Modular Curves as Riemann

Surfaces

Tran Hoang Son Institute of Mathematics of Hanoi

1 Topology

2 Charts

3 Elliptic Points

4 Cusps

5 Modular Curves and Modularity

Topology on Modular Curves

Let $\Gamma \subset S L_{2}(\mathbb{Z})$ be a congruence subgroup. The corresponding modular curve is the set of orbits

$$
Y(\Gamma)=\{\Gamma \tau: \tau \in \mathbb{H}\}
$$

Topology on Modular Curves

Let $\Gamma \subset S L_{2}(\mathbb{Z})$ be a congruence subgroup. The corresponding modular curve is the set of orbits

$$
Y(\Gamma)=\{\Gamma \tau: \tau \in \mathbb{H}\}
$$

The natural surjection

$$
\pi: \mathbb{H} \rightarrow Y(\Gamma), \quad \pi(\tau)=\Gamma \tau
$$

gives $Y(\Gamma)$ the quotient topology.

Here are some claims:
(1) π is an open mapping.

Because for every U open in \mathbb{H}, one has

$$
\pi^{-1}(\pi(U))=\bigcup_{\gamma \in \Gamma} \gamma(U)
$$

which is clearly open.

Here are some claims:
(1) π is an open mapping.

Because for every U open in \mathbb{H}, one has

$$
\pi^{-1}(\pi(U))=\bigcup_{\gamma \in \Gamma} \gamma(U)
$$

which is clearly open.
(2) $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)=\varnothing$ in $Y(\Gamma) \quad \Leftrightarrow \quad \Gamma\left(U_{1}\right) \cap U_{2}=\varnothing$ in \mathbb{H}.

Here are some claims:
(1) π is an open mapping.

Because for every U open in \mathbb{H}, one has

$$
\pi^{-1}(\pi(U))=\bigcup_{\gamma \in \Gamma} \gamma(U)
$$

which is clearly open.
(2) $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)=\varnothing$ in $Y(\Gamma) \quad \Leftrightarrow \quad \Gamma\left(U_{1}\right) \cap U_{2}=\varnothing$ in \mathbb{H}.
(3) $Y(\Gamma)$ is connected.

Because \mathbb{H} is connected and π is continuous.

Here are some claims:
(1) π is an open mapping.

Because for every U open in \mathbb{H}, one has

$$
\pi^{-1}(\pi(U))=\bigcup_{\gamma \in \Gamma} \gamma(U)
$$

which is clearly open.
(2) $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)=\varnothing$ in $Y(\Gamma) \quad \Leftrightarrow \quad \Gamma\left(U_{1}\right) \cap U_{2}=\varnothing$ in \mathbb{H}.
(3) $Y(\Gamma)$ is connected.

Because \mathbb{H} is connected and π is continuous.
(4) $Y(\Gamma)$ is Hausdorff.

Here are some claims:
(1) π is an open mapping.

Because for every U open in \mathbb{H}, one has

$$
\pi^{-1}(\pi(U))=\bigcup_{\gamma \in \Gamma} \gamma(U)
$$

which is clearly open.
(2) $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)=\varnothing$ in $Y(\Gamma) \quad \Leftrightarrow \quad \Gamma\left(U_{1}\right) \cap U_{2}=\varnothing$ in \mathbb{H}.
(3) $Y(\Gamma)$ is connected.

Because \mathbb{H} is connected and π is continuous.
(4) $Y(\Gamma)$ is Hausdorff.
(6) $Y(\Gamma)$ is second countable.

Theorem (1)

The action of $S L_{2}(\mathbb{Z})$ on \mathbb{H} is properly discontinuous, i.e, given any $t_{1}, t_{2} \in \mathbb{H}$ there exist neighborhoods U_{1} of t_{1} and U_{2} of t_{2} in \mathbb{H} such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}), \text { if } \gamma\left(U_{1}\right) \cap U_{2} \neq \varnothing \text { then } \gamma\left(t_{1}\right)=t_{2}
$$

Theorem (1)

The action of $S L_{2}(\mathbb{Z})$ on \mathbb{H} is properly discontinuous, i.e, given any $t_{1}, t_{2} \in \mathbb{H}$ there exist neighborhoods U_{1} of t_{1} and U_{2} of t_{2} in \mathbb{H} such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}), \text { if } \gamma\left(U_{1}\right) \cap U_{2} \neq \varnothing \text { then } \gamma\left(t_{1}\right)=t_{2}
$$

Corollary

For any congruence subgroup Γ of $S L_{2}(\mathbb{Z})$, the modular curve $Y(\Gamma)$ is Hausdorff.

Theorem (1)

The action of $S L_{2}(\mathbb{Z})$ on \mathbb{H} is properly discontinuous, i.e, given any $t_{1}, t_{2} \in \mathbb{H}$ there exist neighborhoods U_{1} of t_{1} and U_{2} of t_{2} in \mathbb{H} such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}) \text {, if } \gamma\left(U_{1}\right) \cap U_{2} \neq \varnothing \text { then } \gamma\left(t_{1}\right)=t_{2}
$$

Corollary

For any congruence subgroup Γ of $S L_{2}(\mathbb{Z})$, the modular curve $Y(\Gamma)$ is Hausdorff.

Proof.

Let $\pi\left(\tau_{1}\right) \neq \pi\left(\tau_{2}\right)$ be 2 distinct points in $Y(\Gamma)$. Take neighborhoods U_{1} of τ_{1}, U_{2} of τ_{2} as in the previous theorem. Since $\gamma\left(\tau_{1}\right) \neq \tau_{2}$ for all $\gamma \in \Gamma$, then $\Gamma\left(U_{1}\right) \cap U_{2}=\varnothing$ in \mathbb{H}. This implies $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)=\varnothing$.

To prove the theorem 1 , let U_{1}^{\prime} (resp. U_{2}^{\prime}) be any neighborhood of t_{1} (resp. t_{2}) with compact closure in \mathbb{H}.

Lemma (1)

The inequality

$$
\sup \left\{\operatorname{Im}(\gamma(t)): \gamma \in S L_{2}(\mathbb{Z}) \text { has bottom row }(c, d), t \in U_{1}^{\prime}\right\}<\inf \left\{\operatorname{Im}(t): t \in U_{2}^{\prime}\right\}
$$

holds true for all but finitely many integer pairs (c, d) with $\operatorname{gcd}(c, d)=1$.

To prove the theorem 1 , let U_{1}^{\prime} (resp. U_{2}^{\prime}) be any neighborhood of t_{1} (resp. t_{2}) with compact closure in \mathbb{H}.

Lemma (1)

The inequality

$$
\sup \left\{\operatorname{Im}(\gamma(t)): \gamma \in S L_{2}(\mathbb{Z}) \text { has bottom row }(c, d), t \in U_{1}^{\prime}\right\}<\inf \left\{\operatorname{Im}(t): t \in U_{2}^{\prime}\right\}
$$

holds true for all but finitely many integer pairs (c, d) with $\operatorname{gcd}(c, d)=1$.
Remark This lemma implies that:
If $\gamma \in S L_{2}(\mathbb{Z})$ satisfying $\gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing$ then the bottom row of γ has only finitely many choices.

Proof of lemma 1.

Observe that

$$
\operatorname{Im}(\gamma(t))=\frac{\operatorname{Im}(t)}{|c t+d|^{2}} \leq \frac{\operatorname{Im}(t)}{c^{2} \operatorname{Im}(t)^{2}}, \forall \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}), \forall t \in U_{1}^{\prime} .
$$

Proof of lemma 1.

Observe that

$$
\operatorname{Im}(\gamma(t))=\frac{\operatorname{Im}(t)}{|c t+d|^{2}} \leq \frac{\operatorname{Im}(t)}{c^{2} \operatorname{Im}(t)^{2}}, \forall \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}), \forall t \in U_{1}^{\prime} .
$$

So as $c \rightarrow \infty, \operatorname{Im}(\gamma(t)) \rightarrow 0$. Let $2 \varepsilon=\inf \left\{\operatorname{Im}(t): t \in U_{2}^{\prime}\right\}>0$, there exists $N>0$ such that whenever $|c|>N, \operatorname{Im}(\gamma(t))<\varepsilon$ for all $t \in U_{1}^{\prime}$. It implies that the inequality holds true for all integer pairs (c, d) with $\operatorname{gcd}(c, d)=1$ and $|c|>N$.

Proof of lemma 1.

