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Let ' C SL»(Z) be a congruence subgroup. The corresponding modular curve is the
set of orbits

Y(M) ={lr:7eH}.
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Topology

<0OA
s oV
wp Topology on Modular Curves

Let ' C SL»(Z) be a congruence subgroup. The corresponding modular curve is the
set of orbits

Y(M) ={lr:7eH}.

The natural surjection
m:H— Y(T), w(r)=TIr

gives Y(I') the quotient topology.
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Here are some claims:

@ 7 is an open mapping.
Because for every U open in H, one has

= (u) = ()

yer

which is clearly open.
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Topology

Here are some claims:

@ 7 is an open mapping.
Because for every U open in H, one has

= (u) = ()
yer
which is clearly open.
e n(Ui)Nm(lk)=2inY((l) < T(Ui)NU; =2 inH.
® Y/(IN) is connected.
Because H is connected and 7 is continuous.

o Y/(I) is Hausdorff.
@ Y(I) is second countable.
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The action of SLy(Z) on H is properly discontinuous, i.e, given any ti, to € H there
exist neighborhoods Uy of t; and U of tp in H such that

YV € SLa(Z), if y(Ur) N Uz # @ then v(t1) = to
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Topology

The action of SLy(Z) on H is properly discontinuous, i.e, given any ti, to € H there
exist neighborhoods Uy of t; and U of tp in H such that

YV € SLa(Z), if y(Ur) N Uz # @ then v(t1) = to

For any congruence subgroup I of SL2(Z), the modular curve Y (T) is Hausdorff.

Let w(71) # m(72) be 2 distinct points in Y(I'). Take neighborhoods U; of 1, Uz of
T as in the previous theorem. Since v(71) # 7 for all vy € T, then [(U1) N U> = & in
H. This implies 7(U1) N w(U2) = @. O

5/45
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To prove the theorem 1, let U (resp. U}) be any neighborhood of t; (resp. t2) with
compact closure in H.

The inequality

sup{Im(y(t)) : v € SLa(Z) has bottom row (c,d),t € Ui} < inf{Im(t): t € U5}

holds true for all but finitely many integer pairs (¢, d) with ged(c,d) = 1.
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Topology

To prove the theorem 1, let U (resp. U}) be any neighborhood of t; (resp. t2) with
compact closure in H.

The inequality

sup{Im(y(t)) : v € SLa(Z) has bottom row (c,d),t € Ui} < inf{Im(t): t € U5}

holds true for all but finitely many integer pairs (¢, d) with ged(c,d) = 1.

Remark  This lemma implies that:
If v € SLy(Z) satisfying v(U;) N Uj # @ then the bottom row of y has only finitely
many choices.
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Proof of lemma 1.

Observe that

Im(~(t)) = |Ci"jr(2|2 < Czl;:’rf(?)z,vw = {i Z} € SLy(Z),vt € U].
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Topology

Proof of lemma 1.

Observe that

Im(~(t)) = |Ci"jr(2|2 < Czl;:’rf(?)z,vw = Lf ﬂ € SLy(Z),vt € U].

So as ¢ — oo, Im(y(t)) — 0. Let 2¢ = inf{Im(t) : t € Uj} > 0, there exists N >0
such that whenever |c| > N, Im(~y(t)) < e for all t € Uj. It implies that the inequality
holds true for all integer pairs (¢, d) with ged(c,d) =1 and |c| > N.
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Topology

Proof of lemma 1.

Observe that

Im(~(t)) = |Cinjr(2|2 < C;;Zf(?)z,vw = {i Z} € SLy(Z),vt € U].

So as ¢ — oo, Im(y(t)) — 0. Let 2¢ = inf{Im(t) : t € Uj} > 0O, there exists N > 0
such that whenever |c| > N, Im(~y(t)) < e for all t € Uj. It implies that the inequality
holds true for all integer pairs (¢, d) with ged(c,d) =1 and |c| > N.

Now suppose |c| < N, then |ct| is bounded. Then Im(y(t)) — 0 as d — oco. So there
exists M > 0 such that whenever |d| > M, Im(~(t)) < & for all t € U;. This means
the inequality holds true for all integer pairs (c, d) with ged(c,d) =1, |¢| < N and

|[d| > M.

From above, we deduces that the inequality holds true whenever either |c| > N or

|[d| > M.

7/45%
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For an integer pair (c,d) with gcd(c,d) = 1, the number of

7y € SLy(Z) with bottom row (c,d) such that v(U;) N U # @

is finite.
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Lemma (2)
For an integer pair (c,d) with gcd(c,d) = 1, the number of
7y € SLy(Z) with bottom row (c,d) such that v(U;) N U # @

is finite.

Proof of lemma 2.
Observe that the set of matrices v € SL»(Z) with bottom row (c, d) are

{bo Al o ve)

where (a, b) is any particular pair such that ad — bc = 1.
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Lemma (2)
For an integer pair (c,d) with gcd(c,d) = 1, the number of
7y € SLy(Z) with bottom row (c,d) such that v(U;) N U # @

is finite.

Proof of lemma 2.
Observe that the set of matrices v € SL»(Z) with bottom row (c, d) are

{bo Al o ve)

where (a, b) is any particular pair such that ad — bc = 1. Thus

HU)A Uj = ([i 3] U{+k)mU§

is empty for all but finitely many v with bottom row (c, d).

