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Topology

Topology

Topology on Modular Curves

Let Γ ⊂ SL2(Z) be a congruence subgroup. The corresponding modular curve is the
set of orbits

Y (Γ) = {Γτ : τ ∈ H}.

The natural surjection
π : H→ Y (Γ), π(τ) = Γτ

gives Y (Γ) the quotient topology.
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Modular Curves as Riemann Surfaces
Topology

Here are some claims:
1 π is an open mapping.
Because for every U open in H, one has

π−1(π(U)) =
⋃
γ∈Γ

γ(U)

which is clearly open.

2 π(U1) ∩ π(U2) = ∅ in Y (Γ) ⇔ Γ(U1) ∩ U2 = ∅ in H.
3 Y (Γ) is connected.
Because H is connected and π is continuous.

4 Y (Γ) is Hausdorff.
5 Y (Γ) is second countable.
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Modular Curves as Riemann Surfaces
Topology

Theorem (1)
The action of SL2(Z) on H is properly discontinuous, i.e, given any t1, t2 ∈ H there
exist neighborhoods U1 of t1 and U2 of t2 in H such that

∀γ ∈ SL2(Z), if γ(U1) ∩ U2 6= ∅ then γ(t1) = t2

Corollary
For any congruence subgroup Γ of SL2(Z), the modular curve Y (Γ) is Hausdorff.

Proof.
Let π(τ1) 6= π(τ2) be 2 distinct points in Y (Γ). Take neighborhoods U1 of τ1, U2 of
τ2 as in the previous theorem. Since γ(τ1) 6= τ2 for all γ ∈ Γ, then Γ(U1) ∩ U2 = ∅ in
H. This implies π(U1) ∩ π(U2) = ∅.
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Modular Curves as Riemann Surfaces
Topology

To prove the theorem 1, let U′1 (resp. U′2) be any neighborhood of t1 (resp. t2) with
compact closure in H.

Lemma (1)
The inequality

sup{Im(γ(t)) : γ ∈ SL2(Z) has bottom row (c, d), t ∈ U′1} < inf{Im(t) : t ∈ U′2}

holds true for all but finitely many integer pairs (c, d) with gcd(c, d) = 1.

Remark This lemma implies that:
If γ ∈ SL2(Z) satisfying γ(U′1) ∩ U′2 6= ∅ then the bottom row of γ has only finitely
many choices.
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Modular Curves as Riemann Surfaces
Topology

Proof of lemma 1.
Observe that

Im(γ(t)) =
Im(t)
|ct + d |2

≤
Im(t)

c2Im(t)2
, ∀γ =

[
a b
c d

]
∈ SL2(Z), ∀t ∈ U′1.

So as c →∞, Im(γ(t))→ 0. Let 2ε = inf{Im(t) : t ∈ U′2} > 0, there exists N > 0
such that whenever |c| > N, Im(γ(t)) < ε for all t ∈ U′1. It implies that the inequality
holds true for all integer pairs (c, d) with gcd(c, d) = 1 and |c| > N.
Now suppose |c| ≤ N, then |ct| is bounded. Then Im(γ(t))→ 0 as d →∞. So there
exists M > 0 such that whenever |d | > M, Im(γ(t)) < ε for all t ∈ U′1. This means
the inequality holds true for all integer pairs (c, d) with gcd(c, d) = 1, |c| ≤ N and
|d | > M.
From above, we deduces that the inequality holds true whenever either |c| > N or
|d | > M.
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Modular Curves as Riemann Surfaces
Topology

Lemma (2)
For an integer pair (c, d) with gcd(c, d) = 1, the number of

γ ∈ SL2(Z) with bottom row (c, d) such that γ(U′1) ∩ U′2 6= ∅

is finite.

Proof of lemma 2.
Observe that the set of matrices γ ∈ SL2(Z) with bottom row (c, d) are{[

1 k
0 1

] [
a b
c d

]
: k ∈ Z

}
where (a, b) is any particular pair such that ad − bc = 1. Thus

γ(U′1) ∩ U′2 =
([

a b
c d

]
U′1 + k

)
∩ U′2

is empty for all but finitely many γ with bottom row (c, d).
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Modular Curves as Riemann Surfaces
Topology

Then F = {γ ∈ SL2(Z) : γ(U′1) ∩ U′2 6= ∅, γ(t1) 6= t2} is a finite set.

