Modular Curves as Riemann Surfaces

Tran Hoang Son Institute of Mathematics of Hanoi

November, 2020

5 Modular Curves and Modularity

Let $\Gamma \subset \textit{SL}_2(\mathbb{Z})$ be a congruence subgroup. The corresponding modular curve is the set of orbits

 $Y(\Gamma) = \{\Gamma\tau : \tau \in \mathbb{H}\}.$

Let $\Gamma \subset \textit{SL}_2(\mathbb{Z})$ be a congruence subgroup. The corresponding modular curve is the set of orbits

$$Y(\Gamma) = \{\Gamma\tau : \tau \in \mathbb{H}\}.$$

The natural surjection

$$\pi: \mathbb{H} \to Y(\Gamma), \qquad \pi(\tau) = \Gamma \tau$$

gives $Y(\Gamma)$ the quotient topology.

π is an open mapping.
 Because for every U open in H, one has

$$\pi^{-1}(\pi(U)) = \bigcup_{\gamma \in \Gamma} \gamma(U)$$

which is clearly open.

π is an open mapping.
 Because for every U open in H, one has

$$\pi^{-1}(\pi(U)) = \bigcup_{\gamma \in \Gamma} \gamma(U)$$

which is clearly open.

π is an open mapping.
 Because for every U open in H, one has

$$\pi^{-1}(\pi(U)) = \bigcup_{\gamma \in \Gamma} \gamma(U)$$

which is clearly open.

- **6** $Y(\Gamma)$ is connected.

Because \mathbb{H} is connected and π is continuous.

π is an open mapping.
 Because for every U open in H, one has

$$\pi^{-1}(\pi(U)) = \bigcup_{\gamma \in \Gamma} \gamma(U)$$

which is clearly open.

- $Y(\Gamma)$ is connected. Because \mathbb{H} is connected and π is continuous.
- Y(Γ) is Hausdorff.

π is an open mapping.
 Because for every U open in H, one has

$$\pi^{-1}(\pi(U)) = \bigcup_{\gamma \in \Gamma} \gamma(U)$$

which is clearly open.

- $e \pi(U_1) \cap \pi(U_2) = \emptyset \text{ in } Y(\Gamma) \quad \Leftrightarrow \quad \Gamma(U_1) \cap U_2 = \emptyset \text{ in } \mathbb{H}.$
- Y(Γ) is connected.
 Because ℍ is connected and π is continuous.
- $Y(\Gamma)$ is Hausdorff.
- **6** $Y(\Gamma)$ is second countable.

Theorem (1)

The action of $SL_2(\mathbb{Z})$ on \mathbb{H} is **properly discontinuous**, i.e, given any $t_1, t_2 \in \mathbb{H}$ there exist neighborhoods U_1 of t_1 and U_2 of t_2 in \mathbb{H} such that

 $\forall \gamma \in SL_2(\mathbb{Z}), \text{ if } \gamma(U_1) \cap U_2 \neq \emptyset \text{ then } \gamma(t_1) = t_2$

Theorem (1)

The action of $SL_2(\mathbb{Z})$ on \mathbb{H} is **properly discontinuous**, i.e, given any $t_1, t_2 \in \mathbb{H}$ there exist neighborhoods U_1 of t_1 and U_2 of t_2 in \mathbb{H} such that

 $\forall \gamma \in SL_2(\mathbb{Z}), \text{ if } \gamma(U_1) \cap U_2 \neq \emptyset \text{ then } \gamma(t_1) = t_2$

Corollary

For any congruence subgroup Γ of $SL_2(\mathbb{Z})$, the modular curve $Y(\Gamma)$ is Hausdorff.

Theorem (1)

The action of $SL_2(\mathbb{Z})$ on \mathbb{H} is **properly discontinuous**, i.e., given any $t_1, t_2 \in \mathbb{H}$ there exist neighborhoods U_1 of t_1 and U_2 of t_2 in \mathbb{H} such that

 $\forall \gamma \in SL_2(\mathbb{Z}), \text{ if } \gamma(U_1) \cap U_2 \neq \emptyset \text{ then } \gamma(t_1) = t_2$

Corollary

For any congruence subgroup Γ of $SL_2(\mathbb{Z})$, the modular curve $Y(\Gamma)$ is Hausdorff.

Proof.

Let $\pi(\tau_1) \neq \pi(\tau_2)$ be 2 distinct points in $Y(\Gamma)$. Take neighborhoods U_1 of τ_1 , U_2 of τ_2 as in the previous theorem. Since $\gamma(\tau_1) \neq \tau_2$ for all $\gamma \in \Gamma$, then $\Gamma(U_1) \cap U_2 = \emptyset$ in \mathbb{H} . This implies $\pi(U_1) \cap \pi(U_2) = \emptyset$.

To prove the theorem 1, let U'_1 (resp. U'_2) be any neighborhood of t_1 (resp. t_2) with compact closure in \mathbb{H} .

Lemma (1)

The inequality

 $\sup\{\mathit{Im}(\gamma(t)): \gamma \in \mathit{SL}_2(\mathbb{Z}) \text{ has bottom row } (c,d), t \in U_1'\} < \inf\{\mathit{Im}(t): t \in U_2'\}$

holds true for all but finitely many integer pairs (c, d) with gcd(c, d) = 1.

To prove the theorem 1, let U'_1 (resp. U'_2) be any neighborhood of t_1 (resp. t_2) with compact closure in \mathbb{H} .

Lemma (1)

The inequality

 $\sup\{\mathit{Im}(\gamma(t)): \gamma \in \mathit{SL}_2(\mathbb{Z}) \text{ has bottom row } (c,d), t \in U_1'\} < \inf\{\mathit{Im}(t): t \in U_2'\}$

holds true for all but finitely many integer pairs (c, d) with gcd(c, d) = 1.

Remark This lemma implies that: If $\gamma \in SL_2(\mathbb{Z})$ satisfying $\gamma(U'_1) \cap U'_2 \neq \emptyset$ then the bottom row of γ has only finitely many choices.

Proof of lemma 1.

Observe that

$$\mathit{Im}(\gamma(t)) = \frac{\mathit{Im}(t)}{|ct+d|^2} \leq \frac{\mathit{Im}(t)}{c^2 \mathit{Im}(t)^2}, \forall \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathit{SL}_2(\mathbb{Z}), \forall t \in U_1'.$$

Proof of lemma 1.

Observe that

$$\textit{Im}(\gamma(t)) = \frac{\textit{Im}(t)}{|\textit{c}t + \textit{d}|^2} \leq \frac{\textit{Im}(t)}{\textit{c}^2\textit{Im}(t)^2}, \forall \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \textit{SL}_2(\mathbb{Z}), \forall t \in U_1'.$$

So as $c \to \infty$, $Im(\gamma(t)) \to 0$. Let $2\varepsilon = \inf\{Im(t) : t \in U'_2\} > 0$, there exists N > 0 such that whenever |c| > N, $Im(\gamma(t)) < \varepsilon$ for all $t \in U'_1$. It implies that the inequality holds true for all integer pairs (c, d) with gcd(c, d) = 1 and |c| > N.

Proof of lemma 1.

Observe that

$$\textit{Im}(\gamma(t)) = \frac{\textit{Im}(t)}{|ct+d|^2} \leq \frac{\textit{Im}(t)}{c^2\textit{Im}(t)^2}, \forall \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \textit{SL}_2(\mathbb{Z}), \forall t \in U_1'.$$

So as $c \to \infty$, $Im(\gamma(t)) \to 0$. Let $2\varepsilon = \inf\{Im(t) : t \in U'_2\} > 0$, there exists N > 0 such that whenever |c| > N, $Im(\gamma(t)) < \varepsilon$ for all $t \in U'_1$. It implies that the inequality holds true for all integer pairs (c, d) with gcd(c, d) = 1 and |c| > N. Now suppose $|c| \le N$, then |ct| is bounded. Then $Im(\gamma(t)) \to 0$ as $d \to \infty$. So there exists M > 0 such that whenever |d| > M, $Im(\gamma(t)) < \varepsilon$ for all $t \in U'_1$. This means the inequality holds true for all integer pairs (c, d) with gcd(c, d) = 1, $|c| \le N$ and |d| > M. From above, we deduces that the inequality holds true whenever either |c| > N or |d| > M.