8/45
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Then F = {v € SLy(Z) : v(U]) N U} # @,~(t1) # t2} is a finite set.
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Topology

Then F = {v € SLy(Z) : v(U]) N U} # @,~(t1) # t2} is a finite set.
For each v € F, there exists disjoint neighborhoods Uy, of 7(t1) and Us - of t> in H.
Define

vi=Uin | ()7 (ts)
YEF

G=un| () tas
~YEF
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Topology

Then F = {v € SLy(Z) : v(U]) N U} # @,~(t1) # t2} is a finite set.
For each v € F, there exists disjoint neighborhoods Uy, of 7(t1) and Us - of t> in H.
Define

v=uin ()77
YEF

G=un| () tas
~YEF

Take any v € SLy(Z) such that v(U;1) N Us # &. To show ~(t1) = to, it suffices to
show v ¢ F. If v € F, then

v HUiy) D Ui and Usy D Us,

so Uy,y N Uz D ~(U1) N Uz # @, contradiction.

9/4%
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To summarize
® 7 :H — Y(I) is open.
® Y(I) is connected.
® Y(I) is Hausdorff.
0 Y(I) is second countable.
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For a point m(t) € Y(I') where t € H, consider 2 cases:
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-
Lonni
For a point m(t) € Y(I') where t € H, consider 2 cases:

Case 1 t is fixed only by the identity transformation in I'. Let U be a small neighborhood
of t such that
Vy € SLo(Z),v(U)NU # @ = ~(t) = t.
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For a point m(t) € Y(I') where t € H, consider 2 cases:

Case 1 t is fixed only by the identity transformation in I'. Let U be a small neighborhood
of t such that
Vy € SLo(Z),v(U)NU # @ = ~(t) = t.

Then we claim that
wly: U—= (V)

is a homeomorphism.
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Charts

<0OA
s oV
. | . Charts on Modular Curves

-
Lonni
For a point m(t) € Y(I') where t € H, consider 2 cases:

Case 1 t is fixed only by the identity transformation in I'. Let U be a small neighborhood
of t such that
Vy € SLo(Z),v(U)NU # @ = ~(t) = t.

Then we claim that
wly: U—= (V)

is a homeomorphism.
Then we can define

p:m(U)— UCC, o= (ry) !

as a local coordinate at m(t).
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Case 2 t has a nontrivial group of fixing transformations in . This is complicated.
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Case 2 t has a nontrivial group of fixing transformations in . This is complicated.

Example

Consider I = SLp(Z), t =i and v = [0 -

1 0].Then'y(i):_71:i.
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Case 2 t has a nontrivial group of fixing transformations in I'. This is complicated.

Example

Consider [ = SL»(Z), t =i and v = {(1’ _01]. Then y(i) = =* =i.

Let 6 = E _II} € GL>(C). We know that § is a conformal map from H to the unit

disc D which sends i to 0. By direct computation we have
B . 71 e _i 0
8-y-07 = [0 i} '

which acts as 180-degree rotation about O in the unit disc. We observe that any

neighborhood about 0 contains pair of { 0’ ﬂ -equivalent points.
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Case 2 t has a nontrivial group of fixing transformations in I'. This is complicated.

Example

0 -1

Consider ' = SLy(Z), t =17 and v = [1 0

Let 6 = E _ll} € GL>(C). We know that § is a conformal map from H to the unit

disc D which sends i to 0. By direct computation we have
B . 71 e _i 0
8-y-07 = [0 i} '

which acts as 180-degree rotation about O in the unit disc. We observe that any

]. Then ~(i) = _71 =i

neighborhood about 0 contains pair of { 0’ ﬂ -equivalent points.

Then we deduce that any neighborhood of i contains pairs of y-equivalent points.
Thus cannot biject to a neighborhood of 7 (i) in Y(SL2(Z)).

12 /4%
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The last example gives rise to the definition of isotropy subgroups and elliptic points.
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The last example gives rise to the definition of isotropy subgroups and elliptic points.

Definition

For each t € H, the isotropy subgroup of t is
Mre={yer:~(t) =t}

A point t € H is an elliptic point for I if '+ is nontrivial as a group of transformations.
The corresponding point 7(t) on Y(I') is also called elliptic.

14 / 4%
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Proposition

For each elliptic point t of I the isotropy group I'; is finite cyclic.
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Proposition

For each elliptic point t of I the isotropy group I'; is finite cyclic.

Thus each point t € H has an associated positive integer

_Irel/2 if —1er,
R if —1¢T..

{EnT,
=D

This h is called the period of t, and h; > 1 only for elliptic points. h; correctly
counts the t-fixing transformations.

t
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Proposition

For each elliptic point t of I the isotropy group I'; is finite cyclic.

Thus each point t € H has an associated positive integer

_Irel/2 if —1er,
R if —1¢T..

{EnT,
=D

This h is called the period of t, and h; > 1 only for elliptic points. h; correctly
counts the t-fixing transformations.

© If t € H and v € SL»(Z) then
the period of t under I' = the period of v(t) under yTy~1.
In particular, ht depends only on I't. So the period is well-defined on Y(T).

t
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Proposition

For each elliptic point t of I the isotropy group I'; is finite cyclic.

Thus each point t € H has an associated positive integer

1 {Enr _{|rt/2 if — 1€,

S {ER

This h is called the period of t, and h; > 1 only for elliptic points. h; correctly
counts the t-fixing transformations.

© If t € H and v € SL»(Z) then
the period of t under I' = the period of v(t) under yTy~1.
In particular, ht depends only on I't. So the period is well-defined on Y(T).

@ If T is normal in SL2(Z) then all points of Y(I') over a point of Y(SL2(Z) have
the same period.
If SLy(Z)t1 = SLy(Z)t> then T't; and It have the same period.

t

[T¢] if —1¢Te.

15 /4%
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To put coordinates on Y(I') about a point 7(t):

1

1 _tt] € GLy(C) to send t to 0 and t to co.