For each γ ∈ F , there exists disjoint neighborhoods U1,γ of γ(t1) and U2,γ of t2 in H.
Define

U1 = U′1 ∩

(⋂
γ∈F

γ−1(U1,γ)

)

U2 = U′2 ∩

(⋂
γ∈F

U2,γ

)
.

Take any γ ∈ SL2(Z) such that γ(U1) ∩ U2 6= ∅. To show γ(t1) = t2, it suffices to
show γ /∈ F . If γ ∈ F , then

γ−1(U1,γ) ⊃ U1 and U2,γ ⊃ U2,

so U1,γ ∩ U2,γ ⊃ γ(U1) ∩ U2 6= ∅, contradiction.
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Modular Curves as Riemann Surfaces
Topology

To summarize
1 π : H→ Y (Γ) is open.
2 Y (Γ) is connected.
3 Y (Γ) is Hausdorff.
4 Y (Γ) is second countable.
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Modular Curves as Riemann Surfaces
Charts

Charts

Charts on Modular Curves

For a point π(t) ∈ Y (Γ) where t ∈ H, consider 2 cases:

Case 1 t is fixed only by the identity transformation in Γ. Let U be a small neighborhood
of t such that

∀γ ∈ SL2(Z), γ(U) ∩ U 6= ∅⇒ γ(t) = t.

Then we claim that
π|U : U → π(U)

is a homeomorphism.
Then we can define

ϕ : π(U)→ U ⊂ C, ϕ = (π|U)−1

as a local coordinate at π(t).
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Modular Curves as Riemann Surfaces
Charts

Case 2 t has a nontrivial group of fixing transformations in Γ. This is complicated.

Example

Consider Γ = SL2(Z), t = i and γ =
[
0 −1
1 0

]
. Then γ(i) = −1

i = i .

Let δ =
[
1 −i
1 i

]
∈ GL2(C). We know that δ is a conformal map from H to the unit

disc D which sends i to 0. By direct computation we have

δ · γ · δ−1 =
[
−i 0
0 i

]
,

which acts as 180-degree rotation about 0 in the unit disc. We observe that any

neighborhood about 0 contains pair of
[
−i 0
0 i

]
-equivalent points.

Then we deduce that any neighborhood of i contains pairs of γ-equivalent points.
Thus cannot biject to a neighborhood of π(i) in Y (SL2(Z)).
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Modular Curves as Riemann Surfaces
Charts

The last example gives rise to the definition of isotropy subgroups and elliptic points.

Definition
For each t ∈ H, the isotropy subgroup of t is

Γt = {γ ∈ Γ : γ(t) = t}.

A point t ∈ H is an elliptic point for Γ if Γt is nontrivial as a group of transformations.
The corresponding point π(t) on Y (Γ) is also called elliptic.
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Modular Curves as Riemann Surfaces
Charts

Proposition
For each elliptic point t of Γ the isotropy group Γt is finite cyclic.

Thus each point t ∈ H has an associated positive integer

ht =
∣∣∣{±I}Γt

{±I}

∣∣∣ =
{
|Γt |/2 if − I ∈ Γt ,

|Γt | if − I /∈ Γt .

This ht is called the period of t, and ht > 1 only for elliptic points. ht correctly
counts the t-fixing transformations.

1 If t ∈ H and γ ∈ SL2(Z) then
the period of t under Γ = the period of γ(t) under γΓγ−1.

In particular, ht depends only on Γt. So the period is well-defined on Y (Γ).
2 If Γ is normal in SL2(Z) then all points of Y (Γ) over a point of Y (SL2(Z) have
the same period.

If SL2(Z)t1 = SL2(Z)t2 then Γt1 and Γt2 have the same period.
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the period of t under Γ = the period of γ(t) under γΓγ−1.

In particular, ht depends only on Γt. So the period is well-defined on Y (Γ).
2 If Γ is normal in SL2(Z) then all points of Y (Γ) over a point of Y (SL2(Z) have
the same period.

If SL2(Z)t1 = SL2(Z)t2 then Γt1 and Γt2 have the same period.
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To put coordinates on Y (Γ) about a point π(t):

1 Use the "straightening map" δt =
[
1 −t
1 t

]
∈ GL2(C) to send t to 0 and t̄ to ∞.

