System

Definition
The set of all effective divisors linearly equivalent to D is called the complete
linear system and is denoted by |D|.

Consider the following map
& :POp(X) — |D| = {D'|D' >0,D" ~ D}
f( mod k™) — D+ (f)

15 /41
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Divisors and Maps to Projective Space

Complete Linear System

Definition

The set of all effective divisors linearly equivalent to D is called the complete
linear system and is denoted by |D|.

Consider the following map
& : POp(X) — |D| = {D'|D' >0,D' ~ D}
f( mod k™) — D+ (f)
This map is one to one for if D+ (f) = D + (g) then indeed f = Ag and so

f = g in POp(X) This map is also onto as any element of |D| is D + (f) for
some function f. Hence, this map is bijection.
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Divisors and Maps to Projective Space

Complete Linear System

Definition

The set of all effective divisors linearly equivalent to D is called the complete
linear system and is denoted by |D|.

Consider the following map
& : POp(X) — |D| = {D'|D' >0,D' ~ D}
f( mod k™) — D+ (f)
This map is one to one for if D+ (f) = D + (g) then indeed f = Ag and so

f = g in POp(X) This map is also onto as any element of |D| is D + (f) for
some function f. Hence, this map is bijection.

Definition

A linear system on a Riemann surface X is a subset of |D| and parametrized
by a linear subvariety of POp(X).
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LThe Linear System of a Holomorphic Map

Let ¢ : X — P" be a holomorphic map to projective space. Write

¢ [fo:...: f] where each f; is a meromorphic function on X. Let

D = —min;(f;) be the inverse of the minimum divisor of the divisors of the
functions. Therefore, for p € X, we have that —D(p) is the minimum among
the orders of the f; at p, and so —D(p) < ord,(f;) for each i.
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LThe Linear System of a Holomorphic Map

Let ¢ : X — P" be a holomorphic map to projective space. Write

¢ [fo:...: f] where each f; is a meromorphic function on X. Let

D = —min;(f;) be the inverse of the minimum divisor of the divisors of the
functions. Therefore, for p € X, we have that —D(p) is the minimum among
the orders of the f; at p, and so —D(p) < ord,(f;) for each i.

Therefore, —D < (f;) for each i, and we have that fi € Op(X) for every i.
Hence if we let V¢ be the C—linear span of the function {f;}, then Vi C Op(X).
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LThe Linear System of a Holomorphic Map

Let ¢ : X — P" be a holomorphic map to projective space. Write

¢ [fo:...: fy] where each f; is a meromorphic function on X. Let

D = —min;(f;) be the inverse of the minimum divisor of the divisors of the
functions. Therefore, for p € X, we have that —D(p) is the minimum among
the orders of the f; at p, and so —D(p) < ord,(f;) for each i.

Therefore, —D < (f;) for each i, and we have that f; € Op(X) for every i.
Hence if we let V¢ be the C—linear span of the function {fi}, then V¢ C Op(X).
In conclusion, the set of divisors |¢| = {(g) + D|g € V¢} forms a linear system
on X.
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Let ¢ : X — P" be a holomorphic map to projective space. Write

¢ [fo:...: fy] where each f; is a meromorphic function on X. Let

D = —min;(f;) be the inverse of the minimum divisor of the divisors of the
functions. Therefore, for p € X, we have that —D(p) is the minimum among
the orders of the f; at p, and so —D(p) < ord,(f;) for each i.

Therefore, —D < (f;) for each i, and we have that f; € Op(X) for every i.
Hence if we let V¢ be the C—linear span of the function {fi}, then V¢ C Op(X).
In conclusion, the set of divisors |¢| = {(g) + D|g € V} forms a linear system
on X.

The linear system |¢| defined above is well defined, independent of the choice
of the functions {f;} used to define ¢.
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LThe Linear System of a Holomorphic Map

Let ¢ : X — P" be a holomorphic map to projective space. Write

¢ [fo:...: fy] where each f; is a meromorphic function on X. Let

D = —min;(f;) be the inverse of the minimum divisor of the divisors of the
functions. Therefore, for p € X, we have that —D(p) is the minimum among
the orders of the f; at p, and so —D(p) < ord,(f;) for each i.