® Use the "straightening map" §; = |:
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To put coordinates on Y(I') about a point 7(t):

1
1

® The isotropy subgroup of 0 in the conjugated transformation group is the
conjugate of the isotropy subgroup of t, i.e

(8e{£NT8; o/ {E1} = Se({NTe/{£1})8; Y,

©® Use the "straightening map" §; = |: _tt] € GLy(C) to send t to 0 and t to oco.

and therefore is cyclic of order h; as a group of transformations.
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©® Use the "straightening map" §; = |: _tt] € GL»(C) to send t to 0 and t to co.

and therefore is cyclic of order h; as a group of transformations.

©® Since the transformations in the isotropy subgroup of t fix t and t, the
transformations in the "conjugated isotropy subgroup" of 0 fix 0 and co. So they
must have the form z — az.
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To put coordinates on Y(I') about a point 7 (t):

1
1

® The isotropy subgroup of 0 in the conjugated transformation group is the
conjugate of the isotropy subgroup of t, i.e

(8e{£NT8; o/ {E1} = Se({NTe/{£1})8; Y,

©® Use the "straightening map" §; = [

and therefore is cyclic of order h; as a group of transformations.

©® Since the transformations in the isotropy subgroup of t fix t and t, the
transformations in the "conjugated isotropy subgroup" of 0 fix 0 and co. So they
must have the form z — az.

© The group is finite cyclic of order h;, the transformations must be the rotations
through angular multiples of 27 /h; about 0.

;t} € GLy(C) to send t to 0 and t to oo.
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To put coordinates on Y(I') about a point 7 (t):

1
1

® The isotropy subgroup of 0 in the conjugated transformation group is the
conjugate of the isotropy subgroup of t, i.e

(8e{£NT8; o/ {E1} = Se({NTe/{£1})8; Y,

©® Use the "straightening map" §; = [

and therefore is cyclic of order h; as a group of transformations.

©® Since the transformations in the isotropy subgroup of t fix t and t, the
transformations in the "conjugated isotropy subgroup" of 0 fix 0 and co. So they
must have the form z — az.

© The group is finite cyclic of order h;, the transformations must be the rotations
through angular multiples of 27 /h; about 0.

©® The map J; is "straightening" neighborhoods of t to neighborhoods of 0 in the
sense that after the map, equivalent points are spaced apart by fixed angles.

;t} € GLy(C) to send t to 0 and t to oo.
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Figure 2.2. Local coordinates at an elliptic point
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Now given any point w(t) € Y(I), take a neighborhood U of t such that
Vy €T, if y(U)NU # @ then v € Ty.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.
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Now given any point w(t) € Y(I), take a neighborhood U of t such that
Vy €T, if y(U)NU # @ then v € Ty.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.
Define 1 : U — C to be ¢ = p o § where § = &, p is the power function p(z) = 2",
with h = he. Let V = (U), then V is open.
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Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.
Define 1 : U — C to be ¢ = p o § where § = &, p is the power function p(z) = 2",
with h = he. Let V = (U), then V is open.

Claim: For any t;,t € U,

m(t1) = 7(t2) & ¥(t1) = ¥(t2).
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Now given any point w(t) € Y(I), take a neighborhood U of t such that
Vy €T, if y(U)NU # @ then v € Ty.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.
Define 1 : U — C to be ¢ = p o § where § = &, p is the power function p(z) = 2",
with h = he. Let V = (U), then V is open.

Claim: For any t;,t € U,

n(t1) = n(t2) & ¢(t1) = Y(t2)-
To see this, observe that
(1) =m(h) &t €Th &t €Tty & 8(t1) € (S8 1) (0(12)) & 8(t1) = pd (8(2)),

for some integer d, p, = €2™/h since 6761 is a cyclic transformation group of h
rotations. So

() = m(t2) & (8(1))" = (8(r2))" & (1) = ¥(t2).

18 /4%
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Thus there exists an injection ¢ : m(U) — V such that the diagram

N

x(U) —F—— v

commutes.

10 /4%



R
Modular Curves as Riemann Surfaces

Charts

Thus there exists an injection ¢ : m(U) — V such that the diagram

7N

x(U) —F—— v

commutes. Also ¢ surjects since v surjects, and ¢ : 7(U) — V is a homeomorphism.
So ¢ is a local coordinate and 7(U) is a coordinate neighborhood about 7(t) in Y(I).

10 /4%
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lhonni

Given overlapping w(U1) and 7(U>). Let

Vie = ei(n(U) N7(U)),  Vai = @a(n(Ur) N7(U2)), @21 =920901 vy,

7T(U1) n 7T(U2)
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Charts

<0OA
s oV
wp Holomorphicity of Transition Maps

lhonni

Given overlapping w(U1) and 7(U>). Let

Vie = ei(n(U) N7(U)),  Vai = @a(n(Ur) N7(U2)), @21 =920901 vy,

7T(U1) n 7T(U2)

% K
P2,

For each x € w(U;) N (Vo) it suffices to check holomorphy in some neighborhood of
gal(x) in V1.

V2,1.

20 /4%
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Write x = m(t1) = 7(t2) with t; € Ui, t2 € Uz and tp = v(t1) for some v € T. Let
Up=UnN v~1(Uz), then m(U1,2) is a neighborhood of x and so yp1(7(Ui1,2)) is a
neighborhood of ¢1(x) in Vi 5.
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Write x = m(t1) = 7(t2) with t; € Ui, t2 € Uz and tp = v(t1) for some v € T. Let
Up=UnN v~1(Uz), then m(U1,2) is a neighborhood of x and so yp1(7(Ui1,2)) is a
neighborhood of ¢1(x) in Vi .

We'll prove for the case ¢1(x) = 0. So the first straightening map is §; = &y . Let
q = ¢1(x’) € p1(m(U1,2)), one has

g =p1(n(t") = 1(t') = (81(¢'))™, for some t' € Uy

where hj is the period of t;.