Observe that

$$
\operatorname{Im}(\gamma(t))=\frac{\operatorname{Im}(t)}{|c t+d|^{2}} \leq \frac{\operatorname{Im}(t)}{c^{2} \operatorname{Im}(t)^{2}}, \forall \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}), \forall t \in U_{1}^{\prime} .
$$

So as $c \rightarrow \infty, \operatorname{Im}(\gamma(t)) \rightarrow 0$. Let $2 \varepsilon=\inf \left\{\operatorname{Im}(t): t \in U_{2}^{\prime}\right\}>0$, there exists $N>0$ such that whenever $|c|>N, \operatorname{Im}(\gamma(t))<\varepsilon$ for all $t \in U_{1}^{\prime}$. It implies that the inequality holds true for all integer pairs (c, d) with $\operatorname{gcd}(c, d)=1$ and $|c|>N$. Now suppose $|c| \leq N$, then $|c t|$ is bounded. Then $\operatorname{Im}(\gamma(t)) \rightarrow 0$ as $d \rightarrow \infty$. So there exists $M>0$ such that whenever $|d|>M, \operatorname{Im}(\gamma(t))<\varepsilon$ for all $t \in U_{1}^{\prime}$. This means the inequality holds true for all integer pairs (c, d) with $\operatorname{gcd}(c, d)=1,|c| \leq N$ and $|d|>M$.
From above, we deduces that the inequality holds true whenever either $|c|>N$ or $|d|>M$.

Lemma (2)
For an integer pair (c, d) with $\operatorname{gcd}(c, d)=1$, the number of
$\gamma \in S L_{2}(\mathbb{Z})$ with bottom row (c, d) such that $\gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing$
is finite.

Lemma (2)

For an integer pair (c, d) with $\operatorname{gcd}(c, d)=1$, the number of

$$
\gamma \in S L_{2}(\mathbb{Z}) \text { with bottom row }(c, d) \text { such that } \gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing
$$

is finite.

Proof of lemma 2.

Observe that the set of matrices $\gamma \in S L_{2}(\mathbb{Z})$ with bottom row (c, d) are

$$
\left\{\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: k \in \mathbb{Z}\right\}
$$

where (a, b) is any particular pair such that $a d-b c=1$.

Lemma (2)

For an integer pair (c, d) with $\operatorname{gcd}(c, d)=1$, the number of

$$
\gamma \in S L_{2}(\mathbb{Z}) \text { with bottom row }(c, d) \text { such that } \gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing
$$

is finite.

Proof of lemma 2.

Observe that the set of matrices $\gamma \in S L_{2}(\mathbb{Z})$ with bottom row (c, d) are

$$
\left\{\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: k \in \mathbb{Z}\right\}
$$

where (a, b) is any particular pair such that $a d-b c=1$. Thus

$$
\gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime}=\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] U_{1}^{\prime}+k\right) \cap U_{2}^{\prime}
$$

is empty for all but finitely many γ with bottom row (c, d).

Then $F=\left\{\gamma \in S L_{2}(\mathbb{Z}): \gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing, \gamma\left(t_{1}\right) \neq t_{2}\right\}$ is a finite set.

Then $F=\left\{\gamma \in S L_{2}(\mathbb{Z}): \gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing, \gamma\left(t_{1}\right) \neq t_{2}\right\}$ is a finite set.
For each $\gamma \in F$, there exists disjoint neighborhoods $U_{1, \gamma}$ of $\gamma\left(t_{1}\right)$ and $U_{2, \gamma}$ of t_{2} in \mathbb{H}. Define

$$
\begin{gathered}
U_{1}=U_{1}^{\prime} \cap\left(\bigcap_{\gamma \in F} \gamma^{-1}\left(U_{1, \gamma}\right)\right) \\
U_{2}=U_{2}^{\prime} \cap\left(\bigcap_{\gamma \in F} U_{2, \gamma}\right) .
\end{gathered}
$$

Then $F=\left\{\gamma \in S L_{2}(\mathbb{Z}): \gamma\left(U_{1}^{\prime}\right) \cap U_{2}^{\prime} \neq \varnothing, \gamma\left(t_{1}\right) \neq t_{2}\right\}$ is a finite set.
For each $\gamma \in F$, there exists disjoint neighborhoods $U_{1, \gamma}$ of $\gamma\left(t_{1}\right)$ and $U_{2, \gamma}$ of t_{2} in \mathbb{H}. Define

$$
\begin{gathered}
U_{1}=U_{1}^{\prime} \cap\left(\bigcap_{\gamma \in F} \gamma^{-1}\left(U_{1, \gamma}\right)\right) \\
U_{2}=U_{2}^{\prime} \cap\left(\bigcap_{\gamma \in F} U_{2, \gamma}\right) .
\end{gathered}
$$

Take any $\gamma \in S L_{2}(\mathbb{Z})$ such that $\gamma\left(U_{1}\right) \cap U_{2} \neq \varnothing$. To show $\gamma\left(t_{1}\right)=t_{2}$, it suffices to show $\gamma \notin F$. If $\gamma \in F$, then

$$
\gamma^{-1}\left(U_{1, \gamma}\right) \supset U_{1} \quad \text { and } \quad U_{2, \gamma} \supset U_{2}
$$

so $U_{1, \gamma} \cap U_{2, \gamma} \supset \gamma\left(U_{1}\right) \cap U_{2} \neq \varnothing$, contradiction.

To summarize
(1) $\pi: \mathbb{H} \rightarrow Y(\Gamma)$ is open.
(2) $Y(\Gamma)$ is connected.
(3) $Y(\Gamma)$ is Hausdorff.
(4) $Y(\Gamma)$ is second countable.

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:
Case $1 t$ is fixed only by the identity transformation in Γ.

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:
Case $1 t$ is fixed only by the identity transformation in Γ. Let U be a small neighborhood of t such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t)=t
$$

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:
Case $1 t$ is fixed only by the identity transformation in Γ. Let U be a small neighborhood of t such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t)=t
$$

Then we claim that

$$
\left.\pi\right|_{U}: U \rightarrow \pi(U)
$$

is a homeomorphism.

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:
Case $1 t$ is fixed only by the identity transformation in Γ. Let U be a small neighborhood of t such that

$$
\forall \gamma \in S L_{2}(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t)=t
$$

Then we claim that

$$
\left.\pi\right|_{U}: U \rightarrow \pi(U)
$$

is a homeomorphism.
Then we can define

$$
\varphi: \pi(U) \rightarrow U \subset \mathbb{C}, \quad \varphi=\left(\left.\pi\right|_{U}\right)^{-1}
$$

as a local coordinate at $\pi(t)$.

Case $2 t$ has a nontrivial group of fixing transformations in Γ. This is complicated.

Case $2 t$ has a nontrivial group of fixing transformations in Γ. This is complicated.

Example

Consider $\Gamma=S L_{2}(\mathbb{Z}), t=i$ and $\gamma=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then $\gamma(i)=\frac{-1}{i}=i$.

Case $2 t$ has a nontrivial group of fixing transformations in Γ. This is complicated.

Example

Consider $\Gamma=S L_{2}(\mathbb{Z}), t=i$ and $\gamma=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then $\gamma(i)=\frac{-1}{i}=i$.
Let $\delta=\left[\begin{array}{cc}1 & -i \\ 1 & i\end{array}\right] \in G L_{2}(\mathbb{C})$. We know that δ is a conformal map from \mathbb{H} to the unit disc \mathbb{D} which sends i to 0 . By direct computation we have

$$
\delta \cdot \gamma \cdot \delta^{-1}=\left[\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right],
$$

which acts as 180 -degree rotation about 0 in the unit disc. We observe that any neighborhood about 0 contains pair of $\left[\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right]$-equivalent points.

Case $2 t$ has a nontrivial group of fixing transformations in Γ. This is complicated.

Example

Consider $\Gamma=S L_{2}(\mathbb{Z}), t=i$ and $\gamma=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then $\gamma(i)=\frac{-1}{i}=i$.
Let $\delta=\left[\begin{array}{cc}1 & -i \\ 1 & i\end{array}\right] \in G L_{2}(\mathbb{C})$. We know that δ is a conformal map from \mathbb{H} to the unit disc \mathbb{D} which sends i to 0 . By direct computation we have

$$
\delta \cdot \gamma \cdot \delta^{-1}=\left[\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right],
$$

which acts as 180-degree rotation about 0 in the unit disc. We observe that any neighborhood about 0 contains pair of $\left[\begin{array}{cc}-i & 0 \\ 0 & i\end{array}\right]$-equivalent points.
Then we deduce that any neighborhood of i contains pairs of γ-equivalent points. Thus cannot biject to a neighborhood of $\pi(i)$ in $Y\left(S L_{2}(\mathbb{Z})\right)$.

The last example gives rise to the definition of isotropy subgroups and elliptic points.

The last example gives rise to the definition of isotropy subgroups and elliptic points.