2 The isotropy subgroup of 0 in the conjugated transformation group is the
conjugate of the isotropy subgroup of t, i.e

(δt{±I}Γδ−1t )0/{±I} = δt({±I}Γt/{±I})δ−1t ,

and therefore is cyclic of order ht as a group of transformations.
3 Since the transformations in the isotropy subgroup of t fix t and t̄, the
transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞. So they
must have the form z 7→ az.

4 The group is finite cyclic of order ht , the transformations must be the rotations
through angular multiples of 2π/ht about 0.

5 The map δt is "straightening" neighborhoods of t to neighborhoods of 0 in the
sense that after the map, equivalent points are spaced apart by fixed angles.
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Now given any point π(t) ∈ Y (Γ), take a neighborhood U of t such that

∀γ ∈ Γ, if γ(U) ∩ U 6= ∅ then γ ∈ Γt .

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.

Define ψ : U → C to be ψ = ρ ◦ δ where δ = δt , ρ is the power function ρ(z) = zh,
with h = ht . Let V = ψ(U), then V is open.
Claim: For any t1, t2 ∈ U,

π(t1) = π(t2)⇔ ψ(t1) = ψ(t2).

To see this, observe that

π(t1) = π(t2)⇔ t1 ∈ Γt2 ⇔ t1 ∈ Γt t2 ⇔ δ(t1) ∈ (δΓtδ
−1)(δ(t2))⇔ δ(t1) = µdh (δ(t2)),

for some integer d , µh = e2πi/h since δΓtδ−1 is a cyclic transformation group of h
rotations. So

π(t1) = π(t2)⇔ (δ(t1))h = (δ(t2))h ⇔ ψ(t1) = ψ(t2).
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Thus there exists an injection ϕ : π(U)→ V such that the diagram

commutes.

Also ϕ surjects since ψ surjects, and ϕ : π(U)→ V is a homeomorphism.
So ϕ is a local coordinate and π(U) is a coordinate neighborhood about π(t) in Y (Γ).
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Holomorphicity of Transition Maps

Given overlapping π(U1) and π(U2). Let

V1,2 = ϕ1(π(U1) ∩ π(U2)), V2,1 = ϕ2(π(U1) ∩ π(U2)), ϕ2,1 = ϕ2 ◦ ϕ−11 |V1,2 .

For each x ∈ π(U1) ∩ π(U2) it suffices to check holomorphy in some neighborhood of
ϕ1(x) in V1,2.
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Write x = π(t1) = π(t2) with t1 ∈ U1, t2 ∈ U2 and t2 = γ(t1) for some γ ∈ Γ. Let
U1,2 = U1 ∩ γ−1(U2), then π(U1,2) is a neighborhood of x and so ϕ1(π(U1,2)) is a
neighborhood of ϕ1(x) in V1,2.

We’ll prove for the case ϕ1(x) = 0. So the first straightening map is δ1 = δt1 . Let
q = ϕ1(x ′) ∈ ϕ1(π(U1,2)), one has

q = ϕ1(π(t′)) = ψ1(t′) = (δ1(t′))h1 , for some t′ ∈ U1,2

where h1 is the period of t1.
Let t̃2 ∈ U2 be the point such that ψ(t̃2) = 0 and let h2 be its period. Then

ϕ2,1(q) = ϕ2(x ′)
= ϕ2(π(t′))
= ϕ2(π(γ(t′))
= ψ2(γ(t′)) which is defined since γ(t′) ∈ U2

= (δ2(γ(t′)))h2

= ((δ2γδ−11 )(δ1(t′)))h2

= ((δ2γδ−11 )(q1/h1 ))h2 .
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The calculation shows that if h1 = 1 then the transition map is clearly holomorphic.

If h1 > 1, first observe that t2 = γ(t1), which means t2 has the same period h1 > 1 as
t1. Then t2 must be an elliptic point.
Recall from the construction that the elliptic point (if exists) must map to 0 under the
straightening map. So t2 = t̃2 and then h2 = h1.
We have the following diagrams

0
δ−1
17−→ t1

γ7−→ t2
δ27−→ 0 , ∞

δ−1
17−→ t̄1

γ7−→ t̄2
δ27−→ ∞.

This shows δ2γδ−11 =
[
α 0
0 β

]
for some nonzero α, β ∈ C.