21/45%
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Write x = m(t1) = 7(t2) with t; € Ui, t2 € Uz and tp = v(t1) for some v € T. Let
Up=UnN v~1(Uz), then m(U1,2) is a neighborhood of x and so yp1(7(Ui1,2)) is a
neighborhood of ¢1(x) in Vi .
We'll prove for the case ¢1(x) = 0. So the first straightening map is §; = &y . Let
g = p1(x’) € p1(n(U1,2)), one has
g =p1(n(t") = 1(t') = (81(¢'))™, for some t' € Uy
where hj is the period of t;.
Let f, € U be the point such that ¢ (f;) = 0 and let hy be its period. Then
©2,1(q) = p2(x)

= ¢a(n(t"))

= p2(m(~(t))

= 1pa(y(t")) which is defined since v(t') € U,

= (&20x(t"))"

= (5276, ) (81()))™

= (82757 ) (g ™))"

21/45%
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The calculation shows that if h; = 1 then the transition map is clearly holomorphic.
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The calculation shows that if h; = 1 then the transition map is clearly holomorphic.
If hy > 1, first observe that t» = v(t1), which means t, has the same period h; > 1 as
t;. Then t, must be an elliptic point.
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The calculation shows that if h; = 1 then the transition map is clearly holomorphic.

If hy > 1, first observe that t» = v(t1), which means t, has the same period h; > 1 as
ti. Then to must be an elliptic point.

Recall from the construction that the elliptic point (if exists) must map to 0 under the
straightening map. So t = 5 and then hy = hy.

22 /4%
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The calculation shows that if h;y = 1 then the transition map is clearly holomorphic.

If hy > 1, first observe that t» = v(t1), which means t, has the same period h; > 1 as
t;. Then t, must be an elliptic point.

Recall from the construction that the elliptic point (if exists) must map to 0 under the
straightening map. So t = 5 and then hy = hy.

We have the following diagrams

st st

o 5 - v - O
0»1—>t1»—>t2l—2>0 s oo»l—>t1»—>t2»—2>oo.

This shows 6276;1 = [g g:| for some nonzero «, 5 € C.
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Charts

The calculation shows that if h;y = 1 then the transition map is clearly holomorphic.

If hy > 1, first observe that t» = v(t1), which means t, has the same period h; > 1 as
t;. Then to must be an elliptic point.

Recall from the construction that the elliptic point (if exists) must map to 0 under the
straightening map. So t = 5 and then hy = hy.

We have the following diagrams

st st

5 _ - &
0»1—>t1»l>t2l—2>0 s oo>1—>t1bl>t2>—2>oo.
. _1 a 0
This shows 6270, = = 0 3 for some nonzero «, 5 € C.

The formula for the transition map in this case is

o= ([5 o)’ (2)'

which is clearly holomorphic.
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Charts

The calculation shows that if h;y = 1 then the transition map is clearly holomorphic.

If hy > 1, first observe that t» = v(t1), which means t, has the same period h; > 1 as
t;. Then to must be an elliptic point.

Recall from the construction that the elliptic point (if exists) must map to 0 under the
straightening map. So t = 5 and then hy = hy.

We have the following diagrams

st st

5 _ - &
0»1—>t1»l>t2l—2>0 s oo>1—>t1bl>t2>—2>oo.
. _1 a 0
This shows 6270, = = 0 3 for some nonzero «, 5 € C.

The formula for the transition map in this case is

o= ([5 o)’ (2)'

which is clearly holomorphic.
The general case is quite similar.
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Elliptic Points

Elliptic Points

<0OA
s oV
w . Elliptic Points

In this section we will show the remaining proposition: the isotropy subgroup I'; is
finite and cyclic. Then we will discover some properties of elliptic points of a
congruence subgroup I'. It turns out that the set of elliptic points is quite "small".
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Elliptic Points

Example
Consider the case Y(1) = SLp(Z) \ H. Let D be the set

D={tecH:|Re(t) <1/2,t| >1}.

N
1
1
1
I \
1
1
1
1
1
I

Figure 2.3. The fundamental domain for SL2(Z)
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Elliptic Points

The map m : D — Y(1) surjects, where 7 is the natural projection w(t) = SLy(Z)t.
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Elliptic Points

The map m : D — Y(1) surjects, where 7 is the natural projection w(t) = SLy(Z)t.

The surjection m : D — Y/(1) is not injective. The translation [(1) ﬂ it t41

identifies the two boundaries half-lines, and the inversion [(1) _01 tte =1/t

identifies the two halves of the boundary arc. But these boundary identifications are
the only ones.
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Elliptic Points

The map m : D — Y(1) surjects, where 7 is the natural projection w(t) = SLy(Z)t.

The surjection m : D — Y/(1) is not injective. The translation [(1) ﬂ it t41

identifies the two boundaries half-lines, and the inversion [(1) _0 tte =1/t

identifies the two halves of the boundary arc. But these boundary identifications are
the only ones.

Suppose t; # tp are distinct points in D such that t, = ~(t1) for some v € SL>(Z).
Then either

® Re(t1) = +1/2 and t; = F1, or
® |til=1and tr, = —1/t;.
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Elliptic Points

Returning to elliptic points, suppose t € H is fixed by a nontrivial transformation
a b
v = [c d} € SLy(Z). Then

at+ b = ct? + dt.
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Elliptic Points

Returning to elliptic points, suppose t € H is fixed by a nontrivial transformation
a b
v = [c d} € SLy(Z). Then

at+ b = ct? + dt.

Since t € H, we can show that ¢ # 0 and |a+ d| < 2. Then a+d € {—1,0,1}.
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Elliptic Points

Returning to elliptic points, suppose t € H is fixed by a nontrivial transformation
a b
v = [c d] € SLy(Z). Then

at+ b = ct? + dt.