Definition

For each $t \in \mathbb{H}$, the isotropy subgroup of t is

$$
\Gamma_{t}=\{\gamma \in \Gamma: \gamma(t)=t\}
$$

A point $t \in \mathbb{H}$ is an elliptic point for Γ if Γ_{t} is nontrivial as a group of transformations. The corresponding point $\pi(t)$ on $Y(\Gamma)$ is also called elliptic.

Proposition

For each elliptic point t of Γ the isotropy group Γ_{t} is finite cyclic.

Proposition

For each elliptic point t of Γ the isotropy group Γ_{t} is finite cyclic.
Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$
h_{t}=\left|\frac{\{ \pm I\} \Gamma_{t}}{\{ \pm I\}}\right|= \begin{cases}\left|\Gamma_{t}\right| / 2 & \text { if }-I \in \Gamma_{t} \\ \left|\Gamma_{t}\right| & \text { if }-I \notin \Gamma_{t}\end{cases}
$$

This h_{t} is called the period of t, and $h_{t}>1$ only for elliptic points. h_{t} correctly counts the t-fixing transformations.

Proposition

For each elliptic point t of Γ the isotropy group Γ_{t} is finite cyclic.
Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$
h_{t}=\left|\frac{\{ \pm I\} \Gamma_{t}}{\{ \pm I\}}\right|= \begin{cases}\left|\Gamma_{t}\right| / 2 & \text { if }-I \in \Gamma_{t} \\ \left|\Gamma_{t}\right| & \text { if }-I \notin \Gamma_{t}\end{cases}
$$

This h_{t} is called the period of t, and $h_{t}>1$ only for elliptic points. h_{t} correctly counts the t-fixing transformations.
(1) If $t \in \mathbb{H}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the period of t under $\boldsymbol{\Gamma}=$ the period of $\gamma(t)$ under $\gamma \Gamma \gamma^{-1}$.
In particular, h_{t} depends only on Γt. So the period is well-defined on $Y(\Gamma)$.

Proposition

For each elliptic point t of Γ the isotropy group Γ_{t} is finite cyclic.
Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$
h_{t}=\left|\frac{\{ \pm I\} \Gamma_{t}}{\{ \pm I\}}\right|= \begin{cases}\left|\Gamma_{t}\right| / 2 & \text { if }-I \in \Gamma_{t} \\ \left|\Gamma_{t}\right| & \text { if }-I \notin \Gamma_{t}\end{cases}
$$

This h_{t} is called the period of t, and $h_{t}>1$ only for elliptic points. h_{t} correctly counts the t-fixing transformations.
(1) If $t \in \mathbb{H}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the period of t under $\boldsymbol{\Gamma}=$ the period of $\gamma(t)$ under $\gamma \Gamma \gamma^{-1}$.
In particular, h_{t} depends only on Γt. So the period is well-defined on $Y(\Gamma)$.
(2) If Γ is normal in $S L_{2}(\mathbb{Z})$ then all points of $Y(\Gamma)$ over a point of $Y\left(S L_{2}(\mathbb{Z})\right.$ have the same period.

If $S L_{2}(\mathbb{Z}) t_{1}=S L_{2}(\mathbb{Z}) t_{2}$ then Γt_{1} and Γt_{2} have the same period.

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:
(1) Use the "straightening map" $\delta_{t}=\left[\begin{array}{cc}1 & -t \\ 1 & t\end{array}\right] \in G L_{2}(\mathbb{C})$ to send t to 0 and \bar{t} to ∞.

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:
(1) Use the "straightening map" $\delta_{t}=\left[\begin{array}{cc}1 & -t \\ 1 & t\end{array}\right] \in G L_{2}(\mathbb{C})$ to send t to 0 and \bar{t} to ∞.
(2) The isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$
\left(\delta_{t}\{ \pm I\} \Gamma \delta_{t}^{-1}\right)_{0} /\{ \pm I\}=\delta_{t}\left(\{ \pm I\} \Gamma_{t} /\{ \pm I\}\right) \delta_{t}^{-1}
$$

and therefore is cyclic of order h_{t} as a group of transformations.

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:
(1) Use the "straightening map" $\delta_{t}=\left[\begin{array}{cc}1 & -t \\ 1 & t\end{array}\right] \in G L_{2}(\mathbb{C})$ to send t to 0 and \bar{t} to ∞.
(2) The isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$
\left(\delta_{t}\{ \pm I\} \Gamma \delta_{t}^{-1}\right)_{0} /\{ \pm I\}=\delta_{t}\left(\{ \pm I\} \Gamma_{t} /\{ \pm I\}\right) \delta_{t}^{-1}
$$

and therefore is cyclic of order h_{t} as a group of transformations.
(3) Since the transformations in the isotropy subgroup of t fix t and \bar{t}, the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞. So they must have the form $z \mapsto a z$.

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:
(1) Use the "straightening map" $\delta_{t}=\left[\begin{array}{cc}1 & -t \\ 1 & t\end{array}\right] \in G L_{2}(\mathbb{C})$ to send t to 0 and \bar{t} to ∞.
(2) The isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$
\left(\delta_{t}\{ \pm I\} \Gamma \delta_{t}^{-1}\right)_{0} /\{ \pm I\}=\delta_{t}\left(\{ \pm I\} \Gamma_{t} /\{ \pm I\}\right) \delta_{t}^{-1}
$$

and therefore is cyclic of order h_{t} as a group of transformations.
(3) Since the transformations in the isotropy subgroup of t fix t and \bar{t}, the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞. So they must have the form $z \mapsto a z$.
(4) The group is finite cyclic of order h_{t}, the transformations must be the rotations through angular multiples of $2 \pi / h_{t}$ about 0 .

To put coordinates on $Y(\Gamma)$ about a point $\pi(t)$:
(1) Use the "straightening map" $\delta_{t}=\left[\begin{array}{cc}1 & -t \\ 1 & t\end{array}\right] \in G L_{2}(\mathbb{C})$ to send t to 0 and \bar{t} to ∞.
(2) The isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$
\left(\delta_{t}\{ \pm I\} \Gamma \delta_{t}^{-1}\right)_{0} /\{ \pm I\}=\delta_{t}\left(\{ \pm I\} \Gamma_{t} /\{ \pm I\}\right) \delta_{t}^{-1}
$$

and therefore is cyclic of order h_{t} as a group of transformations.
(3) Since the transformations in the isotropy subgroup of t fix t and \bar{t}, the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞. So they must have the form $z \mapsto a z$.
(4) The group is finite cyclic of order h_{t}, the transformations must be the rotations through angular multiples of $2 \pi / h_{t}$ about 0 .
(5) The map δ_{t} is "straightening" neighborhoods of t to neighborhoods of 0 in the sense that after the map, equivalent points are spaced apart by fixed angles.

Figure 2.2. Local coordinates at an elliptic point

Now given any point $\pi(t) \in Y(\Gamma)$, take a neighborhood U of t such that

$$
\forall \gamma \in \Gamma \text {, if } \gamma(U) \cap U \neq \varnothing \text { then } \gamma \in \Gamma_{t} .
$$

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.

Now given any point $\pi(t) \in Y(\Gamma)$, take a neighborhood U of t such that

$$
\forall \gamma \in \Gamma \text {, if } \gamma(U) \cap U \neq \varnothing \text { then } \gamma \in \Gamma_{t} .
$$

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t. Define $\psi: U \rightarrow \mathbb{C}$ to be $\psi=\rho \circ \delta$ where $\delta=\delta_{t}, \rho$ is the power function $\rho(z)=z^{h}$, with $h=h_{t}$. Let $V=\psi(U)$, then V is open.

Now given any point $\pi(t) \in Y(\Gamma)$, take a neighborhood U of t such that

$$
\forall \gamma \in \Gamma \text {, if } \gamma(U) \cap U \neq \varnothing \text { then } \gamma \in \Gamma_{t} .
$$

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t. Define $\psi: U \rightarrow \mathbb{C}$ to be $\psi=\rho \circ \delta$ where $\delta=\delta_{t}, \rho$ is the power function $\rho(z)=z^{h}$, with $h=h_{t}$. Let $V=\psi(U)$, then V is open.
Claim: For any $t_{1}, t_{2} \in U$,

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right)
$$

Now given any point $\pi(t) \in Y(\Gamma)$, take a neighborhood U of t such that

$$
\forall \gamma \in \Gamma \text {, if } \gamma(U) \cap U \neq \varnothing \text { then } \gamma \in \Gamma_{t} .
$$

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t. Define $\psi: U \rightarrow \mathbb{C}$ to be $\psi=\rho \circ \delta$ where $\delta=\delta_{t}, \rho$ is the power function $\rho(z)=z^{h}$, with $h=h_{t}$. Let $V=\psi(U)$, then V is open.
Claim: For any $t_{1}, t_{2} \in U$,

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right) .
$$

To see this, observe that
$\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow t_{1} \in \Gamma t_{2} \Leftrightarrow t_{1} \in \Gamma_{t} t_{2} \Leftrightarrow \delta\left(t_{1}\right) \in\left(\delta \Gamma_{t} \delta^{-1}\right)\left(\delta\left(t_{2}\right)\right) \Leftrightarrow \delta\left(t_{1}\right)=\mu_{h}^{d}\left(\delta\left(t_{2}\right)\right)$,
for some integer $d, \mu_{h}=e^{2 \pi i / h}$ since $\delta \Gamma_{t} \delta^{-1}$ is a cyclic transformation group of h rotations. So

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow\left(\delta\left(t_{1}\right)\right)^{h}=\left(\delta\left(t_{2}\right)\right)^{h} \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right) .
$$

Thus there exists an injection $\varphi: \pi(U) \rightarrow V$ such that the diagram

commutes.