Therefore, —D < (f;) for each i, and we have that f; € Op(X) for every i.
Hence if we let V¢ be the C—linear span of the function {fi}, then V¢ C Op(X).
In conclusion, the set of divisors |¢| = {(g) + D|g € V} forms a linear system
on X.

The linear system |¢| defined above is well defined, independent of the choice
of the functions {f;} used to define ¢.

Definition

Given a holomorphic map ¢ : X — P" with nondegenerate image, the linear
system |¢| defined above is called the linear system of the map ¢.
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Divisors and Maps to Projective Space

Base Point of Linear Systems

Let X — P" be a holomorphic map. Then for every point p € X there is a
divisor E € |¢| which does not have p in its support. In other words, there is no
point of X which is contained in every divisor of the linear system |¢|.
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Divisors and Maps to Projective Space

Base Point of Linear Systems

Lemma

Let X — P" be a holomorphic map. Then for every point p € X there is a
divisor E € |¢| which does not have p in its support. In other words, there is no
point of X which is contained in every divisor of the linear system |¢|.

Proof.

Fix p € X, and write ¢ = [fo : ... : 5] for meromorphic function f;. Recall that
we define D = —min;{(f;)}. Suppose that the minimum order of the f/s at p is
k, assume that ord,(f;) = p. Then D(p) = —k, and E = (;) + D is an element
of the linear system |¢|. But E(p) = ord,(f;) + D(p) = k — k =0, so E does
not have p in its support. O

4
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:

Definition

Let Q be a linear system on a Riemann surface X. A point p is a base point
of the linear system Q if every divisor E € Q contains p (E > p). A linear
system Q is said to be base-point-free if it has no base points.
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LBase Point of Linear Systems

Definition
Let Q be a linear system on a Riemann surface X. A point p is a base point

of the linear system Q if every divisor E € Q contains p (E > p). A linear
system Q is said to be base-point-free if it has no base points.

Lemma

| \

A point p € X is a base point of the linear system Q C |D| defined by the
vector subspace V. C Op(X) if and only if V C Op_p(X). In particular p is a
base point of the complete linear system |D| if and only if Op_,(X) = Op(X).

18 /41
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LBase Point of Linear Systems

Definition

Let Q be a linear system on a Riemann surface X. A point p is a base point
of the linear system Q if every divisor E € Q contains p (E > p). A linear
system Q is said to be base-point-free if it has no base points.

| \

Lemma

A point p € X is a base point of the linear system Q C |D| defined by the
vector subspace V. C Op(X) if and only if V C Op_p(X). In particular p is a
base point of the complete linear system |D| if and only if Op_,(X) = Op(X).

Proposition

Let D be a divisor on a compact Riemann surface X. Then a point p € X is a
base point of the complete linear system |D| if and only if

dimOp_,(X) = dimOp(X). Hence |D| is a base-point-free if and only if for
every point p € X,dimOp_,(X) = dimOp(X) — 1.

18 /41
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Divisors and Maps to Projective Space

Defining a Holomorphic Map via Linear System

Proposition

Let Q C |D| be a base-point-free linear system of dimension n on a compact
Riemann surface X. Then there is a holomorphic map ¢ : X — P" such that
Q = |¢|. Moreover ¢ is unique up to the choice of coordinates in P".

19 /41
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Divisors and Maps to Projective Space

Defining a Holomorphic Map via Linear System

Proposition

Let Q C |D| be a base-point-free linear system of dimension n on a compact
Riemann surface X. Then there is a holomorphic map ¢ : X — P" such that
Q = |¢|. Moreover ¢ is unique up to the choice of coordinates in P".

Therefore we have a 1 — 1 correspondence between base-point-free linear
systems of dimension n on X and holomorphic map ¢ : X — P" with
nondegenerate image, up to linear coordinate changes.