Lemma (2)

For an integer pair (c, d) with gcd(c, d) = 1, the number of

 $\gamma \in SL_2(\mathbb{Z})$ with bottom row (c, d) such that $\gamma(U'_1) \cap U'_2 \neq \emptyset$

is finite.

Lemma (2)

For an integer pair (c, d) with gcd(c, d) = 1, the number of

```
\gamma \in SL_2(\mathbb{Z}) with bottom row (c, d) such that \gamma(U'_1) \cap U'_2 \neq \emptyset
```

is finite.

Proof of lemma 2.

Observe that the set of matrices $\gamma \in SL_2(\mathbb{Z})$ with bottom row (c, d) are

$$\left\{ \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : k \in \mathbb{Z} \right\}$$

where (a, b) is any particular pair such that ad - bc = 1.

Lemma (2)

For an integer pair (c, d) with gcd(c, d) = 1, the number of

```
\gamma \in SL_2(\mathbb{Z}) with bottom row (c, d) such that \gamma(U'_1) \cap U'_2 \neq \emptyset
```

is finite.

Proof of lemma 2.

Observe that the set of matrices $\gamma \in SL_2(\mathbb{Z})$ with bottom row (c, d) are

$$\left\{ \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : k \in \mathbb{Z} \right\}$$

where (a, b) is any particular pair such that ad - bc = 1. Thus

$$\gamma(U_1') \cap U_2' = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} U_1' + k \right) \cap U_2'$$

is empty for all but finitely many γ with bottom row (c, d).

Then $F = \{\gamma \in SL_2(\mathbb{Z}) : \gamma(U'_1) \cap U'_2 \neq \emptyset, \gamma(t_1) \neq t_2\}$ is a finite set.

Then $F = \{\gamma \in SL_2(\mathbb{Z}) : \gamma(U'_1) \cap U'_2 \neq \emptyset, \gamma(t_1) \neq t_2\}$ is a finite set. For each $\gamma \in F$, there exists disjoint neighborhoods $U_{1,\gamma}$ of $\gamma(t_1)$ and $U_{2,\gamma}$ of t_2 in \mathbb{H} . Define

$$egin{aligned} &U_1 = U_1' \cap \left(igcap_{\gamma \in F} \gamma^{-1}(U_{1,\gamma})
ight) \ &U_2 = U_2' \cap \left(igcap_{\gamma \in F} U_{2,\gamma}
ight). \end{aligned}$$

Then $F = \{\gamma \in SL_2(\mathbb{Z}) : \gamma(U'_1) \cap U'_2 \neq \emptyset, \gamma(t_1) \neq t_2\}$ is a finite set. For each $\gamma \in F$, there exists disjoint neighborhoods $U_{1,\gamma}$ of $\gamma(t_1)$ and $U_{2,\gamma}$ of t_2 in \mathbb{H} . Define

$$U_{1} = U_{1}' \cap \left(\bigcap_{\gamma \in F} \gamma^{-1}(U_{1,\gamma})\right)$$
$$U_{2} = U_{2}' \cap \left(\bigcap_{\gamma \in F} U_{2,\gamma}\right).$$

Take any $\gamma \in SL_2(\mathbb{Z})$ such that $\gamma(U_1) \cap U_2 \neq \emptyset$. To show $\gamma(t_1) = t_2$, it suffices to show $\gamma \notin F$. If $\gamma \in F$, then

$$\gamma^{-1}(U_{1,\gamma}) \supset U_1$$
 and $U_{2,\gamma} \supset U_2$,

so $U_{1,\gamma} \cap U_{2,\gamma} \supset \gamma(U_1) \cap U_2 \neq \emptyset$, contradiction.

To summarize

- $\bullet \pi: \mathbb{H} \to Y(\Gamma) \text{ is open.}$
- **2** $Y(\Gamma)$ is connected.
- **6** $Y(\Gamma)$ is Hausdorff.
- **4** $Y(\Gamma)$ is second countable.

Case 1 *t* is fixed only by the identity transformation in Γ .

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:

Case 1 t is fixed only by the identity transformation in Γ . Let U be a small neighborhood of t such that

 $\forall \gamma \in SL_2(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t) = t.$

TOAN

nni

へ」「「

406

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:

Case 1 t is fixed only by the identity transformation in Γ . Let U be a small neighborhood of t such that

$$\forall \gamma \in SL_2(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t) = t.$$

Then we claim that

$$\pi|_U: U \to \pi(U)$$

is a homeomorphism.

LOAN

へ」「「

40

Charts on Modular Curves

For a point $\pi(t) \in Y(\Gamma)$ where $t \in \mathbb{H}$, consider 2 cases:

Case 1 t is fixed only by the identity transformation in Γ . Let U be a small neighborhood of t such that

$$\forall \gamma \in SL_2(\mathbb{Z}), \gamma(U) \cap U \neq \varnothing \Rightarrow \gamma(t) = t.$$

Then we claim that

$$\pi|_U: U \to \pi(U)$$

is a homeomorphism.

Then we can define

$$\varphi: \pi(U) \to U \subset \mathbb{C}, \qquad \varphi = (\pi|_U)^{-1}$$

as a local coordinate at $\pi(t)$.

Example

Consider
$$\Gamma = SL_2(\mathbb{Z})$$
, $t = i$ and $\gamma = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then $\gamma(i) = \frac{-1}{i} = i$.

Example

Consider $\Gamma = SL_2(\mathbb{Z})$, t = i and $\gamma = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then $\gamma(i) = \frac{-1}{i} = i$. Let $\delta = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \in GL_2(\mathbb{C})$. We know that δ is a conformal map from \mathbb{H} to the unit disc \mathbb{D} which sends i to 0. By direct computation we have

$$\delta \cdot \gamma \cdot \delta^{-1} = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$$

which acts as 180-degree rotation about 0 in the unit disc. We observe that any neighborhood about 0 contains pair of $\begin{bmatrix} -i & 0\\ 0 & i \end{bmatrix}$ -equivalent points.

Example

Consider $\Gamma = SL_2(\mathbb{Z})$, t = i and $\gamma = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then $\gamma(i) = \frac{-1}{i} = i$. Let $\delta = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \in GL_2(\mathbb{C})$. We know that δ is a conformal map from \mathbb{H} to the unit disc \mathbb{D} which sends i to 0. By direct computation we have

$$\delta \cdot \gamma \cdot \delta^{-1} = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$$

which acts as 180-degree rotation about 0 in the unit disc. We observe that any neighborhood about 0 contains pair of $\begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$ -equivalent points. Then we deduce that any neighborhood of *i* contains pairs of γ -equivalent points. Thus cannot biject to a neighborhood of $\pi(i)$ in $Y(SL_2(\mathbb{Z}))$.

The last example gives rise to the definition of isotropy subgroups and elliptic points.

The last example gives rise to the definition of isotropy subgroups and elliptic points.

Definition For each $t \in \mathbb{H}$, the **isotropy subgroup** of t is $\Gamma_t = \{\gamma \in \Gamma : \gamma(t) = t\}.$ A point $t \in \mathbb{H}$ is an **elliptic point** for Γ if Γ_t is nontrivial as a group of transformations. The corresponding point $\pi(t)$ on $Y(\Gamma)$ is also called elliptic.
For each elliptic point t of Γ the isotropy group Γ_t is finite cyclic.