Thus there exists an injection $\varphi: \pi(U) \rightarrow V$ such that the diagram

commutes. Also φ surjects since ψ surjects, and $\varphi: \pi(U) \rightarrow V$ is a homeomorphism. So φ is a local coordinate and $\pi(U)$ is a coordinate neighborhood about $\pi(t)$ in $Y(\Gamma)$.

Charts

Holomorphicity of Transition Maps

Given overlapping $\pi\left(U_{1}\right)$ and $\pi\left(U_{2}\right)$. Let

$$
V_{1,2}=\varphi_{1}\left(\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)\right), \quad V_{2,1}=\varphi_{2}\left(\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)\right), \quad \varphi_{2,1}=\varphi_{2} \circ \varphi_{1}^{-1} \mid V_{1,2}
$$

Charts

Holomorphicity of Transition Maps

Given overlapping $\pi\left(U_{1}\right)$ and $\pi\left(U_{2}\right)$. Let

$$
V_{1,2}=\varphi_{1}\left(\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)\right), \quad V_{2,1}=\varphi_{2}\left(\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)\right), \quad \varphi_{2,1}=\varphi_{2} \circ \varphi_{1}^{-1} \mid V_{1,2}
$$

For each $x \in \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)$ it suffices to check holomorphy in some neighborhood of $\varphi_{1}(x)$ in $V_{1,2}$.

Write $x=\pi\left(t_{1}\right)=\pi\left(t_{2}\right)$ with $t_{1} \in U_{1}, t_{2} \in U_{2}$ and $t_{2}=\gamma\left(t_{1}\right)$ for some $\gamma \in \Gamma$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\pi\left(U_{1,2}\right)$ is a neighborhood of x and so $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$ in $V_{1,2}$.

Write $x=\pi\left(t_{1}\right)=\pi\left(t_{2}\right)$ with $t_{1} \in U_{1}, t_{2} \in U_{2}$ and $t_{2}=\gamma\left(t_{1}\right)$ for some $\gamma \in \Gamma$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\pi\left(U_{1,2}\right)$ is a neighborhood of x and so $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$ in $V_{1,2}$.
We'll prove for the case $\varphi_{1}(x)=0$. So the first straightening map is $\delta_{1}=\delta_{t_{1}}$. Let $q=\varphi_{1}\left(x^{\prime}\right) \in \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$, one has

$$
q=\varphi_{1}\left(\pi\left(t^{\prime}\right)\right)=\psi_{1}\left(t^{\prime}\right)=\left(\delta_{1}\left(t^{\prime}\right)\right)^{h_{1}}, \quad \text { for some } t^{\prime} \in U_{1,2}
$$

where h_{1} is the period of t_{1}.

Write $x=\pi\left(t_{1}\right)=\pi\left(t_{2}\right)$ with $t_{1} \in U_{1}, t_{2} \in U_{2}$ and $t_{2}=\gamma\left(t_{1}\right)$ for some $\gamma \in \Gamma$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\pi\left(U_{1,2}\right)$ is a neighborhood of x and so $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$ in $V_{1,2}$.
We'll prove for the case $\varphi_{1}(x)=0$. So the first straightening map is $\delta_{1}=\delta_{t_{1}}$. Let $q=\varphi_{1}\left(x^{\prime}\right) \in \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$, one has

$$
q=\varphi_{1}\left(\pi\left(t^{\prime}\right)\right)=\psi_{1}\left(t^{\prime}\right)=\left(\delta_{1}\left(t^{\prime}\right)\right)^{h_{1}}, \quad \text { for some } t^{\prime} \in U_{1,2}
$$

where h_{1} is the period of t_{1}.
Let $\tilde{t_{2}} \in U_{2}$ be the point such that $\psi\left(\tilde{t_{2}}\right)=0$ and let h_{2} be its period. Then

$$
\begin{aligned}
\varphi_{2,1}(q) & =\varphi_{2}\left(x^{\prime}\right) \\
& =\varphi_{2}\left(\pi\left(t^{\prime}\right)\right) \\
& =\varphi_{2}\left(\pi\left(\gamma\left(t^{\prime}\right)\right)\right. \\
& =\psi_{2}\left(\gamma\left(t^{\prime}\right)\right) \quad \text { which is defined since } \gamma\left(t^{\prime}\right) \in U_{2} \\
& =\left(\delta_{2}\left(\gamma\left(t^{\prime}\right)\right)\right)^{h_{2}} \\
& =\left(\left(\delta_{2} \gamma \delta_{1}^{-1}\right)\left(\delta_{1}\left(t^{\prime}\right)\right)\right)^{h_{2}} \\
& =\left(\left(\delta_{2} \gamma \delta_{1}^{-1}\right)\left(q^{1 / h_{1}}\right)\right)^{h_{2}} .
\end{aligned}
$$

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic.

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic. If $h_{1}>1$, first observe that $t_{2}=\gamma\left(t_{1}\right)$, which means t_{2} has the same period $h_{1}>1$ as t_{1}. Then t_{2} must be an elliptic point.

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic. If $h_{1}>1$, first observe that $t_{2}=\gamma\left(t_{1}\right)$, which means t_{2} has the same period $h_{1}>1$ as t_{1}. Then t_{2} must be an elliptic point.
Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_{2}=\tilde{t_{2}}$ and then $h_{2}=h_{1}$.

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic. If $h_{1}>1$, first observe that $t_{2}=\gamma\left(t_{1}\right)$, which means t_{2} has the same period $h_{1}>1$ as t_{1}. Then t_{2} must be an elliptic point.
Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_{2}=\tilde{t_{2}}$ and then $h_{2}=h_{1}$.
We have the following diagrams

$$
0 \stackrel{\delta_{1}^{-1}}{\longmapsto} t_{1} \stackrel{\gamma}{\longmapsto} t_{2} \stackrel{\delta_{2}}{\longmapsto} 0 \quad, \quad \infty \stackrel{\delta_{1}^{-1}}{\longmapsto} \overline{t_{1}} \stackrel{\gamma}{\longmapsto} \overline{t_{2}} \stackrel{\delta_{2}}{\longmapsto} \infty .
$$

This shows $\delta_{2} \gamma \delta_{1}^{-1}=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic. If $h_{1}>1$, first observe that $t_{2}=\gamma\left(t_{1}\right)$, which means t_{2} has the same period $h_{1}>1$ as t_{1}. Then t_{2} must be an elliptic point.
Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_{2}=\tilde{t_{2}}$ and then $h_{2}=h_{1}$.
We have the following diagrams

$$
0 \stackrel{\delta_{1}^{-1}}{\longmapsto} t_{1} \stackrel{\gamma}{\longmapsto} t_{2} \stackrel{\delta_{2}}{\longmapsto} 0 \quad, \quad \infty \stackrel{\delta_{1}^{-1}}{\longmapsto} \overline{t_{1}} \stackrel{\gamma}{\longmapsto} \overline{t_{2}} \stackrel{\delta_{2}}{\longmapsto} \infty .
$$

This shows $\delta_{2} \gamma \delta_{1}^{-1}=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]$ for some nonzero $\alpha, \beta \in \mathbb{C}$.
The formula for the transition map in this case is

$$
\varphi_{2,1}(q)=\left(\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left(q^{1 / h}\right)\right)^{h}=\left(\frac{\alpha}{\beta}\right)^{h} q
$$

which is clearly holomorphic.