19 /41
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Divisors and Maps to Projective Space

Removing the Base Point

Suppose that the complete linear system |D| has base points. Let

F = min{E|E € |D|} be the minimum of all of the divisors in the linear
system, the divisor F is the largest divisor that occurs in every divisor of |D]. It
is obvious that the complete linear system |D — F| then has no base points,
and moreover |D| = F + |D — F|

20/41
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LBase Point of Linear Systems

Divisors and Maps to Projective Space

Removing the Base Point

Suppose that the complete linear system |D| has base points. Let

F = min{E|E € |D|} be the minimum of all of the divisors in the linear
system, the divisor F is the largest divisor that occurs in every divisor of |D]. It
is obvious that the complete linear system |D — F| then has no base points,
and moreover |D| = F + |D — F|

If F is the fixed divisor of the complete linear system |D|, then
Op_r(X) = Op(X).

20/41
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Divisors and Maps to Projective Space

Removing the Base Point

Suppose that the complete linear system |D| has base points. Let

F = min{E|E € |D|} be the minimum of all of the divisors in the linear
system, the divisor F is the largest divisor that occurs in every divisor of |D]. It
is obvious that the complete linear system |D — F| then has no base points,
and moreover |D| = F + |D — F|

Lemma

If F is the fixed divisor of the complete linear system |D|, then
Op_r(X) = Op(X).

Proof.

Clearly F > 0, we have that D — F < D and so Op_¢(X) C Op(X). To see the
reverse inclusion, let f € Op(X), so that (f)+ D > 0. Therefore (f)+ D € |D|,
and we may write (f) + D = F + D’ for some nonnegative divisor D’. Then

(F)+(D—F)=D">0,sothat f € Op_r(X). O

| \

v
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Divisors and Maps to Projective Space

Criteria for to be an Embedding

Let X be a compact Riemann surface, and let D be a divisor on X with |D|
base-point-free. Fix a point p € X. Then there is a basis fy, ..., f, for Op such
that ord,(fo) = —D(p) and ord,(f;) > —D(p) fori > 1.

21/41
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Divisors and Maps to Projective Space

Criteria for to be an Embedding

Let X be a compact Riemann surface, and let D be a divisor on X with |D|
base-point-free. Fix a point p € X. Then there is a basis fy, ..., f, for Op such
that ord,(fo) = —D(p) and ord,(f;) > —D(p) fori > 1.

Consider the codimension one subspace Op_,(X) of Op(X), and let f, ..., f,

be a basis for Op_,(X). Extend this to a basic for Op(X) by adding a function

fo in Op(X) \ Op—p(X). Then ord,(fi) > —D(p) +1 > —D(p) for every i > 1.
O
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LCriteria for ¢ to be an Embedding
:

Proposition

Let X be a compact Riemann surface, and let D be a divisor on X with |D| is
base point free. Fix distinct points p and q in X. Then ¢p(p) = ¢o(q) if and
only if Op_p—q(X) = Op_p(X) = Op—_q(X). Hence ¢p if and only if for every
pair of distinct points p and q on X, we have

dimOD_p_q(X) = dim(’)D(X) — 2.
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Proposition

Let X be a compact Riemann surface, and let D be a divisor on X with |D| is
base point free. Fix distinct points p and q in X. Then ¢p(p) = ¢o(q) if and
only if Op_p—q(X) = Op_p(X) = Op—_q(X). Hence ¢p if and only if for every
pair of distinct points p and q on X, we have

dimOD_p_q(X) = dimOD(X) — 2.