For each elliptic point t of Γ the isotropy group Γ_t is finite cyclic.

Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$h_t = \left| \frac{\{\pm I\} \Gamma_t}{\{\pm I\}} \right| = \begin{cases} |\Gamma_t|/2 & \text{if } -I \in \Gamma_t, \\ |\Gamma_t| & \text{if } -I \notin \Gamma_t. \end{cases}$$

This h_t is called the **period** of t, and $h_t > 1$ only for elliptic points. h_t correctly counts the *t*-fixing transformations.

For each elliptic point t of Γ the isotropy group Γ_t is finite cyclic.

Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$h_t = \left| \frac{\{\pm I\} \Gamma_t}{\{\pm I\}} \right| = \begin{cases} |\Gamma_t|/2 & \text{if } -I \in \Gamma_t, \\ |\Gamma_t| & \text{if } -I \notin \Gamma_t. \end{cases}$$

This h_t is called the **period** of t, and $h_t > 1$ only for elliptic points. h_t correctly counts the *t*-fixing transformations.

1) If $t \in \mathbb{H}$ and $\gamma \in SL_2(\mathbb{Z})$ then

the period of t under Γ = the period of $\gamma(t)$ under $\gamma \Gamma \gamma^{-1}$.

In particular, h_t depends only on Γt . So the period is well-defined on $Y(\Gamma)$.

For each elliptic point t of Γ the isotropy group Γ_t is finite cyclic.

Thus each point $t \in \mathbb{H}$ has an associated positive integer

$$h_t = \left| \frac{\{\pm I\} \Gamma_t}{\{\pm I\}} \right| = \begin{cases} |\Gamma_t|/2 & \text{if } -I \in \Gamma_t, \\ |\Gamma_t| & \text{if } -I \notin \Gamma_t. \end{cases}$$

This h_t is called the **period** of t, and $h_t > 1$ only for elliptic points. h_t correctly counts the *t*-fixing transformations.

1 If $t \in \mathbb{H}$ and $\gamma \in SL_2(\mathbb{Z})$ then

the period of t under Γ = the period of $\gamma(t)$ under $\gamma \Gamma \gamma^{-1}$.

In particular, h_t depends only on Γt . So the period is well-defined on $Y(\Gamma)$.

𝔅 If Γ is normal in $SL_2(ℤ)$ then all points of Y(Γ) over a point of $Y(SL_2(ℤ))$ have the same period.

If $SL_2(\mathbb{Z})t_1 = SL_2(\mathbb{Z})t_2$ then Γt_1 and Γt_2 have the same period.

() Use the "straightening map" $\delta_t = \begin{bmatrix} 1 & -t \\ 1 & t \end{bmatrix} \in GL_2(\mathbb{C})$ to send t to 0 and \overline{t} to ∞ .

- Use the "straightening map" $\delta_t = \begin{bmatrix} 1 & -t \\ 1 & t \end{bmatrix} \in GL_2(\mathbb{C})$ to send t to 0 and \overline{t} to ∞ .
- Phe isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$(\delta_t\{\pm I\}\Gamma\delta_t^{-1})_0/\{\pm I\} = \delta_t(\{\pm I\}\Gamma_t/\{\pm I\})\delta_t^{-1},$$

and therefore is cyclic of order h_t as a group of transformations.

- Use the "straightening map" $\delta_t = \begin{bmatrix} 1 & -t \\ 1 & t \end{bmatrix} \in GL_2(\mathbb{C})$ to send t to 0 and \overline{t} to ∞ .
- Phe isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$(\delta_t\{\pm I\}\Gamma\delta_t^{-1})_0/\{\pm I\} = \delta_t(\{\pm I\}\Gamma_t/\{\pm I\})\delta_t^{-1},$$

and therefore is cyclic of order h_t as a group of transformations.

() Since the transformations in the isotropy subgroup of t fix t and \overline{t} , the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞ . So they must have the form $z \mapsto az$.

- Use the "straightening map" $\delta_t = \begin{bmatrix} 1 & -t \\ 1 & t \end{bmatrix} \in GL_2(\mathbb{C})$ to send t to 0 and \overline{t} to ∞ .
- Phe isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$(\delta_t\{\pm I\}\Gamma\delta_t^{-1})_0/\{\pm I\} = \delta_t(\{\pm I\}\Gamma_t/\{\pm I\})\delta_t^{-1},$$

and therefore is cyclic of order h_t as a group of transformations.

- **(**) Since the transformations in the isotropy subgroup of t fix t and \overline{t} , the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞ . So they must have the form $z \mapsto az$.
- **(2)** The group is finite cyclic of order h_t , the transformations must be the rotations through angular multiples of $2\pi/h_t$ about 0.

- Use the "straightening map" $\delta_t = \begin{bmatrix} 1 & -t \\ 1 & t \end{bmatrix} \in GL_2(\mathbb{C})$ to send t to 0 and \overline{t} to ∞ .
- Phe isotropy subgroup of 0 in the conjugated transformation group is the conjugate of the isotropy subgroup of t, i.e

$$(\delta_t\{\pm I\}\Gamma\delta_t^{-1})_0/\{\pm I\} = \delta_t(\{\pm I\}\Gamma_t/\{\pm I\})\delta_t^{-1},$$

and therefore is cyclic of order h_t as a group of transformations.

- Since the transformations in the isotropy subgroup of t fix t and t
 , the transformations in the "conjugated isotropy subgroup" of 0 fix 0 and ∞. So they must have the form z → az.
- **(2)** The group is finite cyclic of order h_t , the transformations must be the rotations through angular multiples of $2\pi/h_t$ about 0.
- O The map δ_t is "straightening" neighborhoods of t to neighborhoods of 0 in the sense that after the map, equivalent points are spaced apart by fixed angles.

Figure 2.2. Local coordinates at an elliptic point

 $\forall \gamma \in \Gamma$, if $\gamma(U) \cap U \neq \emptyset$ then $\gamma \in \Gamma_t$.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t.

 $\forall \gamma \in \Gamma$, if $\gamma(U) \cap U \neq \emptyset$ then $\gamma \in \Gamma_t$.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t. Define $\psi : U \to \mathbb{C}$ to be $\psi = \rho \circ \delta$ where $\delta = \delta_t$, ρ is the power function $\rho(z) = z^h$, with $h = h_t$. Let $V = \psi(U)$, then V is open.

 $\forall \gamma \in \Gamma$, if $\gamma(U) \cap U \neq \emptyset$ then $\gamma \in \Gamma_t$.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly t. Define $\psi : U \to \mathbb{C}$ to be $\psi = \rho \circ \delta$ where $\delta = \delta_t$, ρ is the power function $\rho(z) = z^h$, with $h = h_t$. Let $V = \psi(U)$, then V is open. Claim: For any $t_1, t_2 \in U$,

 $\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2).$

 $\forall \gamma \in \Gamma$, if $\gamma(U) \cap U \neq \emptyset$ then $\gamma \in \Gamma_t$.

Such a neighborhood exists by theorem 1, and has no elliptic points except possibly *t*. Define $\psi : U \to \mathbb{C}$ to be $\psi = \rho \circ \delta$ where $\delta = \delta_t$, ρ is the power function $\rho(z) = z^h$, with $h = h_t$. Let $V = \psi(U)$, then *V* is open. **Claim:** For any $t_1, t_2 \in U$,

$$\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2).$$

To see this, observe that

$$\pi(t_1) = \pi(t_2) \Leftrightarrow t_1 \in \Gamma t_2 \Leftrightarrow t_1 \in \Gamma_t t_2 \Leftrightarrow \delta(t_1) \in (\delta \Gamma_t \delta^{-1})(\delta(t_2)) \Leftrightarrow \delta(t_1) = \mu_h^d(\delta(t_2)),$$

for some integer d, $\mu_h = e^{2\pi i/h}$ since $\delta \Gamma_t \delta^{-1}$ is a cyclic transformation group of h rotations. So

$$\pi(t_1) = \pi(t_2) \Leftrightarrow (\delta(t_1))^h = (\delta(t_2))^h \Leftrightarrow \psi(t_1) = \psi(t_2).$$

Thus there exists an injection $arphi:\pi(\mathit{U})
ightarrow \mathit{V}$ such that the diagram

commutes.