Since t € H, we can show that ¢ # 0 and |a+ d| < 2. Then a+d € {—1,0,1}.
The characteristic polynomial of ~ is given by

(a—x)(d—x)—bc=x>—(a+d)x+1.

So the characteristic polynomial is x? 4+ 1 or x? + x + 1.
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Elliptic Points

Returning to elliptic points, suppose t € H is fixed by a nontrivial transformation

a b
v = [c d] € SLy(Z). Then

at+ b = ct? + dt.

Since t € H, we can show that ¢ # 0 and |a+ d| < 2. Then a+d € {—1,0,1}.
The characteristic polynomial of ~ is given by

(a—x)(d—x)—bc=x>—(a+d)x+1.

So the characteristic polynomial is x? 4+ 1 or x? + x + 1.
Then one of the following holds

¥=1 ., =1, =1
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Elliptic Points

Returning to elliptic points, suppose t € H is fixed by a nontrivial transformation

a b
v = L d} € SL5(Z). Then

at+ b = ct? + dt.

Since t € H, we can show that ¢ # 0 and |a+ d| < 2. Then a+d € {—1,0,1}.
The characteristic polynomial of ~ is given by

(a—x)(d—x)—bc=x>—(a+d)x+1.

So the characteristic polynomial is x? 4+ 1 or x? + x + 1.
Then one of the following holds

¥=1 ., =1, =1

Then v has order 1,2,3,4 or 6 as a matrix. Observe that orders 1 and 2 give the
identity transformations. The following proposition will discribe all nontrivial fixing
transformations.
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Elliptic Points

Let v € SLy(Z).

0

1 +1
1 _1} in SLy(Z).

© If v has order 3 then ~ is conjugate to {

+1
@® If v has order 4 then v is conjugate to {O _01] in SLy(Z).

1

0 -1 +1
© If v has order 6 then ~ is conjugate to { ]

11 in SLy(7Z).
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Elliptic Points

Let v € SLy(Z).

0

1 +1
1 _1} in SLy(Z).

© If v has order 3 then ~ is conjugate to {

+1
@® If v has order 4 then v is conjugate to {O _01] in SLy(Z).

1

o —11*
© If v has order 6 then ~ is conjugate to {1 1 ]

Corollary

@ The elliptic points for SLo(Z) are SLy(Z)i and SLy(Z)u3 where pz = €27i/3,

in SLy(7Z).
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Elliptic Points

Let v € SLy(Z).

0

1 +1
1 _1} in SLy(Z).

© If v has order 3 then ~ is conjugate to {

+1
@® If v has order 4 then v is conjugate to {O _01] in SLy(Z).

1

o —11*
© If v has order 6 then ~ is conjugate to {1 1 ]

v
Corollary

@ The elliptic points for SLo(Z) are SLy(Z)i and SLy(Z)u3 where pz = €27i/3,
® The modular curve Y (1) has 2 elliptic points.

in SLy(7Z).
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Elliptic Points

Let v € SLy(Z).

0

1 +1
1 _1} in SLy(Z).

© If v has order 3 then ~ is conjugate to {

+1
@® If v has order 4 then v is conjugate to {O _01] in SLy(Z).

1

o —11*
© If v has order 6 then ~ is conjugate to {1 1 ]

v
Corollary

@ The elliptic points for SLo(Z) are SLy(Z)i and SLy(Z)u3 where pz = €27i/3,
® The modular curve Y (1) has 2 elliptic points.

in SLy(7Z).

® The isotropy subgroups of i and u3 are

SLz(Z),-:<[(1) ‘01}> and SLz(Z)H3:<[(1) _11]>.
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Elliptic Points

Let v € SLy(Z).

0

1 +1
1 _1} in SLy(Z).

© If v has order 3 then ~ is conjugate to {

+1
@® If v has order 4 then v is conjugate to {O _01] in SLy(Z).

1

o —11*
© If v has order 6 then ~ is conjugate to {1 1 ]

v
Corollary

@ The elliptic points for SLo(Z) are SLy(Z)i and SLy(Z)u3 where pz = €27i/3,
® The modular curve Y (1) has 2 elliptic points.

in SLy(7Z).

® The isotropy subgroups of i and u3 are

SLz(Z),-:<[(1) ‘01}> and SLg(Z)H3:<{(1) _11]>.

© For each elliptic point t of SLy(Z) the isotropy subgroup SLy(Z): is finite cyclic.

y
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Elliptic Points

Let I be a congruence subgroup of SLy(Z). The modular curve Y (I') has finitely many
elliptic points. For each elliptic point t of ', the isotropy subgroup I'; is finite cyclic.
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Elliptic Points

Corollary

Let I be a congruence subgroup of SLy(Z). The modular curve Y (I') has finitely many
elliptic points. For each elliptic point t of ', the isotropy subgroup I'; is finite cyclic.

Proof.
Write

d
Sta(z) = ||
j=1

then the set of elliptic points of Y(I) is a subset of
Er = {Tj(), Tyj(ns) : 1 <j < d},

which is clearly finite.
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Elliptic Points

Corollary

Let I be a congruence subgroup of SLy(Z). The modular curve Y (I') has finitely many
elliptic points. For each elliptic point t of ', the isotropy subgroup I'; is finite cyclic.

Proof.
Write

| \

d
Sta(z) = ||
j=1

then the set of elliptic points of Y(I) is a subset of
Er = {Tj(), Tyj(ns) : 1 <j < d},

which is clearly finite.
For each t € H, observe that

It is a subgroup of SLy(Z):.

Then T; is finite cyclic. O
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Cusps

<0OA
s oV
wp Compactify a Modular Curve

Figure 2.3. The fundamental domain for SL2(Z)
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Cusps

Cusps

<0OA
s oV
wp Compactify a Modular Curve

|
|
|
|
|
|
|
|
|
L

Figure 2.3. The fundamental domain for SL2(Z)

The picture suggests that the modular curve Y(I') can be compactified by adjoining
all the cusps.