We first prove an equivalence. Suppose ¢p(p) = ¢p(q), and choose a basis for
P" satisfying the condition in the above lemma, so that

op(p) = ép(q) =[1: ... : 0], then this condition implies that

ordq(fo) < ordg(fi) for all i > 0. This implies that f; € Op_q(X) for all i > 1 as
linear independent meromorphic functions, and since D is base-point-free,

fi, ..., fy forms a basis for Op_4(X), and therefore Op_,(X) = Op_q4(X).
Similarly, if Op_q(X) = Op—_q(X), then ¢p(p) = ¢p(q), using the previous
basis.
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Proposition

Let X be a compact Riemann surface, and let D be a divisor on X with |D| is
base point free. Fix distinct points p and q in X. Then ¢p(p) = ¢o(q) if and
only if Op_p—q(X) = Op_p(X) = Op—_q(X). Hence ¢p if and only if for every
pair of distinct points p and q on X, we have

dimOp_p_q(X) = dimOp(X) — 2.

We first prove an equivalence. Suppose ¢p(p) = ¢p(q), and choose a basis for
P" satisfying the condition in the above lemma, so that

op(p) = ép(q) =[1: ... : 0], then this condition implies that

ordq(fo) < ordg(fi) for all i > 0. This implies that f; € Op_q(X) for all i > 1 as
linear independent meromorphic functions, and since D is base-point-free,

fi, ..., fy forms a basis for Op_4(X), and therefore Op_,(X) = Op_q4(X).
Similarly, if Op_q(X) = Op—q(X), then ¢p(p) = ¢p(q), using the previous
basis.

This says that every function f in Op(X) with ord,(f) > —D(p) also satisfies
ordq(f) > —D(q). Hence Op_,(X) C Op—p—q(X), since p and g are distinct.
This implies that

Op—p—q(X) = Op—p(X) = Op—q(X).
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Since |D| is base-point-free, we have that

dimOp_p(X) = dimOp_q(X) = dimOp(X) — 1. Therefore dimOp_p,—4(X) is
either dimOp(X) — 1 or AimOp(X) — 2. If ¢p is 1 — 1, then by the first part
we see that Op_,_q(X) is a proper subspace of Op_,(X) for all p and g, and
so must have dimension equal to dimOp(X) — 2.

23 /41



S O N
The Riemann-Roch Theorem

Divisors and Maps to Projective Space
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Since |D| is base-point-free, we have that

dimOp_p(X) = dimOp_q(X) = dimOp(X) — 1. Therefore dimOp_p,—4(X) is
either dimOp(X) — 1 or AimOp(X) — 2. If ¢p is 1 — 1, then by the first part
we see that Op_,_q(X) is a proper subspace of Op_,(X) for all p and g, and
so must have dimension equal to dimOp(X) — 2.

Conversely, if the dimension always does drop by 2, then the tower of subspaces
Op—p—q(X) C Op_p(X) C Op(X) must all be distinct for every p and g, so
that ¢p is 1 — 1.
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Proposition

Let X be a compact Riemann surface, and let D be a divisor on X whose linear
system |D| has no base points. Then ¢p is a1 — 1 holomorphic map and an
isomorphism onto its image (which is a holomorphically embedded Riemann
surface in P"), if and only if for every p and q in X, we have

dimOp_p—q(X) = dimOp(X) — 2.
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Proposition

Let X be a compact Riemann surface, and let D be a divisor on X whose linear
system |D| has no base points. Then ¢p is a1 — 1 holomorphic map and an
isomorphism onto its image (which is a holomorphically embedded Riemann
surface in P"), if and only if for every p and q in X, we have

dim(’)D,p,q(X) = dlmOD(X) - 2.

| A\

Proof.
We first prove the if statement. In order to define the morphism
¢p = [fo : ... : f;], we choose a basis f, ..., f, € Op_2p, and we let

fi € Op_p(X): fo € Op(X) \ Op_p(X).

so that ord,(fi) = —D(p) + 1, and therefore ord,(fi/f) = 1, and

ord,(fi/fo) > 2 for i > 2, so that applying the inverse function theorem, we see
that the image of ¢p has the local coordinate f1/fy at p, and using injectivity,
we get that ¢p is an embedding.
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Proposition

Let X be a compact Riemann surface, and let D be a divisor on X whose linear
system |D| has no base points. Then ¢p is a1 — 1 holomorphic map and an
isomorphism onto its image (which is a holomorphically embedded Riemann
surface in P"), if and only if for every p and q in X, we have

dim(’)D,p,q(X) = dlmOD(X) - 2.