Thus there exists an injection $\varphi : \pi(U) \to V$ such that the diagram

commutes. Also φ surjects since ψ surjects, and $\varphi : \pi(U) \to V$ is a homeomorphism. So φ is a local coordinate and $\pi(U)$ is a coordinate neighborhood about $\pi(t)$ in $Y(\Gamma)$. TOAN

へ」「「

Charts

Holomorphicity of Transition Maps

Given overlapping $\pi(U_1)$ and $\pi(U_2)$. Let

 $V_{1,2} = \varphi_1(\pi(U_1) \cap \pi(U_2)), \quad V_{2,1} = \varphi_2(\pi(U_1) \cap \pi(U_2)), \quad \varphi_{2,1} = \varphi_2 \circ \varphi_1^{-1}|_{V_{1,2}}.$

LOAN

م الله ا Charts

Holomorphicity of Transition Maps

Given overlapping $\pi(U_1)$ and $\pi(U_2)$. Let

 $V_{1,2} = \varphi_1(\pi(U_1) \cap \pi(U_2)), \quad V_{2,1} = \varphi_2(\pi(U_1) \cap \pi(U_2)), \quad \varphi_{2,1} = \varphi_2 \circ \varphi_1^{-1}|_{V_{1,2}}.$

For each $x \in \pi(U_1) \cap \pi(U_2)$ it suffices to check holomorphy in some neighborhood of $\varphi_1(x)$ in $V_{1,2}$.

Write $x = \pi(t_1) = \pi(t_2)$ with $t_1 \in U_1, t_2 \in U_2$ and $t_2 = \gamma(t_1)$ for some $\gamma \in \Gamma$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\pi(U_{1,2})$ is a neighborhood of x and so $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$ in $V_{1,2}$.

Write $x = \pi(t_1) = \pi(t_2)$ with $t_1 \in U_1, t_2 \in U_2$ and $t_2 = \gamma(t_1)$ for some $\gamma \in \Gamma$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\pi(U_{1,2})$ is a neighborhood of x and so $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$ in $V_{1,2}$. We'll prove for the case $\varphi_1(x) = 0$. So the first straightening map is $\delta_1 = \delta_{t_1}$. Let $q = \varphi_1(x') \in \varphi_1(\pi(U_{1,2}))$, one has

$$q=arphi_1(\pi(t'))=\psi_1(t')=(\delta_1(t'))^{h_1}, \hspace{1em}$$
 for some $t'\in U_{1,2}$

where h_1 is the period of t_1 .

Write $x = \pi(t_1) = \pi(t_2)$ with $t_1 \in U_1, t_2 \in U_2$ and $t_2 = \gamma(t_1)$ for some $\gamma \in \Gamma$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\pi(U_{1,2})$ is a neighborhood of x and so $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$ in $V_{1,2}$. We'll prove for the case $\varphi_1(x) = 0$. So the first straightening map is $\delta_1 = \delta_{t_1}$. Let $q = \varphi_1(x') \in \varphi_1(\pi(U_{1,2}))$, one has

$$q=arphi_1(\pi(t'))=\psi_1(t')=(\delta_1(t'))^{h_1}, \hspace{1em}$$
 for some $t'\in U_{1,2}$

where h_1 is the period of t_1 .

Let $\tilde{t_2} \in U_2$ be the point such that $\psi(\tilde{t_2}) = 0$ and let h_2 be its period. Then

$$\begin{split} \varphi_{2,1}(q) &= \varphi_2(x') \\ &= \varphi_2(\pi(t')) \\ &= \varphi_2(\pi(\gamma(t'))) \\ &= \psi_2(\gamma(t')) \quad \text{which is defined since } \gamma(t') \in U_2 \\ &= (\delta_2(\gamma(t')))^{h_2} \\ &= ((\delta_2\gamma\delta_1^{-1})(\delta_1(t')))^{h_2} \\ &= ((\delta_2\gamma\delta_1^{-1})(q^{1/h_1}))^{h_2}. \end{split}$$

The calculation shows that if $h_1 = 1$ then the transition map is clearly holomorphic.

Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_2 = \tilde{t_2}$ and then $h_2 = h_1$.

Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_2 = \tilde{t}_2$ and then $h_2 = h_1$.

We have the following diagrams

$$0 \stackrel{\delta_1^{-1}}{\longrightarrow} t_1 \stackrel{\gamma}{\longmapsto} t_2 \stackrel{\delta_2}{\longrightarrow} 0 \quad , \qquad \infty \stackrel{\delta_1^{-1}}{\longrightarrow} \overline{t_1} \stackrel{\gamma}{\longmapsto} \overline{t_2} \stackrel{\delta_2}{\longmapsto} \infty$$

This shows $\delta_2 \gamma \delta_1^{-1} = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_2 = \tilde{t}_2$ and then $h_2 = h_1$.

We have the following diagrams

$$0 \stackrel{\delta_1^{-1}}{\longmapsto} t_1 \stackrel{\gamma}{\longmapsto} t_2 \stackrel{\delta_2}{\longmapsto} 0 \qquad , \qquad \infty \stackrel{\delta_1^{-1}}{\longmapsto} \bar{t_1} \stackrel{\gamma}{\longmapsto} \bar{t_2} \stackrel{\delta_2}{\longmapsto} \infty.$$

This shows $\delta_2 \gamma \delta_1^{-1} = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

The formula for the transition map in this case is

$$\varphi_{2,1}(q) = \left(\begin{bmatrix} lpha & 0 \\ 0 & eta \end{bmatrix} (q^{1/h}) \right)^h = \left(rac{lpha}{eta} \right)^h q$$

which is clearly holomorphic.

Recall from the construction that the elliptic point (if exists) must map to 0 under the straightening map. So $t_2 = \tilde{t}_2$ and then $h_2 = h_1$.

We have the following diagrams

$$0 \stackrel{\delta_1^{-1}}{\longmapsto} t_1 \stackrel{\gamma}{\longmapsto} t_2 \stackrel{\delta_2}{\longmapsto} 0 \qquad , \qquad \infty \stackrel{\delta_1^{-1}}{\longmapsto} \bar{t_1} \stackrel{\gamma}{\longmapsto} \bar{t_2} \stackrel{\delta_2}{\longmapsto} \infty.$$

This shows $\delta_2 \gamma \delta_1^{-1} = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

The formula for the transition map in this case is

$$\varphi_{2,1}(q) = \left(\begin{bmatrix} lpha & 0 \\ 0 & eta \end{bmatrix} (q^{1/h}) \right)^h = \left(rac{lpha}{eta} \right)^h q$$

which is clearly holomorphic. The general case is quite similar.

In this section we will show the remaining proposition: the isotropy subgroup Γ_t is finite and cyclic. Then we will discover some properties of elliptic points of a congruence subgroup Γ . It turns out that the set of elliptic points is quite "small".

Example

Consider the case $Y(1) = SL_2(\mathbb{Z}) \setminus \mathbb{H}$. Let \mathcal{D} be the set

 $\mathcal{D} = \{t \in \mathbb{H} : |Re(t)| \le 1/2, |t| \ge 1\}.$

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

Lemma

The map $\pi : \mathcal{D} \to Y(1)$ surjects, where π is the natural projection $\pi(t) = SL_2(\mathbb{Z})t$.

Lemma

The map $\pi : \mathcal{D} \to Y(1)$ surjects, where π is the natural projection $\pi(t) = SL_2(\mathbb{Z})t$.