The formula for the transition map in this case is

ϕ2,1(q) =
([
α 0
0 β

]
(q1/h)

)h
=
(
α

β

)h
q

which is clearly holomorphic.
The general case is quite similar.
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Elliptic Points

Elliptic Points

In this section we will show the remaining proposition: the isotropy subgroup Γt is
finite and cyclic. Then we will discover some properties of elliptic points of a
congruence subgroup Γ. It turns out that the set of elliptic points is quite "small".
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Example
Consider the case Y (1) = SL2(Z) \ H. Let D be the set

D = {t ∈ H : |Re(t)| ≤ 1/2, |t| ≥ 1}.
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Lemma
The map π : D → Y (1) surjects, where π is the natural projection π(t) = SL2(Z)t.

The surjection π : D → Y (1) is not injective. The translation
[
1 1
0 1

]
: t 7→ t + 1

identifies the two boundaries half-lines, and the inversion
[
0 −1
1 0

]
: t 7→ −1/t

identifies the two halves of the boundary arc. But these boundary identifications are
the only ones.

Lemma
Suppose t1 6= t2 are distinct points in D such that t2 = γ(t1) for some γ ∈ SL2(Z).
Then either

1 Re(t1) = ±1/2 and t2 = ∓1, or
2 |t1| = 1 and t2 = −1/t1.
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Returning to elliptic points, suppose t ∈ H is fixed by a nontrivial transformation

γ =
[
a b
c d

]
∈ SL2(Z). Then

at + b = ct2 + dt.

Since t ∈ H, we can show that c 6= 0 and |a + d | < 2. Then a + d ∈ {−1, 0, 1}.
The characteristic polynomial of γ is given by

(a − x)(d − x)− bc = x2 − (a + d)x + 1.

So the characteristic polynomial is x2 + 1 or x2 ± x + 1.
Then one of the following holds

γ3 = I , γ4 = I , γ6 = I.

Then γ has order 1, 2, 3, 4 or 6 as a matrix. Observe that orders 1 and 2 give the
identity transformations. The following proposition will discribe all nontrivial fixing
transformations.
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Modular Curves as Riemann Surfaces
Elliptic Points

Proposition
Let γ ∈ SL2(Z).

1 If γ has order 3 then γ is conjugate to
[
0 1
−1 −1

]±1
in SL2(Z).

2 If γ has order 4 then γ is conjugate to
[
0 −1
1 0

]±1
in SL2(Z).

3 If γ has order 6 then γ is conjugate to
[
0 −1
1 1

]±1
in SL2(Z).

Corollary
1 The elliptic points for SL2(Z) are SL2(Z)i and SL2(Z)µ3 where µ3 = e2πi/3.
2 The modular curve Y (1) has 2 elliptic points.
3 The isotropy subgroups of i and µ3 are

SL2(Z)i =
〈[

0 −1
1 0

]〉
and SL2(Z)µ3 =

〈[
0 −1
1 1

]〉
.

4 For each elliptic point t of SL2(Z) the isotropy subgroup SL2(Z)t is finite cyclic.
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Modular Curves as Riemann Surfaces
Elliptic Points

Corollary
Let Γ be a congruence subgroup of SL2(Z). The modular curve Y (Γ) has finitely many
elliptic points. For each elliptic point t of Γ, the isotropy subgroup Γt is finite cyclic.

Proof.
Write

SL2(Z) =
d⊔

j=1

Γγj

then the set of elliptic points of Y (Γ) is a subset of

EΓ = {Γγj (i), Γγj (µ3) : 1 ≤ j ≤ d},

which is clearly finite.
For each t ∈ H, observe that

Γt is a subgroup of SL2(Z)t .

Then Γt is finite cyclic.
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Modular Curves as Riemann Surfaces
Cusps

Cusps

Compactify a Modular Curve

The picture suggests that the modular curve Y (Γ) can be compactified by adjoining
all the cusps.
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Modular Curves as Riemann Surfaces
Cusps

Let H∗ = H ∪ Q ∪ {∞} and take the extended quotient

X(Γ) = Γ \ H∗ = Y (Γ) ∪ Γ \ (Q ∪ {∞}).

The points Γs in Γ \ Q ∪ {∞} are also called the cusps of X(Γ).