| A\

Proof.
We first prove the if statement. In order to define the morphism
¢p = [fo : ... : f;], we choose a basis f, ..., f, € Op_2p, and we let

fi € Op_p(X): fo € Op(X) \ Op_p(X).

so that ord,(fi) = —D(p) + 1, and therefore ord,(fi/f) = 1, and

ord,(fi/fo) > 2 for i > 2, so that applying the inverse function theorem, we see
that the image of ¢p has the local coordinate f1/fy at p, and using injectivity,
we get that ¢p is an embedding.

The holomorphic map ¢p is an embedding if and only if there is a function in
OD_p(X) but not in OD_QP(X), O

v
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Definition

A divisor D such that |D| has no base points and ¢p is an embedding is called
a very ample divisor.
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Algebraic Curve

Definition

Let f be a meromorphic on a Riemann surface X. The function f has
multiplicity one at a point p € X if either f is holomorphic at p and
ord,(f — f(p)) =1, or f has a simple pole at p.

26 /41



The Riemann-Roch Theorem
LAlgebraic Curve

Algebraic Curve

Algebraic Curve

Definition
Let ¥ be a meromorphic on a Riemann surface X. The function f has

multiplicity one at a point p € X if either f is holomorphic at p and
ord,(f — f(p)) =1, or f has a simple pole at p.

| A\

Definition

Let S be a set of meromorphic functions on a compact Riemann surface X. We
say that S separates points of X if for every pair of distinct points p and g in
X there is a meromorphic function f € S such that f(p) # f(q). We say that S
seperates tangents of X if for every point p € X there is a meromorphic
fucntion f € S which has multiplicity one at p. A compact Riemann surface X
is an algebraic curve if the field .Z(X) of global meromorphic function
functions separates the points and tangents of X.
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Algebraic Curve

Example of Algebraic Curve

Example

i. The Riemann sphere P! is an algebraic curve.
ii. Any complex torus C/L is an algebraic curve.
iii. Any smooth projective plane curve is algebraic curve.

iv. Any smooth projective curve in P is an algebraic curve.
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Algebraic Curve

Example of Algebraic Curve

Example

i. The Riemann sphere P! is an algebraic curve.
ii. Any complex torus C/L is an algebraic curve.
iii. Any smooth projective plane curve is algebraic curve.

iv. Any smooth projective curve in P is an algebraic curve.

Every compact Riemann surface is an algebraic curve.
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Every compact Riemann surface is an algebraic curve.
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Every compact Riemann surface is an algebraic curve.

Proof.

First we show that .# (X) separates the points of X. Fix two points p and g on
X, and consider divisor D = (g + 1)p. By Riemann Roch theorem, we see that
dimOp(X) > deg(D) + 1 — g = 2. Hence there is a nonconstant function

f € Op(X). This function f must have a pole, and the only poles allowed are
at p, so f has a pole at p and no other poles. In particular f does not have a
pole at g, and f then separates p and q.
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Every compact Riemann surface is an algebraic curve. l

Proof.

First we show that .#(X) separates the points of X. Fix two points p and g on
X, and consider divisor D = (g + 1)p. By Riemann Roch theorem, we see that
dimOp(X) > deg(D) + 1 — g = 2. Hence there is a nonconstant function

f € Op(X). This function f must have a pole, and the only poles allowed are
at p, so f has a pole at p and no other poles. In particular f does not have a
pole at g, and f then separates p and g. Secondly we show that .#Z(X)
separates the tangents of X. Fix a point p € X, and consider the divisor

D, = np. For large n,dimOp,(X) = n+ 1 — g; hence there are functions in
Op,.,(X) which are not in Op,(X) for large n. This implies that for large n,
there are functions f, with a pole of order exactly n at p and no other poles.
The ratio f,/f,+1 then has a simple zero at p. O

4
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If D is a divisor of Riemann surface X, and p some point of X, then we have
the inequality dimOp(X) > dimOp_,(X) > dimOp(X) — 1.
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If D is a divisor of Riemann surface X, and p some point of X, then we have
the inequality dimOp(X) > dimOp_,(X) > dimOp(X) — 1.