The surjection $\pi: \mathcal{D} \to Y(1)$ is not injective. The translation $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}: t \mapsto t+1$

identifies the two boundaries half-lines, and the inversion $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$: $t \mapsto -1/t$

identifies the two halves of the boundary arc. But these boundary identifications are the only ones.

Lemma

The map $\pi : \mathcal{D} \to Y(1)$ surjects, where π is the natural projection $\pi(t) = SL_2(\mathbb{Z})t$.

The surjection $\pi: \mathcal{D} \to Y(1)$ is not injective. The translation $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}: t \mapsto t+1$

identifies the two boundaries half-lines, and the inversion $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$: $t \mapsto -1/t$

identifies the two halves of the boundary arc. But these boundary identifications are the only ones.

Lemma

Suppose $t_1 \neq t_2$ are distinct points in \mathcal{D} such that $t_2 = \gamma(t_1)$ for some $\gamma \in SL_2(\mathbb{Z})$. Then either

- **1** $Re(t_1) = \pm 1/2$ and $t_2 = \mp 1$, or
- **2** $|t_1| = 1$ and $t_2 = -1/t_1$.

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$. Then

$$at + b = ct^2 + dt.$$

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$. Then

$$at + b = ct^2 + dt.$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and |a + d| < 2. Then $a + d \in \{-1, 0, 1\}$.

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$. Then

$$at + b = ct^2 + dt.$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and |a + d| < 2. Then $a + d \in \{-1, 0, 1\}$. The characteristic polynomial of γ is given by

$$(a-x)(d-x) - bc = x^2 - (a+d)x + 1.$$

So the characteristic polynomial is $x^2 + 1$ or $x^2 \pm x + 1$.
Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$. Then

$$at + b = ct^2 + dt.$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and |a + d| < 2. Then $a + d \in \{-1, 0, 1\}$. The characteristic polynomial of γ is given by

$$(a-x)(d-x) - bc = x^2 - (a+d)x + 1.$$

So the characteristic polynomial is $x^2 + 1$ or $x^2 \pm x + 1$. Then one of the following holds

$$\gamma^3 = I \qquad , \qquad \gamma^4 = I \qquad , \qquad \gamma^6 = I.$$

Returning to elliptic points, suppose $t \in \mathbb{H}$ is fixed by a nontrivial transformation $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$. Then

$$at + b = ct^2 + dt.$$

Since $t \in \mathbb{H}$, we can show that $c \neq 0$ and |a + d| < 2. Then $a + d \in \{-1, 0, 1\}$. The characteristic polynomial of γ is given by

$$(a-x)(d-x) - bc = x^2 - (a+d)x + 1.$$

So the characteristic polynomial is $x^2 + 1$ or $x^2 \pm x + 1$. Then one of the following holds

$$\gamma^3 = I$$
 , $\gamma^4 = I$, $\gamma^6 = I$.

Then γ has order 1, 2, 3, 4 or 6 as a matrix. Observe that orders 1 and 2 give the identity transformations. The following proposition will discribe all nontrivial fixing transformations.

Let $\gamma \in SL_2(\mathbb{Z})$.

Let $\gamma \in SL_2(\mathbb{Z})$.

• If
$$\gamma$$
 has order 3 then γ is conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 4 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 6 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.

Corollary

0 The elliptic points for $SL_2(\mathbb{Z})$ are $SL_2(\mathbb{Z})i$ and $SL_2(\mathbb{Z})\mu_3$ where $\mu_3 = e^{2\pi i/3}$.

Let $\gamma \in SL_2(\mathbb{Z})$.

• If
$$\gamma$$
 has order 3 then γ is conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 4 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 6 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.

Corollary

- **0** The elliptic points for $SL_2(\mathbb{Z})$ are $SL_2(\mathbb{Z})i$ and $SL_2(\mathbb{Z})\mu_3$ where $\mu_3 = e^{2\pi i/3}$.
- **2** The modular curve Y(1) has 2 elliptic points.

Let $\gamma \in SL_2(\mathbb{Z})$.

• If
$$\gamma$$
 has order 3 then γ is conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 4 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 6 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.

Corollary

- **1** The elliptic points for $SL_2(\mathbb{Z})$ are $SL_2(\mathbb{Z})i$ and $SL_2(\mathbb{Z})\mu_3$ where $\mu_3 = e^{2\pi i/3}$.
- **2** The modular curve Y(1) has 2 elliptic points.
- **(3)** The isotropy subgroups of *i* and μ_3 are

$$SL_2(\mathbb{Z})_i = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\rangle$$
 and $SL_2(\mathbb{Z})_{\mu_3} = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle$

Let $\gamma \in SL_2(\mathbb{Z})$.

• If
$$\gamma$$
 has order 3 then γ is conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 4 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.
• If γ has order 6 then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^{\pm 1}$ in $SL_2(\mathbb{Z})$.

Corollary

- The elliptic points for $SL_2(\mathbb{Z})$ are $SL_2(\mathbb{Z})i$ and $SL_2(\mathbb{Z})\mu_3$ where $\mu_3 = e^{2\pi i/3}$.
- **2** The modular curve Y(1) has 2 elliptic points.
- **(3)** The isotropy subgroups of *i* and μ_3 are

$$SL_2(\mathbb{Z})_i = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\rangle$$
 and $SL_2(\mathbb{Z})_{\mu_3} = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle$.

6 For each elliptic point t of $SL_2(\mathbb{Z})$ the isotropy subgroup $SL_2(\mathbb{Z})_t$ is finite cyclic.

Corollary

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ , the isotropy subgroup Γ_t is finite cyclic.

Corollary

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ , the isotropy subgroup Γ_t is finite cyclic.

Proof.

Write

$$SL_2(\mathbb{Z}) = \bigsqcup_{j=1}^d \Gamma \gamma_j$$

then the set of elliptic points of $Y(\Gamma)$ is a subset of

$$E_{\Gamma} = \{ \Gamma \gamma_j(i), \Gamma \gamma_j(\mu_3) : 1 \leq j \leq d \},\$$

which is clearly finite.

Corollary

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$. The modular curve $Y(\Gamma)$ has finitely many elliptic points. For each elliptic point t of Γ , the isotropy subgroup Γ_t is finite cyclic.

Proof.

Write

$$SL_2(\mathbb{Z}) = \bigsqcup_{j=1}^d \Gamma \gamma_j$$

then the set of elliptic points of $Y(\Gamma)$ is a subset of

$$E_{\Gamma} = \{ \Gamma \gamma_j(i), \Gamma \gamma_j(\mu_3) : 1 \leq j \leq d \},\$$

which is clearly finite. For each $t \in \mathbb{H}$, observe that

 Γ_t is a subgroup of $SL_2(\mathbb{Z})_t$.

Then Γ_t is finite cyclic.

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

The picture suggests that the modular curve $Y(\Gamma)$ can be compactified by adjoining all the cusps.

 $X(\Gamma) = \Gamma \setminus \mathcal{H}^* = Y(\Gamma) \cup \Gamma \setminus (\mathbb{Q} \cup \{\infty\}).$

The points $\lceil s \text{ in } \lceil \setminus \mathbb{Q} \cup \{\infty\}$ are also called the **cusps** of $X(\lceil)$.

$$X(\Gamma) = \Gamma \setminus \mathcal{H}^* = Y(\Gamma) \cup \Gamma \setminus (\mathbb{Q} \cup \{\infty\}).$$

The points Γs in $\Gamma \setminus \mathbb{Q} \cup \{\infty\}$ are also called the **cusps** of $X(\Gamma)$.