The calculation shows that if $h_{1}=1$ then the transition map is clearly holomorphic. If $h_{1}>1$, first observe that $t_{2}=\gamma\left(t_{1}\right)$, which means t_{2} has the same period $h_{1}>1$ as t_{1}. Then t_{2} must be an elliptic point.
Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_{2}=\tilde{t}_{2}$ and then $h_{2}=h_{1}$.
We have the following diagrams

$$
0 \stackrel{\delta_{1}^{-1}}{\longmapsto} t_{1} \stackrel{\gamma}{\longmapsto} t_{2} \stackrel{\delta_{2}}{\longmapsto} 0 \quad, \quad \infty \stackrel{\delta_{1}^{-1}}{\longmapsto} \overline{t_{1}} \stackrel{\gamma}{\longmapsto} \overline{t_{2}} \stackrel{\delta_{2}}{\longmapsto} \infty .
$$

This shows $\delta_{2} \gamma \delta_{1}^{-1}=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]$ for some nonzero $\alpha, \beta \in \mathbb{C}$.
The formula for the transition map in this case is

$$
\varphi_{2,1}(q)=\left(\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left(q^{1 / h}\right)\right)^{h}=\left(\frac{\alpha}{\beta}\right)^{h} q
$$

which is clearly holomorphic.
The general case is quite similar.

Elliptic Points

 Elliptic Points

In this section we will show the remaining proposition: the isotropy subgroup Γ_{t} is finite and cyclic. Then we will discover some properties of elliptic points of a congruence subgroup Γ. It turns out that the set of elliptic points is quite "small".

Example

Consider the case $Y(1)=S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$. Let \mathcal{D} be the set

$$
\mathcal{D}=\{t \in \mathbb{H}:|\operatorname{Re}(t)| \leq 1 / 2,|t| \geq 1\} .
$$

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$

The map $\pi: \mathcal{D} \rightarrow Y(1)$ surjects, where π is the natural projection $\pi(t)=S L_{2}(\mathbb{Z}) t$.

Lemma

The map $\pi: \mathcal{D} \rightarrow Y(1)$ surjects, where π is the natural projection $\pi(t)=S L_{2}(\mathbb{Z}) t$.
The surjection $\pi: \mathcal{D} \rightarrow Y(1)$ is not injective. The translation $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]: t \mapsto t+1$ identifies the two boundaries half-lines, and the inversion $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]: t \mapsto-1 / t$ identifies the two halves of the boundary arc. But these boundary identifications are the only ones.

Lemma

The map $\pi: \mathcal{D} \rightarrow Y(1)$ surjects, where π is the natural projection $\pi(t)=S L_{2}(\mathbb{Z}) t$.
The surjection $\pi: \mathcal{D} \rightarrow Y(1)$ is not injective. The translation $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]: t \mapsto t+1$ identifies the two boundaries half-lines, and the inversion $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]: t \mapsto-1 / t$ identifies the two halves of the boundary arc. But these boundary identifications are the only ones.

Lemma

Suppose $t_{1} \neq t_{2}$ are distinct points in \mathcal{D} such that $t_{2}=\gamma\left(t_{1}\right)$ for some $\gamma \in S L_{2}(\mathbb{Z})$. Then either
(1) $\operatorname{Re}\left(t_{1}\right)= \pm 1 / 2$ and $t_{2}=\mp 1$, or
(2) $\left|t_{1}\right|=1$ and $t_{2}=-1 / t_{1}$.

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Then

$$
a t+b=c t^{2}+d t .
$$

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Then

$$
a t+b=c t^{2}+d t .
$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and $|a+d|<2$. Then $a+d \in\{-1,0,1\}$.

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Then

$$
a t+b=c t^{2}+d t .
$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and $|a+d|<2$. Then $a+d \in\{-1,0,1\}$. The characteristic polynomial of γ is given by

$$
(a-x)(d-x)-b c=x^{2}-(a+d) x+1
$$

So the characteristic polynomial is $x^{2}+1$ or $x^{2} \pm x+1$.

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Then

$$
a t+b=c t^{2}+d t .
$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and $|a+d|<2$. Then $a+d \in\{-1,0,1\}$. The characteristic polynomial of γ is given by

$$
(a-x)(d-x)-b c=x^{2}-(a+d) x+1
$$

So the characteristic polynomial is $x^{2}+1$ or $x^{2} \pm x+1$.
Then one of the following holds

$$
\gamma^{3}=I \quad, \quad \gamma^{4}=I \quad, \quad \gamma^{6}=I
$$

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Then

$$
a t+b=c t^{2}+d t
$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and $|a+d|<2$. Then $a+d \in\{-1,0,1\}$. The characteristic polynomial of γ is given by

$$
(a-x)(d-x)-b c=x^{2}-(a+d) x+1
$$

So the characteristic polynomial is $x^{2}+1$ or $x^{2} \pm x+1$.
Then one of the following holds

$$
\gamma^{3}=1 \quad, \quad \gamma^{4}=1 \quad, \quad \gamma^{6}=I
$$

Then γ has order $1,2,3,4$ or 6 as a matrix. Observe that orders 1 and 2 give the identity transformations. The following proposition will discribe all nontrivial fixing transformations.

Proposition
Let $\gamma \in S L_{2}(\mathbb{Z})$.
(1) If γ has order 3 then γ is conjugate to $\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(2) If γ has order 4 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(3) If γ has order 6 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

Proposition

Let $\gamma \in S L_{2}(\mathbb{Z})$.
(1) If γ has order 3 then γ is conjugate to $\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(2) If γ has order 4 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(3) If γ has order 6 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

Corollary

(1) The elliptic points for $S L_{2}(\mathbb{Z})$ are $S L_{2}(\mathbb{Z}) i$ and $S L_{2}(\mathbb{Z}) \mu_{3}$ where $\mu_{3}=e^{2 \pi i / 3}$.

Proposition

Let $\gamma \in S L_{2}(\mathbb{Z})$.
(1) If γ has order 3 then γ is conjugate to $\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(2) If γ has order 4 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(3) If γ has order 6 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

Corollary

(1) The elliptic points for $S L_{2}(\mathbb{Z})$ are $S L_{2}(\mathbb{Z}) i$ and $S L_{2}(\mathbb{Z}) \mu_{3}$ where $\mu_{3}=e^{2 \pi i / 3}$.
(2) The modular curve $Y(1)$ has 2 elliptic points.

Proposition

Let $\gamma \in S L_{2}(\mathbb{Z})$.
(1) If γ has order 3 then γ is conjugate to $\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(2) If γ has order 4 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(3) If γ has order 6 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

Corollary

(1) The elliptic points for $S L_{2}(\mathbb{Z})$ are $S L_{2}(\mathbb{Z}) i$ and $S L_{2}(\mathbb{Z}) \mu_{3}$ where $\mu_{3}=e^{2 \pi i / 3}$.
(2) The modular curve $Y(1)$ has 2 elliptic points.
(3) The isotropy subgroups of i and μ_{3} are

$$
S L_{2}(\mathbb{Z})_{i}=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right\rangle \quad \text { and } \quad S L_{2}(\mathbb{Z})_{\mu_{3}}=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]\right\rangle .
$$

Proposition

Let $\gamma \in S L_{2}(\mathbb{Z})$.
(1) If γ has order 3 then γ is conjugate to $\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.
(2. If γ has order 4 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

3 If γ has order 6 then γ is conjugate to $\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{ \pm 1}$ in $S L_{2}(\mathbb{Z})$.

Corollary

(1) The elliptic points for $S L_{2}(\mathbb{Z})$ are $S L_{2}(\mathbb{Z}) i$ and $S L_{2}(\mathbb{Z}) \mu_{3}$ where $\mu_{3}=e^{2 \pi i / 3}$.
(2) The modular curve $Y(1)$ has 2 elliptic points.
(3) The isotropy subgroups of i and μ_{3} are

$$
S L_{2}(\mathbb{Z})_{i}=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right\rangle \quad \text { and } \quad S L_{2}(\mathbb{Z})_{\mu_{3}}=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]\right\rangle .
$$

(4) For each elliptic point t of $S L_{2}(\mathbb{Z})$ the isotropy subgroup $S L_{2}(\mathbb{Z})_{t}$ is finite cyclic.

Corollary

Let Γ be a congruence subgroup of $S L_{2}(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ, the isotropy subgroup Γ_{t} is finite cyclic.

Corollary

Let Γ be a congruence subgroup of $S L_{2}(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ, the isotropy subgroup Γ_{t} is finite cyclic.

Proof.

Write

$$
S L_{2}(\mathbb{Z})=\bigsqcup_{j=1}^{d} \Gamma \gamma_{j}
$$

then the set of elliptic points of $Y(\Gamma)$ is a subset of

$$
E_{\Gamma}=\left\{\Gamma \gamma_{j}(i), \Gamma \gamma_{j}\left(\mu_{3}\right): 1 \leq j \leq d\right\},
$$

which is clearly finite.

Corollary

Let Γ be a congruence subgroup of $S L_{2}(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ, the isotropy subgroup Γ_{t} is finite cyclic.

Proof.