29 /45



Modular Curves as Riemann Surfaces
Cusps

Let H* = HU QU {co} and take the extended quotient
XM =T\H* =Y([)url\ (QU {oo}).
The points I's in '\ QU {oo} are also called the cusps of X(I).
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Cusps

Let H* = HU QU {co} and take the extended quotient
XM =T\H* =Y([)url\ (QU {oo}).

The points I's in '\ QU {oo} are also called the cusps of X(I).
Remark  The action of [ on Q U {co} is induced from the action of GLJ (Q) (the
group of 2 X 2 matrices with positive determinant and rational entries) on Q U {co}

given by
[a b} (m) a+b
c d n c +d’
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Cusps

Let H* = HU QU {co} and take the extended quotient
XM =T\H* =Y([)url\ (QU {oo}).
The points I's in '\ QU {oo} are also called the cusps of X(I).

Remark  The action of [ on Q U {co} is induced from the action of GLJ (Q) (the
group of 2 X 2 matrices with positive determinant and rational entries) on Q U {co}

given by
G5
c d]\n _c%—i-d'
Remark

® SLy(Z) acts transitively on Q U {oo}.
® The isotropy subgroup of oo in SLy(Z) is the translations

SLa(Z)oe = {j: B 'ﬂ ‘me Z}.
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Modular Curves as Riemann Surfaces
Cusps

Let H* = HU QU {co} and take the extended quotient
XM =T\H* =Y([)url\ (QU {oo}).

The points I's in '\ QU {oo} are also called the cusps of X(I).
Remark  The action of [ on Q U {co} is induced from the action of GLJ (Q) (the
group of 2 X 2 matrices with positive determinant and rational entries) on Q U {co}

given by
G5
c d]\n _c%—i-d'
Remark

® SLy(Z) acts transitively on Q U {oo}.
® The isotropy subgroup of oo in SLy(Z) is the translations

SLa(Z)oe = {j: [é 'ﬂ ‘me Z}.

The modular curve X(1) = SLy(Z) \ H* has one cusp. For any subgroup I' of SLy(Z)
the modular curve X(I') has finitely many cusps.

30 /4%



Modular Curves as Riemann Surfaces
Cusps

Cusps

<0OA
s oV
wp Topology on

honni

The usual topology on H* contains too many points of QU {co} in each neighborhood
to make the quotient X(I') Hausdorff. So we need to define a new topology on H*.
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Cusps

<0OA
s oV
wp Topology on

honni

The usual topology on H* contains too many points of QU {co} in each neighborhood
to make the quotient X(I') Hausdorff. So we need to define a new topology on H*.
For each M > 0, define

Ny ={teH: Im(t) > M}.
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Cusps

<0OA
s oV
wp Topology on

ATL.

honni

The usual topology on H* contains too many points of QU {co} in each neighborhood
to make the quotient X(I') Hausdorff. So we need to define a new topology on H*.
For each M > 0, define

Ny ={teH: Im(t) > M}.

Adjoin to the usual open sets in H more sets in * to serve a base of neighborhoods
of the cusps, the sets

Ny U {oo}) : M >0,a € SLy(Z),

and take the resulting topology on H*.
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Cusps

Cusps

<0OA
s oV
wp Topology on

ATL.

honni

The usual topology on H* contains too many points of QU {co} in each neighborhood
to make the quotient X(I') Hausdorff. So we need to define a new topology on H*.
For each M > 0, define

Ny ={teH: Im(t) > M}.

Adjoin to the usual open sets in H more sets in * to serve a base of neighborhoods
of the cusps, the sets

Ny U {oo}) : M >0,a € SLy(Z),

and take the resulting topology on H*.
Remark  Under this topology, each v € SL»(Z) is a homeomorphism of H*.
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Cusps

Figure 2.5. Neighborhoods of co and of some rational points
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Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:
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Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:

Proposition

The modular curve X(I') is Hausdorff, connected, and compact.
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Cusps

Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:

Proposition

The modular curve X(I') is Hausdorff, connected, and compact.

Let x; # x» € X(I'). Consider the cases:
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Cusps

Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:

Proposition

The modular curve X(I') is Hausdorff, connected, and compact.

Let x; # x» € X(I'). Consider the cases:
® x1 = [t1,xo =ty for some t1, t, € H: Done.
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Modular Curves as Riemann Surfaces

Cusps

Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:

Proposition

The modular curve X(I') is Hausdorff, connected, and compact.

Let x; # x» € X(I'). Consider the cases:

® x1 = [t1,xo =ty for some t1, t, € H: Done.

® x1 =Is1,x0 =Tty where s; € QU {oo}, tr € H: Let U, be any neighborhood of
tp in H with compact closure K. We have the inequality

Im(~v(t)) < max{Im(t),1/Im(t)} for t € H and v € SL»(Z).

This implies for M large enough, SLy(Z)K NNy = @.

Let o € SLy(Z) such that s; = a(oc0), then a(Ny U {oo}) is a neighborhood of
s1 and a(Ny U {co}) N Us = 2.
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Cusps

Giving X(I') the quotient topology and extending natural projection 7 : H* — X(I),
we have:

Proposition

The modular curve X(I') is Hausdorff, connected, and compact.

Let x; # x» € X(I'). Consider the cases:
® x1 = [t1,xo =ty for some t1, t, € H: Done.

® x1 =Is1,x0 =Tty where s; € QU {oo}, tr € H: Let U, be any neighborhood of
tp in H with compact closure K. We have the inequality

Im(y(t)) < max{Im(t),1/Im(t)} for t € H and v € SLy(Z).