Remark The action of $\overline{\Gamma}$ on $\mathbb{Q} \cup \{\infty\}$ is induced from the action of $GL_2^+(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup \{\infty\}$ given by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \left(\frac{m}{n}\right) = \frac{a\frac{m}{n} + b}{c\frac{m}{n} + d}$$

$$X(\Gamma) = \Gamma \setminus \mathcal{H}^* = Y(\Gamma) \cup \Gamma \setminus (\mathbb{Q} \cup \{\infty\}).$$

The points Γs in $\Gamma \setminus \mathbb{Q} \cup \{\infty\}$ are also called the **cusps** of $X(\Gamma)$.

Remark The action of Γ on $\mathbb{Q} \cup \{\infty\}$ is induced from the action of $GL_2^+(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup \{\infty\}$ given by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \left(\frac{m}{n}\right) = \frac{a\frac{m}{n} + b}{c\frac{m}{n} + d}$$

Remark

- **1** $SL_2(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup \{\infty\}$.
- **2** The isotropy subgroup of ∞ in $SL_2(\mathbb{Z})$ is the translations

$$SL_2(\mathbb{Z})_{\infty} = \left\{ \pm \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} : m \in \mathbb{Z} \right\}.$$

$$X(\Gamma) = \Gamma \setminus \mathcal{H}^* = Y(\Gamma) \cup \Gamma \setminus (\mathbb{Q} \cup \{\infty\}).$$

The points Γs in $\Gamma \setminus \mathbb{Q} \cup \{\infty\}$ are also called the **cusps** of $X(\Gamma)$.

Remark The action of Γ on $\mathbb{Q} \cup \{\infty\}$ is induced from the action of $GL_2^+(\mathbb{Q})$ (the group of 2×2 matrices with positive determinant and rational entries) on $\mathbb{Q} \cup \{\infty\}$ given by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \left(\frac{m}{n}\right) = \frac{a\frac{m}{n} + b}{c\frac{m}{n} + d}$$

Remark

- **1** $SL_2(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup \{\infty\}$.
- **2** The isotropy subgroup of ∞ in $SL_2(\mathbb{Z})$ is the translations

$$SL_2(\mathbb{Z})_{\infty} = \left\{ \pm \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} : m \in \mathbb{Z} \right\}.$$

Lemma

The modular curve $X(1) = SL_2(\mathbb{Z}) \setminus \mathcal{H}^*$ has one cusp. For any subgroup Γ of $SL_2(\mathbb{Z})$ the modular curve $X(\Gamma)$ has finitely many cusps.

The usual topology on \mathcal{H}^* contains too many points of $\mathbb{Q} \cup \{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^* .

The usual topology on \mathcal{H}^* contains too many points of $\mathbb{Q} \cup \{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^* . For each M > 0, define

 $\mathcal{N}_M = \{t \in \mathbb{H} : Im(t) > M\}.$

The usual topology on \mathcal{H}^* contains too many points of $\mathbb{Q} \cup \{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^* . For each M > 0, define

$$\mathcal{N}_M = \{t \in \mathbb{H} : Im(t) > M\}.$$

Adjoin to the usual open sets in $\mathbb H$ more sets in $\mathcal H^*$ to serve a base of neighborhoods of the cusps, the sets

$$\alpha(\mathcal{N}_{\mathcal{M}}\cup\{\infty\}):\mathcal{M}>0,\alpha\in SL_{2}(\mathbb{Z}),$$

and take the resulting topology on \mathcal{H}^* .

The usual topology on \mathcal{H}^* contains too many points of $\mathbb{Q} \cup \{\infty\}$ in each neighborhood to make the quotient $X(\Gamma)$ Hausdorff. So we need to define a new topology on \mathcal{H}^* . For each M > 0, define

$$\mathcal{N}_M = \{t \in \mathbb{H} : Im(t) > M\}.$$

Adjoin to the usual open sets in $\mathbb H$ more sets in $\mathcal H^*$ to serve a base of neighborhoods of the cusps, the sets

$$\alpha(\mathcal{N}_{\mathcal{M}}\cup\{\infty\}):\mathcal{M}>0,\alpha\in SL_{2}(\mathbb{Z}),$$

and take the resulting topology on \mathcal{H}^* .

Remark Under this topology, each $\gamma \in SL_2(\mathbb{Z})$ is a homeomorphism of \mathcal{H}^* .

Figure 2.5. Neighborhoods of ∞ and of some rational points

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Let $x_1 \neq x_2 \in X(\Gamma)$. Consider the cases:

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Let $x_1 \neq x_2 \in X(\Gamma)$. Consider the cases:

1 $x_1 = \Gamma t_1, x_2 = \Gamma t_2$ for some $t_1, t_2 \in \mathbb{H}$: Done.

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Let $x_1 \neq x_2 \in X(\Gamma)$. Consider the cases:

- **1** $x_1 = \Gamma t_1, x_2 = \Gamma t_2$ for some $t_1, t_2 \in \mathbb{H}$: Done.
- **9** $x_1 = \lceil s_1, x_2 = \lceil t_2 \text{ where } s_1 \in \mathbb{Q} \cup \{\infty\}, t_2 \in \mathbb{H}$: Let U_2 be any neighborhood of t_2 in \mathbb{H} with compact closure *K*. We have the inequality

 $Im(\gamma(t)) \leq \max\{Im(t), 1/Im(t)\}$ for $t \in \mathbb{H}$ and $\gamma \in SL_2(\mathbb{Z})$.

This implies for M large enough, $SL_2(\mathbb{Z})K \cap \mathcal{N}_M = \emptyset$. Let $\alpha \in SL_2(\mathbb{Z})$ such that $s_1 = \alpha(\infty)$, then $\alpha(\mathcal{N}_M \cup \{\infty\})$ is a neighborhood of s_1 and $\alpha(\mathcal{N}_M \cup \{\infty\}) \cap U_2 = \emptyset$.

Proposition

The modular curve $X(\Gamma)$ is Hausdorff, connected, and compact.

Let $x_1 \neq x_2 \in X(\Gamma)$. Consider the cases:

- **1** $x_1 = \Gamma t_1, x_2 = \Gamma t_2$ for some $t_1, t_2 \in \mathbb{H}$: Done.
- **②** $x_1 = \lceil s_1, x_2 = \lceil t_2 \text{ where } s_1 \in \mathbb{Q} \cup \{\infty\}, t_2 \in \mathbb{H}$: Let U_2 be any neighborhood of t_2 in \mathbb{H} with compact closure *K*. We have the inequality

 $Im(\gamma(t)) \leq \max\{Im(t), 1/Im(t)\}$ for $t \in \mathbb{H}$ and $\gamma \in SL_2(\mathbb{Z})$.

This implies for M large enough, $SL_2(\mathbb{Z})K \cap \mathcal{N}_M = \emptyset$. Let $\alpha \in SL_2(\mathbb{Z})$ such that $s_1 = \alpha(\infty)$, then $\alpha(\mathcal{N}_M \cup \{\infty\})$ is a neighborhood of s_1 and $\alpha(\mathcal{N}_M \cup \{\infty\}) \cap U_2 = \emptyset$.

(e) $x_1 = \Gamma s_1, x_2 = \Gamma s_2$ where $s_1, s_2 \in \mathbb{Q} \cup \{\infty\}$: Let $\alpha_1, \alpha_2 \in SL_2(\mathbb{Z})$ such that $s_1 = \alpha_1(\infty), s_2 = \alpha_2(\infty)$. Let $U_1 = \alpha_1(\mathcal{N}_2 \cup \{\infty\}), U_2 = \alpha_2(\mathcal{N}_2 \cup \{\infty\})$. Then we claim that $\pi(U_1)$ and $\pi(U_2)$ are disjoint.

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

To see this, suppose that $\exists \gamma \in \Gamma : \gamma \alpha_1(t_1) = \alpha_2(t_2)$, then $\alpha_2^{-1} \gamma \alpha_1$ maps t_1 to t_2 .