Suppose ¢ : X — P" is a holomorphic map with a smooth projective curve Y
as the image. If D is a very ample divisor on X, so that ¢p is a holomorphic
embedding of X into P", then

deg(¢(X)) = deg(D).
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Criterion for a Divisor to be Very Ample

Proposition

Let X be an algebraic curve of genus g. Then any divisor D with
deg(D) > 2g + 1 is very ample, that is, the complete linear system |D| has no
base points and the associated holomorphic map ¢p to projective space is a
holomorphic embedding onto a smooth projective curve of degree equal to
deg(D).
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Criterion for a Divisor to be Very Ample

Proposition

Let X be an algebraic curve of genus g. Then any divisor D with

deg(D) > 2g + 1 is very ample, that is, the complete linear system |D| has no
base points and the associated holomorphic map ¢p to projective space is a
holomorphic embedding onto a smooth projective curve of degree equal to
deg(D).

Proof.

We need to check that dimOp_,_4(X) = dimOp(X) — 2 for any points p and
g on X. Since both D and D — p — q have degree at least 2g — 1, we have that
HY (X, 0p) = HY(X,0p_p_q) = 0, and

| \

dimOp(X) =degD +1— g and dimOp_p,_¢(X) =deg(D—p—q)+1—g
O

4
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Every Algebraic Curve is Projective

Proposition

Every algebraic curve X can be holomorphically embedded into projective space.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Every Algebraic Curve is Projective

Proposition

Every algebraic curve X can be holomorphically embedded into projective space.

Pick any point p and use D = (2g + 1)p.

31/41



The Riemann-Roch Theorem

Classifications of Algebraic Curves of Genus g = 0,1,2,3

Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Zero

Let X be a compact Riemann surface. Then if dimO,(X) > 1 we get X = P,
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Zero

Let X be a compact Riemann surface. Then if dimO,(X) > 1 we get X = P,

If D is a divisor of degree 2 such that dimOp(X) =2 on a genus g > 1 curve,
then |D| is base point free.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Zero

Let X be a compact Riemann surface. Then if dimO,(X) > 1 we get X = P,

Corollary

If D is a divisor of degree 2 such that dimOp(X) =2 on a genus g > 1 curve,
then |D| is base point free.

Proof.

Suppose D is degree 2 and dimOp(X) = 2. If |D| has a base point, then
dimOp_,(X) = dimOp(X) so that dimOp_,(X) = 2. Since we can generate
|D| with the divisor D = p + gq, if g is the base point this implies that
dimOp(X) =2 > 1 so X = P! by the above lemma, but this contradicts
g>1. O

| \

v
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curve of Genus Zero are Isomorphic to the Riemann Sphere

Proposition

Let X be an algebraic curve of genus 0. Then X is isomorphic to the Riemann
sphere PL.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curve of Genus Zero are Isomorphic to the Riemann Sphere

Proposition

Let X be an algebraic curve of genus 0. Then X is isomorphic to the Riemann
sphere PL.

| A\

Proof.

Fix any point p € X. Since the canonical divisor K on X has degree

2g — 2 = —2, then the divisor K — p has degree —3. This is strictly negative,
so Ok—p(X) = 0 Applying Riemann-Roch to the divisor p, we find that

dimOp(X) = deg(p) + 1 — g + dimOk_,(X) = 2.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus One are Cubic Plane Curves

Proposition

Every algebraic curve of genus one is isomorphic to a smooth projective plane
cubic curve.
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Curves of Genus One are Cubic Plane Curves

Proposition

Every algebraic curve of genus one is isomorphic to a smooth projective plane
cubic curve.

| A\

Proof.