Remark The action of Γ on Q ∪ {∞} is induced from the action of GL+
2 (Q) (the

group of 2× 2 matrices with positive determinant and rational entries) on Q ∪ {∞}
given by [

a b
c d

](m
n

)
=

am
n + b

c m
n + d

.

Remark

1 SL2(Z) acts transitively on Q ∪ {∞}.
2 The isotropy subgroup of ∞ in SL2(Z) is the translations

SL2(Z)∞ =
{
±
[
1 m
0 1

]
: m ∈ Z

}
.

Lemma
The modular curve X(1) = SL2(Z) \ H∗ has one cusp. For any subgroup Γ of SL2(Z)
the modular curve X(Γ) has finitely many cusps.
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Modular Curves as Riemann Surfaces
Cusps

Cusps

Topology on X (Γ)

The usual topology on H∗ contains too many points of Q∪{∞} in each neighborhood
to make the quotient X(Γ) Hausdorff. So we need to define a new topology on H∗.

For each M > 0, define
NM = {t ∈ H : Im(t) > M}.

Adjoin to the usual open sets in H more sets in H∗ to serve a base of neighborhoods
of the cusps, the sets

α(NM ∪ {∞}) : M > 0, α ∈ SL2(Z),

and take the resulting topology on H∗.
Remark Under this topology, each γ ∈ SL2(Z) is a homeomorphism of H∗.
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Modular Curves as Riemann Surfaces
Cusps

Giving X(Γ) the quotient topology and extending natural projection π : H∗ → X(Γ),
we have:

Proposition
The modular curve X(Γ) is Hausdorff, connected, and compact.

Let x1 6= x2 ∈ X(Γ). Consider the cases:
1 x1 = Γt1, x2 = Γt2 for some t1, t2 ∈ H: Done.
2 x1 = Γs1, x2 = Γt2 where s1 ∈ Q ∪ {∞}, t2 ∈ H: Let U2 be any neighborhood of
t2 in H with compact closure K . We have the inequality

Im(γ(t)) ≤ max{Im(t), 1/Im(t)} for t ∈ H and γ ∈ SL2(Z).

This implies for M large enough, SL2(Z)K ∩NM = ∅.
Let α ∈ SL2(Z) such that s1 = α(∞), then α(NM ∪ {∞}) is a neighborhood of
s1 and α(NM ∪ {∞}) ∩ U2 = ∅.

3 x1 = Γs1, x2 = Γs2 where s1, s2 ∈ Q ∪ {∞}: Let α1, α2 ∈ SL2(Z) such that
s1 = α1(∞), s2 = α2(∞).
Let U1 = α1(N2 ∪ {∞}),U2 = α2(N2 ∪ {∞}). Then we claim that π(U1) and
π(U2) are disjoint.
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Modular Curves as Riemann Surfaces
Cusps

To see this, suppose that ∃γ ∈ Γ : γα1(t1) = α2(t2),then α−12 γα1 maps t1 to t2.

Note that N2 does not contain any elliptic points, then

α−12 γα1 = ±
[
1 m
0 1

]
, for some m ∈ Z.

Thus α−12 γα1 fixes ∞, consequently γ(s1) = s2, contradiction. Then X(Γ) is
Hausdorff.
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Suppose H∗ = O1 ∪ O2 is a disjoint union of open subsets. Intersect with the
connected sed H to conclude that O1 ⊃ H and so O2 ⊂ Q ∪ {∞}. But then O2 is not
open unless it is empty. Thus H∗ is connected and so is its continuous image X(Γ).

For compactness, first observe that

D∗ = D ∪ {∞} is compact in the H∗ topology.

Note that

H∗ = SL2(Z)D∗ =
⋃
j

Γγj (D∗), where the γj are coset representatives.

Then
X(Γ) =

⋃
j

π(γj (D∗)).

Since each γj is continuous, π is continuous and [SL2(Z) : Γ] <∞, X(Γ) is compact.
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Cusps

Charts about Cusps

For each cusp s ∈ Q ∪ {∞}, define the width of s to be

hs =
∣∣∣SL2(Z)s
{±I}Γs

∣∣∣ .
This notion is dual to the period of an elliptic point, being inversely propotional to the
size of an isotropy subgroup.