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

To see this, suppose that $\exists \gamma \in \Gamma : \gamma \alpha_1(t_1) = \alpha_2(t_2)$, then $\alpha_2^{-1} \gamma \alpha_1$ maps t_1 to t_2 . Note that \mathcal{N}_2 does not contain any elliptic points, then

$$lpha_2^{-1}\gammalpha_1=\pmegin{bmatrix}1&m\0&1\end{bmatrix},\quad ext{ for some }m\in\mathbb{Z}.$$

Figure 2.3. The fundamental domain for $SL_2(\mathbf{Z})$

To see this, suppose that $\exists \gamma \in \Gamma : \gamma \alpha_1(t_1) = \alpha_2(t_2)$, then $\alpha_2^{-1} \gamma \alpha_1$ maps t_1 to t_2 . Note that \mathcal{N}_2 does not contain any elliptic points, then

$$lpha_2^{-1}\gammalpha_1=\pm egin{bmatrix} 1&m\0&1\end{bmatrix}, \quad ext{ for some } m\in\mathbb{Z}.$$

Thus $\alpha_2^{-1}\gamma\alpha_1$ fixes ∞ , consequently $\gamma(s_1) = s_2$, contradiction. Then $X(\Gamma)$ is Hausdorff.

1

Suppose $\mathcal{H}^* = O_1 \cup O_2$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_1 \supset \mathbb{H}$ and so $O_2 \subset \mathbb{Q} \cup \{\infty\}$. But then O_2 is not open unless it is empty. Thus \mathcal{H}^* is connected and so is its continuous image $X(\Gamma)$.

Suppose $\mathcal{H}^* = O_1 \cup O_2$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_1 \supset \mathbb{H}$ and so $O_2 \subset \mathbb{Q} \cup \{\infty\}$. But then O_2 is not open unless it is empty. Thus \mathcal{H}^* is connected and so is its continuous image $X(\Gamma)$. For compactness, first observe that

 $\mathcal{D}^* = \mathcal{D} \cup \{\infty\}$ is compact in the \mathcal{H}^* topology.

Suppose $\mathcal{H}^* = O_1 \cup O_2$ is a disjoint union of open subsets. Intersect with the connected sed \mathbb{H} to conclude that $O_1 \supset \mathbb{H}$ and so $O_2 \subset \mathbb{Q} \cup \{\infty\}$. But then O_2 is not open unless it is empty. Thus \mathcal{H}^* is connected and so is its continuous image $X(\Gamma)$. For compactness, first observe that

 $\mathcal{D}^* = \mathcal{D} \cup \{\infty\}$ is compact in the \mathcal{H}^* topology.

Note that

$$\mathcal{H}^* = SL_2(\mathbb{Z})\mathcal{D}^* = \bigcup_j \Gamma \gamma_j(\mathcal{D}^*), \text{ where the } \gamma_j \text{ are coset representatives.}$$

Then

$$X(\Gamma) = \bigcup_j \pi(\gamma_j(\mathcal{D}^*)).$$

Since each γ_i is continuous, π is continuous and $[SL_2(\mathbb{Z}) : \Gamma] < \infty$, $X(\Gamma)$ is compact.

For each cusp $s \in \mathbb{Q} \cup \{\infty\}$, define the width of s to be

$$h_s = \left| \frac{SL_2(\mathbb{Z})_s}{\{\pm I\}\Gamma_s} \right|.$$

This notion is dual to the period of an elliptic point, being inversely propotional to the size of an isotropy subgroup.

Claims:

 If s ∈ Q ∪ {∞} and γ ∈ SL₂(Z) then the width of γ(s) under γΓγ⁻¹ = the width of s under Γ.
 In particular, the width h_s depends only on Γs, making the width is well-defined on X(Γ). Claims:

1 If $s \in \mathbb{Q} \cup \{\infty\}$ and $\gamma \in SL_2(\mathbb{Z})$ then

the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}$ = the width of s under Γ .

In particular, the width h_s depends only on Γs , making the width is well-defined on $X(\Gamma)$.

9 If Γ is normal in $SL_2(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.
Claims:

1 If $s \in \mathbb{Q} \cup \{\infty\}$ and $\gamma \in SL_2(\mathbb{Z})$ then

the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}$ = the width of s under Γ .

In particular, the width h_s depends only on Γs , making the width is well-defined on $X(\Gamma)$.

9 If Γ is normal in $SL_2(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.

6 If $\delta \in SL_2(\mathbb{Z})$ takes *s* to ∞ , then

$$h_{s} = \left| \frac{SL_{2}(\mathbb{Z})_{\infty}}{(\delta \{ \pm I \} \Gamma \delta^{-1})_{\infty}} \right|.$$

Claims:

1 If $s \in \mathbb{Q} \cup \{\infty\}$ and $\gamma \in SL_2(\mathbb{Z})$ then

the width of $\gamma(s)$ under $\gamma \Gamma \gamma^{-1}$ = the width of s under Γ .

In particular, the width h_s depends only on Γs , making the width is well-defined on $X(\Gamma)$.

- **9** If Γ is normal in $SL_2(\mathbb{Z})$ then all cusps of $X(\Gamma)$ have the same width.
- **6** If $\delta \in SL_2(\mathbb{Z})$ takes *s* to ∞ , then

$$h_{s} = \left| \frac{SL_{2}(\mathbb{Z})_{\infty}}{(\delta \{\pm I\}\Gamma \delta^{-1})_{\infty}} \right|.$$

Moreover,

$$(\delta\{\pm I\}\Gamma\delta^{-1})_{\infty} = \{\pm I\}\left\langle \begin{bmatrix} 1 & h_s \\ 0 & 1 \end{bmatrix} \right\rangle.$$

Figure 2.6. Local coordinates at a cusp

Figure 2.6. Local coordinates at a cusp

Define $U = U_s = \delta^{-1}(\mathcal{N}_2 \cup \{\infty\})$ and define $\psi = \rho \circ \delta$, where $\rho = e^{2\pi i z/h}, h = h_s$.

Figure 2.6. Local coordinates at a cusp

Define $U = U_s = \delta^{-1}(\mathcal{N}_2 \cup \{\infty\})$ and define $\psi = \rho \circ \delta$, where $\rho = e^{2\pi i z/h}$, $h = h_s$. Let $V = im\psi$ then V is an open subset of \mathbb{C} , we have

$$\psi: U \to V, \qquad \psi(t) = e^{2\pi i \delta(t)/h}.$$

Claim: For all $t_1, t_2 \in U$, $\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2)$.

Claim: For all $t_1, t_2 \in U$, $\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2)$. Indeed,

$$\pi(t_1) = \pi(t_2) \Leftrightarrow t_1 = \gamma(t_2) \Leftrightarrow \delta(t_1) = (\delta \gamma \delta^{-1})(\delta(t_2))$$

for some $\gamma \in \Gamma$. Since $\delta(t_1)$ and $\delta(t_2)$ both lie in $\mathcal{N}_2 \cup \{\infty\}$, $\delta\gamma\delta^{-1}$ must be a translation. So

Claim: For all $t_1, t_2 \in U$, $\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2)$. Indeed,

$$\pi(t_1) = \pi(t_2) \Leftrightarrow t_1 = \gamma(t_2) \Leftrightarrow \delta(t_1) = (\delta \gamma \delta^{-1})(\delta(t_2))$$

for some $\gamma \in \Gamma$. Since $\delta(t_1)$ and $\delta(t_2)$ both lie in $\mathcal{N}_2 \cup \{\infty\}$, $\delta\gamma\delta^{-1}$ must be a translation. So

$$\delta\gamma\delta^{-1}\in\delta\Gamma\delta^{-1}\cap SL_2(\mathbb{Z})_\infty=(\delta\Gamma\delta^{-1})_\infty\subset\{\pm l\}\left\langle egin{bmatrix}1&h\\0&1\end{bmatrix}
ight
angle$$