This implies for M large enough, SLy(Z)K NNy = @.
Let o € SLy(Z) such that s; = a(oc0), then a(Ny U {oo}) is a neighborhood of
s1 and a(Ny U {co}) N Us = 2.

® x1 =[s1,x = Isy where s1,5 € QU {oo}: Let aq, ap € SL>(Z) such that
51 = 051(00),52 = az(oo).
Let Ui = a1 (N2 U {oo}), Ur = an(N2 U {oo}). Then we claim that w(U;) and
m(Uz) are disjoint.
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Cusps

Figure 2.3. The fundamental domain for SL2(Z)

To see this, suppose that 3y € [ : yai(t1) = az(t2),then a2_1'ya1 maps t to t.
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Figure 2.3. The fundamental domain for SL2(Z)

To see this, suppose that 3y € [ : yai(t1) = az(t2),then a2_1'ya1 maps t to t.
Note that A, does not contain any elliptic points, then

_ 1 m
azl'yal::t[o 1}, for some m € Z.
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Cusps

To see this, suppose that 3y € [ : yai(t1) = az(t2),then ozz_l’yoq maps t to t.

\
|
L

Figure 2.3. The fundamental domain for SL2(Z)

Note that A, does not contain any elliptic points, then

Thus a;l'yal fixes oo, consequently v(s1) = s, contradiction. Then X(I) is

Hausdorff.

a2_1’yoz1 =+ [

1
0

m
1

} , for some me Z.
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Cusps

Suppose H* = O1 U O, is a disjoint union of open subsets. Intersect with the
connected sed H to conclude that O; D H and so O, C QU {oco}. But then O; is not
open unless it is empty. Thus H* is connected and so is its continuous image X(I).
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Cusps

Suppose H* = O1 U O, is a disjoint union of open subsets. Intersect with the
connected sed H to conclude that O; D H and so O, C QU {oco}. But then O; is not
open unless it is empty. Thus H* is connected and so is its continuous image X(I).
For compactness, first observe that

D* =D U{oo} is compact in the H* topology.
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Cusps

Suppose H* = O1 U O, is a disjoint union of open subsets. Intersect with the
connected sed H to conclude that O; D H and so O, C QU {oco}. But then O; is not
open unless it is empty. Thus H* is connected and so is its continuous image X(I).
For compactness, first observe that

D* =D U{oo} is compact in the H* topology.
Note that
H* = SLy(Z)D* = U [v;(D*), where the +; are coset representatives.
J

Then
x(r) = (o).
J

Since each ~; is continuous, 7 is continuous and [SL>(Z) : I'] < oo, X(I) is compact.
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Cusps

Cusps

<0A
20"
wo : Charts about Cusps

For each cusp s € QU {co}, define the width of s to be

e — | SLo(B)s

IREE

This notion is dual to the period of an elliptic point, being inversely propotional to the
size of an isotropy subgroup.
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Cusps

Claims:
© If se QU {co} and v € SLy(Z) then
the width of v(s) under y[y~1 = the width of s under I'.

In particular, the width hs depends only on I's, making the width is well-defined
on X(I).
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Cusps

Claims:
© If se QU {co} and v € SLy(Z) then
the width of v(s) under y[y~1 = the width of s under I'.

In particular, the width hs depends only on I's, making the width is well-defined
on X(I).

@® If T is normal in SL>(Z) then all cusps of X(I') have the same width.
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Cusps

Claims:
© If se QU {co} and v € SLy(Z) then
the width of v(s) under y[y~1 = the width of s under I'.

In particular, the width hs depends only on I's, making the width is well-defined
on X(I).

@® If T is normal in SL>(Z) then all cusps of X(I') have the same width.
® If 6 € SLy(Z) takes s to oo, then

SLy(Z) oo

MCEEoN
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Cusps

Claims:
© If se QU {co} and v € SLy(Z) then
the width of v(s) under y[y~1 = the width of s under I'.

In particular, the width hs depends only on I's, making the width is well-defined
on X(I).

@® If T is normal in SL>(Z) then all cusps of X(I') have the same width.
® If 6 € SLy(Z) takes s to oo, then

SLy(Z) oo

MCEEoN

Moreover,

(S{£NT6~ Yoo = {41} < [(1) ”1} > .
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AR S N N O O
A
U \%4

Figure 2.6. Local coordinates at a cusp
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T
N
s
U 14

Figure 2.6. Local coordinates at a cusp

Define U = Us = §~1(N2 U {oo}) and define ¢ = p o §, where p = €™2/h h = h,.
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Cusps

T
N
s
U 14

Figure 2.6. Local coordinates at a cusp
Define U = Us = §~1(N2 U {oo}) and define ¢ = p o §, where p = €™2/h h = h,.
Let V = im1 then V is an open subset of C, we have

YiU—=V,  (t) = ™00/
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Claim: For all t1,t, € U, w(t1) = n(t2) < ¢(t1) = ¥(t2).
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Cusps

Claim: For all t1,t € U, n(t1) = w(t2) < ¥(t1) = ¥(t2).
Indeed,
m(t) = 7(t2) & t1 = 7(t2) & 6(t1) = (570 1)(8(t2))

for some v € T. Since §(t1) and 6(t2) both lie in N2 U {oo}, 646! must be a
translation. So
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Cusps

Claim: For all t1,t € U, n(t1) = w(t2) < ¥(t1) = ¥(t2).
Indeed,
m(t) = 7(t2) & t1 = 7(t2) & 6(t1) = (570 1)(8(t2))

for some v € T. Since §(t1) and 6(t2) both lie in N2 U {oo}, 646! must be a
translation. So

