Proper Morphisms

Nhuan Le Khac

May 21, 2020

Nhuan Le Khac Proper Morphisms

æ

- Universally closed morphism and morphism of finite type
- Proper morphism
- Some properties of proper morphisms
- Over the second seco

1. Universally closed morphism

Local on the base	Stable under com-	Stable under base
	position	change
surjective	surjective	surjective
open immersion	open immersion	open immersion
closed immersion	closed immersion	closed immersion
immersion	immersion	immersion
closed	closed	
injective	injective	
open	open	
bijective	bijective	
homeomorphism	homeomorphism	

æ

Definition

Let **P** be a property of morphisms of schemes. We say that a morphism $f: X \to S$ is **universally P** if it satisfies **P** and for any morphism $S' \to S$ the corresponding morphism $X \times_S S' \to S'$ also satisfies **P**.

- Let **P** be a property that is not necessarily stable under base change and let **P'** be the property "universally **P**". Then **P'** is stable under base change.
- If **P** is stable under composition (resp. local on the base), the same is true for **P'**.

Local on the base	Stable under com-	Stable under base
	position	change
closed	closed	
injective	injective	
universally closed	universally closed	universally closed
universally injective	universally injective	universally injective

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Morphism of finite type

Definition

A morphism $f: X \to Y$ is called of finite type, if f is quasi-compact and the following equivalent conditions are satisfied:

- For every affine open subscheme V of Y and every affine open subscheme U of f⁻¹(V), the O_X(U) is finitely generated algeba over O_Y(V).
- **2** There exist a covering $Y = \bigcup_{i} \mathcal{V}_i$ by open affine subschemes

 $\mathcal{V}_i = Spec \ A_i$, and for each i a covering $f^{-1}(\mathcal{V}_i) = \bigcup \mathcal{U}_{ij}$ by

open affine subschemes $U_{ij} = Spec B_{ij}$ of X, such that for all i, j the B_{ij} is finitely generated algebra over A_i .

$$egin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y & & & \ i & & \uparrow i & & & \ \mathcal{U} & \stackrel{f\mid_{\mathcal{U}}}{\longrightarrow} & \mathcal{V} & & \mathcal{O}_X(\mathcal{U}) & \longleftarrow & \mathcal{O}_Y(\mathcal{V}) \end{array}$$

Proposition

- Morphisms of finite type are local on the base.
- Ø Morphisms of finite type are stable under base change.
- Morphisms of finite type are stable under composition.

2. Proper morphisms

Definition

A continuous function $f: X \to Y$ is called **proper** if inverse image under f of every quasi-compact subset of Y is quasi-compact.

Definition

A continuous function $f: X \to Y$ is called **proper** if the mapping $f \times 1_Z: X \times Z \to Y \times Z$ is closed, for every topological space Z.

(N. Bourbaki, General topology, Chapters 1, 10.1 definition 1.)

Proposition

Let $f: X \to Y$ be a continuous map. Suppose X is Hausdorff and Y is loacly compact. Then f is proper of and only if $f \times 1_Z: X \times Z \to Y \times Z$ is closed, for every topological space Z.

Proposition

A topological space X is quasi-compact if and only if the mapping $X \rightarrow \bullet$ is proper, where \bullet denotes a space consisting of a single point.

< A > <

Definition (Proper morphism)

A morphism of schemes $f: X \to Y$ is called **proper** (or X is called proper over Y) if f is separated, universally closed and of finite type.

Example

Let k be a field. Consider morphism $\mathbb{A}_k^1 \to Spec \ k$ where $\mathbb{A}_k^1 = Spec \ k[x]$ is affine line. This morphism is not proper. Indeed, $\mathbb{A}_k^1 \to Spec \ k$ is separated, of finite type, and closed. However,

Spec $k[x, y] = \mathbb{A}_k^2 \longrightarrow \mathbb{A}_k^1$ $V(xy - 1) \longmapsto \mathbb{A}_k^1 - \{0\}$ is not closed

3. Some properties of proper morphisms

Proposition

- Any closed immersion is proper.
- Proper morphisms are local on the base.
- Oper morphisms are stable under base change.
- Proper morphisms are stable under composition.

Proof: (1) *Fact* : Any closed immersion is monomorphism.