Claim: For all $t_1, t_2 \in U$, $\pi(t_1) = \pi(t_2) \Leftrightarrow \psi(t_1) = \psi(t_2)$. Indeed,

$$\pi(t_1) = \pi(t_2) \Leftrightarrow t_1 = \gamma(t_2) \Leftrightarrow \delta(t_1) = (\delta \gamma \delta^{-1})(\delta(t_2))$$

for some $\gamma \in \Gamma$. Since $\delta(t_1)$ and $\delta(t_2)$ both lie in $\mathcal{N}_2 \cup \{\infty\}$, $\delta\gamma\delta^{-1}$ must be a translation. So

$$\delta\gamma\delta^{-1}\in\delta\Gamma\delta^{-1}\cap SL_2(\mathbb{Z})_\infty=(\delta\Gamma\delta^{-1})_\infty\subset\{\pm l\}\left\langle egin{bmatrix}1&h\\0&1\end{bmatrix}
ight
angle$$

Then

$$\pi(t_1) = \pi(t_2) \Leftrightarrow \delta(t_1) = \delta(t_2) + mh \text{ for some } m \in \mathbb{Z}$$
$$\Leftrightarrow \psi(t_1) = \psi(t_2).$$

Therefore, there exists a bijection $\varphi:\pi(U) \to V$ such that the following diagram commutes

Therefore, there exists a bijection $\varphi: \pi(U) \to V$ such that the following diagram commutes

The coordinate neighborhood about $\pi(s)$ in $X(\Gamma)$ is $\pi(U)$, and the coordinate map is $\varphi : \pi(U) \to V$, a homeomorphism.

It suffices to consider 2 following cases.

Case 1 Suppose $U_1 \subset \mathbb{H}$ has the corresponding straightening map $\delta_1 = \delta_{t_1} \in GL_2(\mathbb{C})$ where t_1 has period h_1 and suppose $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \{\infty\})$.

It suffices to consider 2 following cases.

Case 1 Suppose $U_1 \subset \mathbb{H}$ has the corresponding straightening map $\delta_1 = \delta_{t_1} \in GL_2(\mathbb{C})$ where t_1 has period h_1 and suppose $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \{\infty\})$. For each $x \in \pi(U_1) \cap \pi(U_2)$, write $x = \pi(\tilde{t}_1) = \pi(t_2)$ for $\tilde{t}_1 \in U_1, t_2 \in U_2$. OA

v غ ۱۰

It suffices to consider 2 following cases.

Case 1 Suppose $U_1 \subset \mathbb{H}$ has the corresponding straightening map $\delta_1 = \delta_{t_1} \in GL_2(\mathbb{C})$ where t_1 has period h_1 and suppose $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \{\infty\})$. For each $x \in \pi(U_1) \cap \pi(U_2)$, write $x = \pi(\tilde{t}_1) = \pi(t_2)$ for $\tilde{t}_1 \in U_1, t_2 \in U_2$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$. For any $q = \varphi_1(x') \in \varphi_1(\pi(U_{1,2}))$, the formula is

 $\varphi_{2,1}(q) = \exp(2\pi i \delta_2 \gamma \delta_1^{-1}(q^{1/h_1})/h_2).$

OA

It suffices to consider 2 following cases.

Case 1 Suppose $U_1 \subset \mathbb{H}$ has the corresponding straightening map $\delta_1 = \delta_{t_1} \in GL_2(\mathbb{C})$ where t_1 has period h_1 and suppose $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \{\infty\})$. For each $x \in \pi(U_1) \cap \pi(U_2)$, write $x = \pi(\tilde{t}_1) = \pi(t_2)$ for $\tilde{t}_1 \in U_1, t_2 \in U_2$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$. For any $q = \varphi_1(x') \in \varphi_1(\pi(U_{1,2}))$, the formula is

 $\varphi_{2,1}(q) = \exp(2\pi i \delta_2 \gamma \delta_1^{-1}(q^{1/h_1})/h_2).$

If $h_1 = 1$: OK.

It suffices to consider 2 following cases.

Case 1 Suppose $U_1 \subset \mathbb{H}$ has the corresponding straightening map $\delta_1 = \delta_{t_1} \in GL_2(\mathbb{C})$ where t_1 has period h_1 and suppose $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \{\infty\})$. For each $x \in \pi(U_1) \cap \pi(U_2)$, write $x = \pi(\tilde{t}_1) = \pi(t_2)$ for $\tilde{t}_1 \in U_1, t_2 \in U_2$. Let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, then $\varphi_1(\pi(U_{1,2}))$ is a neighborhood of $\varphi_1(x)$. For any $q = \varphi_1(x') \in \varphi_1(\pi(U_{1,2}))$, the formula is

 $\varphi_{2,1}(q) = \exp(2\pi i \delta_2 \gamma \delta_1^{-1}(q^{1/h_1})/h_2).$

If $h_1 = 1$: OK.

If $h_1 > 1$, then $t_1 \notin U_{1,2}$, else the point $\delta_2(\gamma(t_1)) \in \mathcal{N}_2$ is also an elliptic point for Γ , which is contradiction since \mathcal{N}_2 contains no elliptic points. Then $t_1 \notin U_{1,2}$ so $0 \notin \varphi_1(\pi(U_{1,2}))$. The transition map is holomorphic.

Case 2 Suppose $U_i = \delta_i^{-1}(\mathcal{N}_2 \cup \{\infty\})$ with $\delta_i : s_i \mapsto \infty, i = 1, 2$.

Case 2 Suppose $U_i = \delta_i^{-1}(\mathcal{N}_2 \cup \{\infty\})$ with $\delta_i : s_i \mapsto \infty$, i = 1, 2. If $\pi(U_1) \cap \pi(U_2) \neq \emptyset$, then there exist $t_1 \in U_1, t_2 \in U_2, \gamma \in \Gamma$ such that

 $t_1 = \gamma(t_2) \Rightarrow \delta_1(t_1) = \delta_1 \gamma \delta_2^{-1}(\delta_2(t_2)).$

Case 2 Suppose $U_i = \delta_i^{-1}(\mathcal{N}_2 \cup \{\infty\})$ with $\delta_i : s_i \mapsto \infty$, i = 1, 2. If $\pi(U_1) \cap \pi(U_2) \neq \emptyset$, then there exist $t_1 \in U_1, t_2 \in U_2, \gamma \in \Gamma$ such that

$$t_1 = \gamma(t_2) \Rightarrow \delta_1(t_1) = \delta_1 \gamma \delta_2^{-1}(\delta_2(t_2)).$$

Since $\delta_1 \gamma \delta_2^{-1}$ moves some point in $\mathcal{N}_2 \cup \{\infty\}$ to another, it must be a translation $\pm \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$. In this case $\gamma(s_1) = s_2$, so $h_1 = h_2 = h$. Using this, we can compute

$$\varphi_{2,1}(q) = e^{2\pi i m/h} q$$

This is clearly holomorphic.

To summarize, for any congruence subgroup Γ of $SL_2(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface.

To summarize, for any congruence subgroup Γ of $SL_2(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface. Problems:

① Compute the genus of $X(\Gamma)$.

To summarize, for any congruence subgroup Γ of $SL_2(\mathbb{Z})$ the extended quotient $X(\Gamma)$ is a compact Riemann surface. Problems:

() Compute the genus of $X(\Gamma)$.

2 Study the meromorphic functions and differentials on $X(\Gamma)$.

- Modular Curves and Modularity

Modular Curves and Modularity

Theorem (Modularity Theorem)

Let *E* be a complex elliptic curve with $j(E) \in \mathbb{Q}$. Then for some positive integer *N* there exists a surjective holomorphic function of compact Riemann surfaces from the modular curve $X_0(N)$ to the elliptic curve *E*,

 $X_0(N) \longrightarrow E.$

- Modular Curves and Modularity

THANK YOU FOR LISTENING