57671 € 8T8 N SLa(Z)oe = (576 oo C {£1} < [f1> ﬂ>

39 /45



R
Modular Curves as Riemann Surfaces

Cusps

Claim: For all t1,t € U, n(t1) = w(t2) < ¥(t1) = ¥(t2).
Indeed,
m(t) = 7(t2) & t1 = 7(t2) & 6(t1) = (570 1)(8(t2))

for some v € T. Since §(t1) and 6(t2) both lie in N2 U {oo}, 646! must be a
translation. So

6461 € M6 N SLa(Z)oo = (876 oo C {1} < [f1> ﬂ>

Then

w(t1) = 7(t2) < 8(t1) = 6(t2) + mh for some m € Z
& P(t) = P(t2).
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Therefore, there exists a bijection ¢ : 7(U) — V such that the following diagram

commutes

w(U) - vy
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Cusps

Therefore, there exists a bijection ¢ : 7(U) — V such that the following diagram

commutes

w(U) R SE—v4

The coordinate neighborhood about 7(s) in X(I) is w(U), and the coordinate map is
¢ :w(U) — V, a homeomorphism.
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Cusps

<0OA
s o
wp Holomorphicity of Transition Maps

-
honni
It suffices to consider 2 following cases.

Case 1 Suppose U; C H has the corresponding straightening map §; = d; € GL>(C)
where t; has period hy and suppose Us = 8, "(A2 U {c0}).
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honni
It suffices to consider 2 following cases.

Case 1 Suppose U; C H has the corresponding straightening map §; = d; € GL>(C)
where t; has period hy and suppose Us = 8, "(A2 U {c0}).
For each x € w(U1) N mw(Us), write x = (1) = n(t2) for ;i € U1, tr € Us.
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Holomorphicity of Transition Maps

honni
It suffices to consider 2 following cases.
Case 1 Suppose U; C H has the corresponding straightening map §; = d; € GL>(C)
where t; has period hy and suppose Us = 8, "(A2 U {c0}).
For each x € w(U1) N m(U2), write x = (1) = n(t2) for ; € U1, tr € Us.

Let Ui o = Up Ny~ L(Uz), then ¢1(m(U1,2)) is a neighborhood of ¢1(x).
For any g = ¢1(x") € w1(m(Ui,2)), the formula is

¢2,1(q) = exp(2midpyd; (" M)/ o).
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Holomorphicity of Transition Maps

-
honni
It suffices to consider 2 following cases.

Case 1 Suppose U; C H has the corresponding straightening map §; = d; € GL>(C)
where t; has period hy and suppose Us = 8, "(A2 U {c0}).
For each x € w(U1) N m(U2), write x = (1) = n(t2) for ; € U1, tr € Us.
Let Ui o = Up Ny~ L(Uz), then ¢1(m(U1,2)) is a neighborhood of ¢1(x).
For any g = ¢1(x") € w1(m(Ui,2)), the formula is

¢2,1(q) = exp(2midpyd; (" M)/ o).
If h =1: OK.

41 /4%



Modular Curves as Riemann Surfaces
Cusps

Cusps

<0OA
s o
wp Holomorphicity of Transition Maps

L]
honni
It suffices to consider 2 following cases.
Case 1 Suppose U; C H has the corresponding straightening map 61 =, € GL,(C)

where t; has period hi and suppose Us = §; (N> U {oo}).
For each x € w(U1) N m(U2), write x = (1) = n(t2) for ; € U1, tr € Us.
Let Ui o = Up Ny~ L(Uz), then ¢1(m(U1,2)) is a neighborhood of ¢1(x).
For any g = ¢p1(x’) € p1(m(U1,2)), the formula is

©2.1(q) = exp(2ﬂi62'y§;1(ql/h1)/hg).

If hy =1: OK.

If hy > 1, then t; ¢ U 5, else the point 6»(v(t1)) € N> is also an elliptic point for
I, which is contradiction since N> contains no elliptic points. Then t; ¢ Ui > so
0 ¢ ¢1(m(U1,2)). The transition map is holomorphic.
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Case 2 Suppose U; = 6,._1(./\/2 U {co}) with §; : s; — o0, i =1,2.
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Case 2 Suppose U; = 6,._1(./\/2 U {co}) with §; : s; — o0, i =1,2.
If 7(U1) N w(U2) # @, then there exist t; € Uy, to € Uz, € T such that

t1 = y(t2) = 61(t1) = 6170, *(d2(t2))-
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Case 2 Suppose U; = 6,._1(./\/2 U {co}) with §; : s; — o0, i =1,2.

If 7(U1) N w(U2) # @, then there exist t; € Uy, to € Uz, € T such that
t1 = y(t2) = 61(t1) = 6170, *(d2(t2))-
Since 6176;1 moves some point in AV U {oo} to another, it must be a translation
+ [(1) T] :
In this case v(s1) = s, so hy = ho = h. Using this, we can compute
p21(q) = ™M/ hq.

This is clearly holomorphic.
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To summarize, for any congruence subgroup I of SL>(Z) the extended quotient X(I')
is a compact Riemann surface.
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To summarize, for any congruence subgroup I of SL>(Z) the extended quotient X(I')
is a compact Riemann surface.
Problems:

® Compute the genus of X(I').
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Cusps

To summarize, for any congruence subgroup I of SL>(Z) the extended quotient X(I')
is a compact Riemann surface.
Problems:

® Compute the genus of X(I').
® Study the meromorphic functions and differentials on X(I').
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Modular Curves and Modularity

<0OA
s oV
wp Modular Curves and Modularity

Theorem (Modularity Theorem)

Let E be a complex elliptic curve with j(E) € Q. Then for some positive integer N
there exists a surjective holomorphic function of compact Riemann surfaces from the
modular curve Xo(N) to the elliptic curve E,

Xo(N) — E.
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I—Modular Curves and Modularity

THANK YOU FOR LISTENING

45 /4%



	Topology
	Charts
	Elliptic Points
	Cusps
	Modular Curves and Modularity