Write

$$
S L_{2}(\mathbb{Z})=\bigsqcup_{j=1}^{d} \Gamma \gamma_{j}
$$

then the set of elliptic points of $Y(\Gamma)$ is a subset of

$$
E_{\Gamma}=\left\{\Gamma \gamma_{j}(i), \Gamma \gamma_{j}\left(\mu_{3}\right): 1 \leq j \leq d\right\},
$$

which is clearly finite.
For each $t \in \mathbb{H}$, observe that

$$
\Gamma_{t} \text { is a subgroup of } S L_{2}(\mathbb{Z})_{t}
$$

Then Γ_{t} is finite cyclic.

Cusps

Compactify a Modular Curve

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$

Cusps

Compactify a Modular Curve

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$
The picture suggests that the modular curve $Y(\Gamma)$ can be compactified by adjoining all the cusps.

Let $\mathcal{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ and take the extended quotient

$$
X(\Gamma)=\Gamma \backslash \mathcal{H}^{*}=Y(\Gamma) \cup \Gamma \backslash(\mathbb{Q} \cup\{\infty\})
$$

The points Γs in $\Gamma \backslash \mathbb{Q} \cup\{\infty\}$ are also called the cusps of $X(\Gamma)$.

Let $\mathcal{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ and take the extended quotient

$$
X(\Gamma)=\Gamma \backslash \mathcal{H}^{*}=Y(\Gamma) \cup \Gamma \backslash(\mathbb{Q} \cup\{\infty\})
$$

The points Γs in $\Gamma \backslash \mathbb{Q} \cup\{\infty\}$ are also called the cusps of $X(\Gamma)$.
Remark The action of Γ on $\mathbb{Q} \cup\{\infty\}$ is induced from the action of $G L_{2}^{+}(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup\{\infty\}$ given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\frac{m}{n}\right)=\frac{a \frac{m}{n}+b}{c \frac{m}{n}+d}
$$

Let $\mathcal{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ and take the extended quotient

$$
X(\Gamma)=\Gamma \backslash \mathcal{H}^{*}=Y(\Gamma) \cup \Gamma \backslash(\mathbb{Q} \cup\{\infty\})
$$

The points Γs in $\Gamma \backslash \mathbb{Q} \cup\{\infty\}$ are also called the cusps of $X(\Gamma)$.
Remark The action of Γ on $\mathbb{Q} \cup\{\infty\}$ is induced from the action of $G L_{2}^{+}(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup\{\infty\}$ given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\frac{m}{n}\right)=\frac{a \frac{m}{n}+b}{c \frac{m}{n}+d} .
$$

Remark

(1) $S L_{2}(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup\{\infty\}$.
(2) The isotropy subgroup of ∞ in $S L_{2}(\mathbb{Z})$ is the translations

$$
S L_{2}(\mathbb{Z})_{\infty}=\left\{ \pm\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right]: m \in \mathbb{Z}\right\}
$$

Let $\mathcal{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ and take the extended quotient

$$
X(\Gamma)=\Gamma \backslash \mathcal{H}^{*}=Y(\Gamma) \cup \Gamma \backslash(\mathbb{Q} \cup\{\infty\})
$$

The points Γs in $\Gamma \backslash \mathbb{Q} \cup\{\infty\}$ are also called the cusps of $X(\Gamma)$.
Remark The action of Γ on $\mathbb{Q} \cup\{\infty\}$ is induced from the action of $G L_{2}^{+}(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup\{\infty\}$ given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(\frac{m}{n}\right)=\frac{a \frac{m}{n}+b}{c \frac{m}{n}+d} .
$$

Remark

(1) $S L_{2}(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup\{\infty\}$.
(2) The isotropy subgroup of ∞ in $S L_{2}(\mathbb{Z})$ is the translations

$$
S L_{2}(\mathbb{Z})_{\infty}=\left\{ \pm\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right]: m \in \mathbb{Z}\right\}
$$

Lemma

The modular curve $X(1)=S L_{2}(\mathbb{Z}) \backslash \mathcal{H}^{*}$ has one cusp. For any subgroup Γ of $S L_{2}(\mathbb{Z})$ the modular curve $X(\Gamma)$ has finitely many cusps.

Cusps

Topology on $X(\Gamma)$

The usual topology on \mathcal{H}^{*} contains too many points of $\mathbb{Q} \cup\{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^{*}.

Cusps

Topology on $X(\Gamma)$

The usual topology on \mathcal{H}^{*} contains too many points of $\mathbb{Q} \cup\{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^{*}. For each $M>0$, define

$$
\mathcal{N}_{M}=\{t \in \mathbb{H}: \operatorname{Im}(t)>M\} .
$$

Cusps

Topology on $X(\Gamma)$

The usual topology on \mathcal{H}^{*} contains too many points of $\mathbb{Q} \cup\{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^{*}. For each $M>0$, define

$$
\mathcal{N}_{M}=\{t \in \mathbb{H}: \operatorname{Im}(t)>M\} .
$$

Adjoin to the usual open sets in \mathbb{H} more sets in \mathcal{H}^{*} to serve a base of neighborhoods of the cusps, the sets

$$
\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right): M>0, \alpha \in S L_{2}(\mathbb{Z})
$$

and take the resulting topology on \mathcal{H}^{*}.

Cusps

Topology on $X(\Gamma)$

The usual topology on \mathcal{H}^{*} contains too many points of $\mathbb{Q} \cup\{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^{*}. For each $M>0$, define

$$
\mathcal{N}_{M}=\{t \in \mathbb{H}: \operatorname{Im}(t)>M\} .
$$

Adjoin to the usual open sets in \mathbb{H} more sets in \mathcal{H}^{*} to serve a base of neighborhoods of the cusps, the sets

$$
\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right): M>0, \alpha \in S L_{2}(\mathbb{Z})
$$

and take the resulting topology on \mathcal{H}^{*}.
Remark Under this topology, each $\gamma \in S L_{2}(\mathbb{Z})$ is a homeomorphism of \mathcal{H}^{*}.

Figure 2.5. Neighborhoods of ∞ and of some rational points

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Proposition
The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Proposition
The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.
Let $x_{1} \neq x_{2} \in X(\Gamma)$. Consider the cases:

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.
Let $x_{1} \neq x_{2} \in X(\Gamma)$. Consider the cases:
(1) $x_{1}=\Gamma t_{1}, x_{2}=\Gamma t_{2}$ for some $t_{1}, t_{2} \in \mathbb{H}:$ Done.

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.
Let $x_{1} \neq x_{2} \in X(\Gamma)$. Consider the cases:
(1) $x_{1}=\Gamma t_{1}, x_{2}=\Gamma t_{2}$ for some $t_{1}, t_{2} \in \mathbb{H}:$ Done.
(2) $x_{1}=\Gamma s_{1}, x_{2}=\Gamma t_{2}$ where $s_{1} \in \mathbb{Q} \cup\{\infty\}, t_{2} \in \mathbb{H}$: Let U_{2} be any neighborhood of t_{2} in \mathbb{H} with compact closure K. We have the inequality

$$
\operatorname{Im}(\gamma(t)) \leq \max \{\operatorname{Im}(t), 1 / \operatorname{Im}(t)\} \quad \text { for } t \in \mathbb{H} \text { and } \gamma \in S L_{2}(\mathbb{Z}) .
$$

This implies for M large enough, $S L_{2}(\mathbb{Z}) K \cap \mathcal{N}_{M}=\varnothing$. Let $\alpha \in S L_{2}(\mathbb{Z})$ such that $s_{1}=\alpha(\infty)$, then $\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right)$ is a neighborhood of s_{1} and $\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right) \cap U_{2}=\varnothing$.

Giving $X(\Gamma)$ the quotient topology and extending natural projection $\pi: \mathcal{H}^{*} \rightarrow X(\Gamma)$, we have:

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.
Let $x_{1} \neq x_{2} \in X(\Gamma)$. Consider the cases:
(1) $x_{1}=\Gamma t_{1}, x_{2}=\Gamma t_{2}$ for some $t_{1}, t_{2} \in \mathbb{H}:$ Done.
(2) $x_{1}=\Gamma s_{1}, x_{2}=\Gamma t_{2}$ where $s_{1} \in \mathbb{Q} \cup\{\infty\}, t_{2} \in \mathbb{H}$: Let U_{2} be any neighborhood of t_{2} in \mathbb{H} with compact closure K. We have the inequality

$$
\operatorname{Im}(\gamma(t)) \leq \max \{\operatorname{Im}(t), 1 / \operatorname{Im}(t)\} \quad \text { for } t \in \mathbb{H} \text { and } \gamma \in S L_{2}(\mathbb{Z})
$$

This implies for M large enough, $S L_{2}(\mathbb{Z}) K \cap \mathcal{N}_{M}=\varnothing$.
Let $\alpha \in S L_{2}(\mathbb{Z})$ such that $s_{1}=\alpha(\infty)$, then $\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right)$ is a neighborhood of s_{1} and $\alpha\left(\mathcal{N}_{M} \cup\{\infty\}\right) \cap U_{2}=\varnothing$.
(3) $x_{1}=\Gamma s_{1}, x_{2}=\Gamma s_{2}$ where $s_{1}, s_{2} \in \mathbb{Q} \cup\{\infty\}$: Let $\alpha_{1}, \alpha_{2} \in S L_{2}(\mathbb{Z})$ such that $s_{1}=\alpha_{1}(\infty), s_{2}=\alpha_{2}(\infty)$.
Let $U_{1}=\alpha_{1}\left(\mathcal{N}_{2} \cup\{\infty\}\right), U_{2}=\alpha_{2}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$. Then we claim that $\pi\left(U_{1}\right)$ and $\pi\left(U_{2}\right)$ are disjoint.