Since *f* is monomorphism, we have p = q.

$$p \circ \Delta = 1_X, \ \Delta \circ p = 1_{X \times_Y X}$$

We get Δ is isomorphism and hence $f: X \to Y$ is separated. As being closed immersion is stable under base change, $f: X \to Y$ is universally closed.

Definition

A morphism $f: X \to Y$ is called of finite type, if f is quasi-compact and the following equivalent conditions are satisfied:

For every affine open subscheme V of Y and every affine open subscheme U of f⁻¹(V), the O_X(U) is finitely generated algeba over O_Y(V).

• There exist a covering $Y = \bigcup_{I} \mathcal{V}_{i}$ by open affine subschemes $\mathcal{V}_{i} = Spec A_{i}$, and for each *i* a covering $f^{-1}(\mathcal{V}_{i}) = \bigcup_{J} \mathcal{U}_{ij}$ by open affine subschemes $\mathcal{U}_{ij} = Spec B_{ij}$ of X, such that for all *i*, *j* the B_{ij} is finitely generated algebra over A_{i} .

- A closed subset of a quasi-compact topological space is quasi-compact.
- Every closed subscheme of *Spec A* is of the form *Spec A*/*I* for some ideal *I* of *A*.

Corollary

- If f: X → Y is a morphism of S-schemes such that X is proper over S and such that Y is separated over S. Then f is proper.
- Q Let f: X → Y be a surjective morphism of S-schemes. Suppose that Y is separated of finite type over S and that X is proper over S. Then Y is proper over S.

Proposition (Topological version)

Let $f: X \to Y$ be a continuous map such that X is quasi-compact and Y is Hausdorff. Then f is proper.

(1)

As being a proper morphism is stable under base change, q is proper morphism.

Furthermore, as being a closed immersion is stable under base change, Γ_f is closed immersion and hence proper. This proves (1).

Corollary

- If f: X → Y is a morphism of S-schemes such that X is proper over S and such that Y is separated over S. Then f is proper.
- Q Let f: X → Y be a surjective morphism of S-schemes. Suppose that Y is separated of finite type over S and that X is proper over S. Then Y is proper over S.

Proposition (Topological version)

If $g \circ f$ is proper and f is surjective, then g is proper.

(2)

Since $X \to S$ is closed and $X \to Y$ is surjective, $Y \to S$ is closed. As being surjective is stable under base change, $X \times_S S' \to Y \times_S S'$ is surjective. Furthermore, q is closed as u is universally closed. Thus, $Y \times_S S' \to S$ is closed. Therefore, $Y \to S$ is universally closed and hence proper.

Proposition

Let $f: X \to Y$ be a S-morphism of S-schemes. Suppose X, Y are separated and of finite type over S. Then f is proper if and only if $f \times 1_{S'}: X \times_S S' \to Y \times_S S'$ is closed, for every S-scheme S'.

(A.Grothendieck, J.A.Dieudonné, EGA II, corollary 5.4.8.)

Proposition (Topological version)

Let $f: X \to Y$ be a continuous map. Suppose X is Hausdorff and Y is loacly compact. Then f is proper of and only if $f \times 1_Z: X \times Z \to Y \times Z$ is closed, for every topological space Z.

4. Valuative criterion of properness

Theorem (Valuative criterion for properness - general version)

Let $f: X \rightarrow Y$ be a morphism of schemes. Then the following assertions are equivalent.

- f is proper.
- If is quasi-separated, of finite type and for all diagrams below where A is a valuation ring and K = Frac(A) there exists a unique lift of u.

Spec
$$K \xrightarrow{u} X$$

 $i \downarrow \qquad \stackrel{\overline{u}}{\xrightarrow{u}} \qquad \stackrel{\tau}{\xrightarrow{\tau}} \downarrow f$
Spec $A \xrightarrow{v} Y$

For many applications the following Noetherian version is useful.

Theorem (Valuative criterion for properness - Noetherian version)

Let $f: X \to Y$ be a morphism of finite type and suppose that X is Noetherian. Then the following assertions are equivalent.

- f is proper.
- For all diagrams below where A is a valuation ring and K = Frac(A) there exists a unique lift of u.

Application: $\mathbb{P}^n_S \to S$ is proper, for every scheme *S*. Here $\mathbb{P}^n_S = \mathbb{P}^n_{\mathbb{Z}} \times_{\mathbb{Z}} S$.

THANK YOU FOR YOUR LISTENING!

Nhuan Le Khac Proper Morphisms

→ < Ξ → <</p>

э