36 / 45



Modular Curves as Riemann Surfaces
Cusps

Claims:
1 If s ∈ Q ∪ {∞} and γ ∈ SL2(Z) then

the width of γ(s) under γΓγ−1 = the width of s under Γ.
In particular, the width hs depends only on Γs, making the width is well-defined
on X(Γ).

2 If Γ is normal in SL2(Z) then all cusps of X(Γ) have the same width.
3 If δ ∈ SL2(Z) takes s to ∞, then

hs =
∣∣∣ SL2(Z)∞

(δ{±I}Γδ−1)∞

∣∣∣ .
Moreover,

(δ{±I}Γδ−1)∞ = {±I}
〈[

1 hs
0 1

]〉
.
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Modular Curves as Riemann Surfaces
Cusps

Define U = Us = δ−1(N2 ∪ {∞}) and define ψ = ρ ◦ δ, where ρ = e2πiz/h, h = hs .
Let V = imψ then V is an open subset of C, we have

ψ : U → V , ψ(t) = e2πiδ(t)/h.
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Cusps

Claim: For all t1, t2 ∈ U, π(t1) = π(t2)⇔ ψ(t1) = ψ(t2).

Indeed,
π(t1) = π(t2)⇔ t1 = γ(t2)⇔ δ(t1) = (δγδ−1)(δ(t2))

for some γ ∈ Γ. Since δ(t1) and δ(t2) both lie in N2 ∪ {∞}, δγδ−1 must be a
translation. So

δγδ−1 ∈ δΓδ−1 ∩ SL2(Z)∞ = (δΓδ−1)∞ ⊂ {±I}
〈[

1 h
0 1

]〉
Then

π(t1) = π(t2)⇔ δ(t1) = δ(t2) + mh for some m ∈ Z
⇔ ψ(t1) = ψ(t2).
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Cusps

Therefore, there exists a bijection ϕ : π(U)→ V such that the following diagram
commutes

The coordinate neighborhood about π(s) in X(Γ) is π(U), and the coordinate map is
ϕ : π(U)→ V , a homeomorphism.
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Cusps

Holomorphicity of Transition Maps

It suffices to consider 2 following cases.
Case 1 Suppose U1 ⊂ H has the corresponding straightening map δ1 = δt1 ∈ GL2(C)

where t1 has period h1 and suppose U2 = δ−12 (N2 ∪ {∞}).

For each x ∈ π(U1) ∩ π(U2), write x = π(t̃1) = π(t2) for t̃1 ∈ U1, t2 ∈ U2.
Let U1,2 = U1 ∩ γ−1(U2), then ϕ1(π(U1,2)) is a neighborhood of ϕ1(x).
For any q = ϕ1(x ′) ∈ ϕ1(π(U1,2)), the formula is

ϕ2,1(q) = exp(2πiδ2γδ−11 (q1/h1 )/h2).

If h1 = 1: OK.
If h1 > 1, then t1 /∈ U1,2, else the point δ2(γ(t1)) ∈ N2 is also an elliptic point for
Γ, which is contradiction since N2 contains no elliptic points. Then t1 /∈ U1,2 so
0 /∈ ϕ1(π(U1,2)). The transition map is holomorphic.
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Case 2 Suppose Ui = δ−1i (N2 ∪ {∞}) with δi : si 7→ ∞, i = 1, 2.

If π(U1) ∩ π(U2) 6= ∅, then there exist t1 ∈ U1, t2 ∈ U2, γ ∈ Γ such that

t1 = γ(t2)⇒ δ1(t1) = δ1γδ
−1
2 (δ2(t2)).

Since δ1γδ−12 moves some point in N2 ∪ {∞} to another, it must be a translation

±
[
1 m
0 1

]
.

In this case γ(s1) = s2, so h1 = h2 = h. Using this, we can compute

ϕ2,1(q) = e2πim/hq.

This is clearly holomorphic.
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To summarize, for any congruence subgroup Γ of SL2(Z) the extended quotient X(Γ)
is a compact Riemann surface.

Problems:
1 Compute the genus of X(Γ).
2 Study the meromorphic functions and differentials on X(Γ).
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Modular Curves and Modularity

Modular Curves and Modularity

Theorem (Modularity Theorem)
Let E be a complex elliptic curve with j(E) ∈ Q. Then for some positive integer N
there exists a surjective holomorphic function of compact Riemann surfaces from the
modular curve X0(N) to the elliptic curve E,

X0(N) −→ E .
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