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$
To see this, suppose that $\exists \gamma \in \Gamma: \gamma \alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$, then $\alpha_{2}^{-1} \gamma \alpha_{1}$ maps t_{1} to t_{2}.

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$
To see this, suppose that $\exists \gamma \in \Gamma: \gamma \alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$, then $\alpha_{2}^{-1} \gamma \alpha_{1}$ maps t_{1} to t_{2}. Note that \mathcal{N}_{2} does not contain any elliptic points, then

$$
\alpha_{2}^{-1} \gamma \alpha_{1}= \pm\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right], \quad \text { for some } m \in \mathbb{Z}
$$

Figure 2.3. The fundamental domain for $\mathrm{SL}_{2}(\mathbf{Z})$
To see this, suppose that $\exists \gamma \in \Gamma: \gamma \alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$, then $\alpha_{2}^{-1} \gamma \alpha_{1}$ maps t_{1} to t_{2}. Note that \mathcal{N}_{2} does not contain any elliptic points, then

$$
\alpha_{2}^{-1} \gamma \alpha_{1}= \pm\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right], \quad \text { for some } m \in \mathbb{Z}
$$

Thus $\alpha_{2}^{-1} \gamma \alpha_{1}$ fixes ∞, consequently $\gamma\left(s_{1}\right)=s_{2}$, contradiction. Then $X(\Gamma)$ is Hausdorff.

Suppose $\mathcal{H}^{*}=O_{1} \cup O_{2}$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_{1} \supset \mathbb{H}$ and so $O_{2} \subset \mathbb{Q} \cup\{\infty\}$. But then O_{2} is not open unless it is empty. Thus \mathcal{H}^{*} is connected and so is its continuous image $X(\Gamma)$.

Suppose $\mathcal{H}^{*}=O_{1} \cup O_{2}$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_{1} \supset \mathbb{H}$ and so $O_{2} \subset \mathbb{Q} \cup\{\infty\}$. But then O_{2} is not open unless it is empty. Thus \mathcal{H}^{*} is connected and so is its continuous image $X(\Gamma)$. For compactness, first observe that

$$
\mathcal{D}^{*}=\mathcal{D} \cup\{\infty\} \text { is compact in the } \mathcal{H}^{*} \text { topology. }
$$

Suppose $\mathcal{H}^{*}=O_{1} \cup O_{2}$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_{1} \supset \mathbb{H}$ and so $O_{2} \subset \mathbb{Q} \cup\{\infty\}$. But then O_{2} is not open unless it is empty. Thus \mathcal{H}^{*} is connected and so is its continuous image $X(\Gamma)$. For compactness, first observe that

$$
\mathcal{D}^{*}=\mathcal{D} \cup\{\infty\} \text { is compact in the } \mathcal{H}^{*} \text { topology. }
$$

Note that

$$
\mathcal{H}^{*}=S L_{2}(\mathbb{Z}) \mathcal{D}^{*}=\bigcup_{j} \Gamma \gamma_{j}\left(\mathcal{D}^{*}\right), \text { where the } \gamma_{j} \text { are coset representatives. }
$$

Then

$$
x(\Gamma)=\bigcup_{j} \pi\left(\gamma_{j}\left(\mathcal{D}^{*}\right)\right)
$$

Since each γ_{j} is continuous, π is continuous and $\left[S L_{2}(\mathbb{Z}): \Gamma\right]<\infty, X(\Gamma)$ is compact.

Cusps

Charts about Cusps

For each cusp $s \in \mathbb{Q} \cup\{\infty\}$, define the width of s to be

$$
h_{s}=\left|\frac{S L_{2}(\mathbb{Z})_{s}}{\{ \pm I\} \Gamma_{s}}\right| .
$$

This notion is dual to the period of an elliptic point, being inversely propotional to the size of an isotropy subgroup.

Claims:
(1) If $s \in \mathbb{Q} \cup\{\infty\}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}=$ the width of s under Γ.
In particular, the width h_{s} depends only on Γs, making the width is well-defined on $X(\Gamma)$.

Claims:
(1) If $s \in \mathbb{Q} \cup\{\infty\}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}=$ the width of s under Γ.
In particular, the width h_{s} depends only on Γs, making the width is well-defined on $X(\Gamma)$.
(2) If Γ is normal in $S L_{2}(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.

Claims:
(1) If $s \in \mathbb{Q} \cup\{\infty\}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}=$ the width of s under Γ.
In particular, the width h_{s} depends only on Γs, making the width is well-defined on $X(\Gamma)$.
(2) If Γ is normal in $S L_{2}(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.
(3) If $\delta \in S L_{2}(\mathbb{Z})$ takes s to ∞, then

$$
h_{s}=\left|\frac{S L_{2}(\mathbb{Z})_{\infty}}{\left(\delta\{ \pm I\} \Gamma \delta^{-1}\right)_{\infty}}\right| .
$$

Claims:

(1) If $s \in \mathbb{Q} \cup\{\infty\}$ and $\gamma \in S L_{2}(\mathbb{Z})$ then the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}=$ the width of s under Γ.
In particular, the width h_{s} depends only on Γs, making the width is well-defined on $X(\Gamma)$.
(2) If Γ is normal in $S L_{2}(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.
(3) If $\delta \in S L_{2}(\mathbb{Z})$ takes s to ∞, then

$$
h_{s}=\left|\frac{S L_{2}(\mathbb{Z})_{\infty}}{\left(\delta\{ \pm I\} \Gamma \delta^{-1}\right)_{\infty}}\right| .
$$

Moreover,

$$
\left(\delta\{ \pm I\}\left\ulcorner\delta^{-1}\right)_{\infty}=\{ \pm I\}\left\langle\left[\begin{array}{cc}
1 & h_{s} \\
0 & 1
\end{array}\right]\right\rangle .\right.
$$

Figure 2.6. Local coordinates at a cusp

Figure 2.6. Local coordinates at a cusp

Define $U=U_{s}=\delta^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$ and define $\psi=\rho \circ \delta$, where $\rho=e^{2 \pi i z / h}, h=h_{s}$.

Figure 2.6. Local coordinates at a cusp

Define $U=U_{s}=\delta^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$ and define $\psi=\rho \circ \delta$, where $\rho=e^{2 \pi i z / h}, h=h_{s}$. Let $V=i m \psi$ then V is an open subset of \mathbb{C}, we have

$$
\psi: U \rightarrow V, \quad \psi(t)=e^{2 \pi i \delta(t) / h}
$$

Claim: For all $t_{1}, t_{2} \in U, \pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right)$.

Claim: For all $t_{1}, t_{2} \in U, \pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right)$.
Indeed,

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow t_{1}=\gamma\left(t_{2}\right) \Leftrightarrow \delta\left(t_{1}\right)=\left(\delta \gamma \delta^{-1}\right)\left(\delta\left(t_{2}\right)\right)
$$

for some $\gamma \in \Gamma$. Since $\delta\left(t_{1}\right)$ and $\delta\left(t_{2}\right)$ both lie in $\mathcal{N}_{2} \cup\{\infty\}, \delta \gamma \delta^{-1}$ must be a translation. So

Claim: For all $t_{1}, t_{2} \in U, \pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right)$. Indeed,

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow t_{1}=\gamma\left(t_{2}\right) \Leftrightarrow \delta\left(t_{1}\right)=\left(\delta \gamma \delta^{-1}\right)\left(\delta\left(t_{2}\right)\right)
$$

for some $\gamma \in \Gamma$. Since $\delta\left(t_{1}\right)$ and $\delta\left(t_{2}\right)$ both lie in $\mathcal{N}_{2} \cup\{\infty\}, \delta \gamma \delta^{-1}$ must be a translation. So

$$
\delta \gamma \delta^{-1} \in \delta \Gamma \delta^{-1} \cap S L_{2}(\mathbb{Z})_{\infty}=\left(\delta \Gamma \delta^{-1}\right)_{\infty} \subset\{ \pm I\}\left\langle\left[\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right]\right\rangle
$$