By the criterion for a divisor to be very ample, we see that any divisor of degree
3 is very ample. Since by the Riemann-Roch, dimOp(X) = 3 if deg(D) = 3,
we see that the holomorphic map ¢p would map X to the plane P?. Since
deg(¢p(X)) = deg(D) = 3, the image is smooth cubic curve. O

v
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Two are Hyperelliptic

Definition

We define a hyperelliptic curve to be an compact Riemann surface Y such
that there exists some holomorphic map F : Y — P! that is of degree 2.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Two are Hyperelliptic

Definition

We define a hyperelliptic curve to be an compact Riemann surface Y such
that there exists some holomorphic map F : Y — P! that is of degree 2.

Theorem

| A\

Suppose X and Y are Riemann surfaces and f : X — Y is proper non-constant
holomorphic map. Then there exists a natural number n such that f takes
every value ¢ € Y, counting multiplicities, n times.
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Curves of Genus Two are Hyperelliptic

Proposition

Every algebraic curve Y of genus two is hyperelliptic.
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Curves of Genus Two are Hyperelliptic

Proposition

Every algebraic curve Y of genus two is hyperelliptic.

Proof.

Note that dimOk(Y) = 2 and deg(K) = 2, we must have K = p + g for some
points p,qg € Y. Let f € Ox(Y') be nonconstant. Then f has either one or two
poles, which must be at the points p or g. Suppose f has only one pole at p.
Then we have that f € O,(Y), and therefore dimO,(Y’) = 2, which implies
that Y is isomorphic to P!, a contradiction of genus. So f must have either a
double pole or two single poles, which give us a morphism F : Y — P! of
degree 2. O

v
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The Canonical Map

The canonical linear system |K| on an algebraic curve X of genus g > 1 is
base-point-free.
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The Canonical Map

The canonical linear system |K| on an algebraic curve X of genus g > 1 is
base-point-free.

Proof.

Fix a point p € X. We must show that Ok_,(X) # Ok(X), and for this suffice
to show that dimOk_p(X) = dimOk(X) -1 =g — 1.
Now since dimO,(X) = 1, we have using Riemann-Roch that

| A\

1 = dimOp(X) = Ok—p(X) + deg(p) + 1 — g,

which gives dimOk_, = g — 1 as desired. O
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Curve of Genus Three

Proposition

Let g > 3, then ¢k is an embedding if and only if X is not hyperelliptic.
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Curve of Genus Three

Proposition
Let g > 3, then ¢k is an embedding if and only if X is not hyperelliptic.

Proof.

By Riemann-Roch theorem, we have

dimOk—p—q(X) = deg(K—p—q)+1—g+dimOpi4(X) = g —3+dimOp14(X),

so that ¢k fails to an embedding if and only if for some points p, g of
X, dimOpiq(X) = 2 (dimOk—p—q(X) = dimOk(X) — 2).
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Curve of Genus Three

Proposition
Let g > 3, then ¢k is an embedding if and only if X is not hyperelliptic.

Proof.

By Riemann-Roch theorem, we have

dimOk—p—q(X) = deg(K—p—q)+1—g+dimOpi4(X) = g —3+dimOp14(X),

so that ¢k fails to an embedding if and only if for some points p, g of

X, dimOpiq(X) = 2 (dimOk—p—q(X) = dimOk(X) — 2).

If this happens, then any nonconstant function f € O,44(X) gives a degree
map to the Riemann sphere, and so X is hyperelliptic. Conversely, if X is
hyperelliptic and 7 : X — P! is the degree 2 mapping, then the inverse image
divisor p + g of co has degree 2 and dimOp;4(X) = 2.

O

4
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Curves of Genus Three

If X is not hyperelliptic curve, then ¢x embeds X in P! as curve of degree
2g — 2.
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Classifications of Algebraic Curves of Genus g = 0,1,2,3

Curves of Genus Three

If X is not hyperelliptic curve, then ¢x embeds X in P! as curve of degree
2g — 2.

If g =3 and X is not hyperelliptic, then X is a plane curve of degree 4.
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