Claim: For all $t_{1}, t_{2} \in U, \pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right)$. Indeed,

$$
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) \Leftrightarrow t_{1}=\gamma\left(t_{2}\right) \Leftrightarrow \delta\left(t_{1}\right)=\left(\delta \gamma \delta^{-1}\right)\left(\delta\left(t_{2}\right)\right)
$$

for some $\gamma \in \Gamma$. Since $\delta\left(t_{1}\right)$ and $\delta\left(t_{2}\right)$ both lie in $\mathcal{N}_{2} \cup\{\infty\}, \delta \gamma \delta^{-1}$ must be a translation. So

$$
\delta \gamma \delta^{-1} \in \delta \Gamma \delta^{-1} \cap S L_{2}(\mathbb{Z})_{\infty}=\left(\delta \Gamma \delta^{-1}\right)_{\infty} \subset\{ \pm I\}\left\langle\left[\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right]\right\rangle
$$

Then

$$
\begin{aligned}
\pi\left(t_{1}\right)=\pi\left(t_{2}\right) & \Leftrightarrow \delta\left(t_{1}\right)=\delta\left(t_{2}\right)+m h \text { for some } m \in \mathbb{Z} \\
& \Leftrightarrow \psi\left(t_{1}\right)=\psi\left(t_{2}\right) .
\end{aligned}
$$

Therefore, there exists a bijection $\varphi: \pi(U) \rightarrow V$ such that the following diagram commutes

Therefore, there exists a bijection $\varphi: \pi(U) \rightarrow V$ such that the following diagram commutes

The coordinate neighborhood about $\pi(s)$ in $X(\Gamma)$ is $\pi(U)$, and the coordinate map is $\varphi: \pi(U) \rightarrow V$, a homeomorphism.

Cusps

Holomorphicity of Transition Maps

It suffices to consider 2 following cases.
Case 1 Suppose $U_{1} \subset \mathbb{H}$ has the corresponding straightening map $\delta_{1}=\delta_{t_{1}} \in G L_{2}(\mathbb{C})$ where t_{1} has period h_{1} and suppose $U_{2}=\delta_{2}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$.

Cusps

Holomorphicity of Transition Maps

It suffices to consider 2 following cases.
Case 1 Suppose $U_{1} \subset \mathbb{H}$ has the corresponding straightening map $\delta_{1}=\delta_{t_{1}} \in G L_{2}(\mathbb{C})$ where t_{1} has period h_{1} and suppose $U_{2}=\delta_{2}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$.
For each $x \in \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)$, write $x=\pi\left(\tilde{t}_{1}\right)=\pi\left(t_{2}\right)$ for $\tilde{t}_{1} \in U_{1}, t_{2} \in U_{2}$.

Cusps

It suffices to consider 2 following cases.
Case 1 Suppose $U_{1} \subset \mathbb{H}$ has the corresponding straightening map $\delta_{1}=\delta_{t_{1}} \in G L_{2}(\mathbb{C})$ where t_{1} has period h_{1} and suppose $U_{2}=\delta_{2}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$.
For each $x \in \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)$, write $x=\pi\left(\tilde{t}_{1}\right)=\pi\left(t_{2}\right)$ for $\tilde{t}_{1} \in U_{1}, t_{2} \in U_{2}$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$. For any $q=\varphi_{1}\left(x^{\prime}\right) \in \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$, the formula is

$$
\varphi_{2,1}(q)=\exp \left(2 \pi i \delta_{2} \gamma \delta_{1}^{-1}\left(q^{1 / h_{1}}\right) / h_{2}\right) .
$$

Cusps

It suffices to consider 2 following cases.
Case 1 Suppose $U_{1} \subset \mathbb{H}$ has the corresponding straightening map $\delta_{1}=\delta_{t_{1}} \in G L_{2}(\mathbb{C})$ where t_{1} has period h_{1} and suppose $U_{2}=\delta_{2}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$.
For each $x \in \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)$, write $x=\pi\left(\tilde{t}_{1}\right)=\pi\left(t_{2}\right)$ for $\tilde{t}_{1} \in U_{1}, t_{2} \in U_{2}$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$. For any $q=\varphi_{1}\left(x^{\prime}\right) \in \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$, the formula is

$$
\varphi_{2,1}(q)=\exp \left(2 \pi i \delta_{2} \gamma \delta_{1}^{-1}\left(q^{1 / h_{1}}\right) / h_{2}\right) .
$$

If $h_{1}=1$: OK.

Cusps

A
 Holomorphicity of Transition Maps

It suffices to consider 2 following cases.
Case 1 Suppose $U_{1} \subset \mathbb{H}$ has the corresponding straightening map $\delta_{1}=\delta_{t_{1}} \in G L_{2}(\mathbb{C})$ where t_{1} has period h_{1} and suppose $U_{2}=\delta_{2}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$.
For each $x \in \pi\left(U_{1}\right) \cap \pi\left(U_{2}\right)$, write $x=\pi\left(\tilde{t}_{1}\right)=\pi\left(t_{2}\right)$ for $\tilde{t}_{1} \in U_{1}, t_{2} \in U_{2}$. Let $U_{1,2}=U_{1} \cap \gamma^{-1}\left(U_{2}\right)$, then $\varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$ is a neighborhood of $\varphi_{1}(x)$.
For any $q=\varphi_{1}\left(x^{\prime}\right) \in \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$, the formula is

$$
\varphi_{2,1}(q)=\exp \left(2 \pi i \delta_{2} \gamma \delta_{1}^{-1}\left(q^{1 / h_{1}}\right) / h_{2}\right) .
$$

If $h_{1}=1$: OK.
If $h_{1}>1$, then $t_{1} \notin U_{1,2}$, else the point $\delta_{2}\left(\gamma\left(t_{1}\right)\right) \in \mathcal{N}_{2}$ is also an elliptic point for Γ, which is contradiction since \mathcal{N}_{2} contains no elliptic points. Then $t_{1} \notin U_{1,2}$ so $0 \notin \varphi_{1}\left(\pi\left(U_{1,2}\right)\right)$. The transition map is holomorphic.

Case 2 Suppose $U_{i}=\delta_{i}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$ with $\delta_{i}: s_{i} \mapsto \infty, i=1,2$.

Case 2 Suppose $U_{i}=\delta_{i}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$ with $\delta_{i}: s_{i} \mapsto \infty, i=1,2$. If $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right) \neq \varnothing$, then there exist $t_{1} \in U_{1}, t_{2} \in U_{2}, \gamma \in \Gamma$ such that

$$
t_{1}=\gamma\left(t_{2}\right) \Rightarrow \delta_{1}\left(t_{1}\right)=\delta_{1} \gamma \delta_{2}^{-1}\left(\delta_{2}\left(t_{2}\right)\right)
$$

Case 2 Suppose $U_{i}=\delta_{i}^{-1}\left(\mathcal{N}_{2} \cup\{\infty\}\right)$ with $\delta_{i}: s_{i} \mapsto \infty, i=1,2$. If $\pi\left(U_{1}\right) \cap \pi\left(U_{2}\right) \neq \varnothing$, then there exist $t_{1} \in U_{1}, t_{2} \in U_{2}, \gamma \in \Gamma$ such that

$$
t_{1}=\gamma\left(t_{2}\right) \Rightarrow \delta_{1}\left(t_{1}\right)=\delta_{1} \gamma \delta_{2}^{-1}\left(\delta_{2}\left(t_{2}\right)\right)
$$

Since $\delta_{1} \gamma \delta_{2}^{-1}$ moves some point in $\mathcal{N}_{2} \cup\{\infty\}$ to another, it must be a translation $\pm\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right]$.
In this case $\gamma\left(s_{1}\right)=s_{2}$, so $h_{1}=h_{2}=h$. Using this, we can compute

$$
\varphi_{2,1}(q)=e^{2 \pi i m / h} q .
$$

This is clearly holomorphic.

To summarize, for any congruence subgroup Γ of $S L_{2}(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface.

To summarize, for any congruence subgroup Γ of $S L_{2}(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface.
Problems:
(1) Compute the genus of $X(\Gamma)$.

To summarize, for any congruence subgroup Γ of $S L_{2}(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface.
Problems:
(1) Compute the genus of $X(\Gamma)$.
(2) Study the meromorphic functions and differentials on $X(\Gamma)$.

Modular Curves and Modularity

Modular Curves and Modularity

Theorem (Modularity Theorem)

Let E be a complex elliptic curve with $j(E) \in \mathbb{Q}$. Then for some positive integer N there exists a surjective holomorphic function of compact Riemann surfaces from the modular curve $X_{0}(N)$ to the elliptic curve E,

$$
X_{0}(N) \longrightarrow E
$$

THANK YOU FOR LISTENING

