An introduction to sheaves

Manh-Linh Nguyen

École Normale Supérieure

June 20th, 2020

< 🗇 🕨

< ∃→

2 Stalks and sheaves

Sheafification

Pushforward and pullback sheaves

Sheaf cohomology

Presheaves Stalks and sheaves Sheafification

Sheatification Pushforward and pullback sheaves Sheaf cohomology

Let X be a topological space.

(日) (四) (王) (王) (王)

æ

Let X be a topological space.

• One way to study X is to study functions on X.

< 177 ▶

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.

ъ.

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.
- Therefore, one studies functions on any open subset in X.

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.
- Therefore, one studies functions on any open subset in X.

Definition

Let O(X) denote the category where objects are open sets in X, and arrows are inclusions. A presheaf (of abelian groups) on X is a functor $\mathscr{F} : O(X)^{\text{op}} \to \mathbf{Ab}$, i.e. the following data.

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.
- Therefore, one studies functions on any open subset in X.

Definition

Let O(X) denote the category where objects are open sets in X, and arrows are inclusions. A presheaf (of abelian groups) on X is a functor $\mathscr{F} : O(X)^{\text{op}} \to \mathbf{Ab}$, i.e. the following data.

• For each open set U in X, an abelian group $\mathscr{F}(U)$,

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.
- Therefore, one studies functions on any open subset in X.

Definition

Let O(X) denote the category where objects are open sets in X, and arrows are inclusions. A presheaf (of abelian groups) on X is a functor $\mathscr{F} : O(X)^{\text{op}} \to \mathbf{Ab}$, i.e. the following data.

- **9** For each open set U in X, an abelian group $\mathscr{F}(U)$,
- **∂** for open sets $V \subseteq U$ in X, a group homomorphism $\operatorname{res}_{U \to V} : \mathscr{F}(U) \to \mathscr{F}(V)$, called restriction from U to V

such that

Let X be a topological space.

- One way to study X is to study functions on X.
- It turns out that studying functions on X alone is not enough.
- Therefore, one studies functions on any open subset in X.

Definition

Let O(X) denote the category where objects are open sets in X, and arrows are inclusions. A presheaf (of abelian groups) on X is a functor $\mathscr{F} : O(X)^{\text{op}} \to \mathbf{Ab}$, i.e. the following data.

- **9** For each open set U in X, an abelian group $\mathscr{F}(U)$,
- **②** for open sets $V \subseteq U$ in X, a group homomorphism $\operatorname{res}_{U \to V} : \mathscr{F}(U) \to \mathscr{F}(V)$, called restriction from U to V

such that

9 for open sets $W \subseteq V \subseteq U$ in X, $\operatorname{res}_{V \to W} \circ \operatorname{res}_{U \to V} = \operatorname{res}_{U \to W}$,

2 for each open set U in X, $\operatorname{res}_{U \to U} = \operatorname{id}_{\mathscr{F}(U)}$.

Indeed, one can also speak of presheaves of rings, modules,...

< (17) > < (17) > <

- ∢ ≣ →

Indeed, one can also speak of presheaves of rings, modules,...

Indeed, one can also speak of presheaves of rings, modules,...

Example

- $U \mapsto \mathscr{C}^{0}(U, \mathbb{R})$, with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, $U \mapsto \mathscr{C}^{\infty}(U, \mathbb{R})$ (resp. $U \mapsto \mathscr{H}(U, \mathbb{C})$).
- **9** If A is an abelian group, the constant presheaf $\underline{A}^{\text{pre}}$ associated to A is given by $U \mapsto A$, with restrictions being the identity $A \to A$.

Indeed, one can also speak of presheaves of rings, modules,...

Example

- $U \mapsto \mathscr{C}^{0}(U, \mathbb{R})$, with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, $U \mapsto \mathscr{C}^{\infty}(U, \mathbb{R})$ (resp. $U \mapsto \mathscr{H}(U, \mathbb{C})$).
- If A is an abelian group, the constant presheaf <u>A</u>^{pre} associated to A is given by U → A, with restrictions being the identity A → A.
- O Let x ∈ X. If A is an abelian group, the skyscraper (pre-)sheaf skysc_x(A) is given by U → $\begin{cases}
 A & \text{if } x \in U, \\
 0 & \text{if } x \notin U,
 \end{cases}$ with restrictions being evident.

(目) (ヨ) (ヨ)

Indeed, one can also speak of presheaves of rings, modules,...

Example

- U → C⁰(U, ℝ), with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, U → C[∞](U, ℝ) (resp. U → ℋ(U, ℂ)).
- If A is an abelian group, the constant presheaf <u>A</u>^{pre} associated to A is given by U → A, with restrictions being the identity A → A.
- O Let x ∈ X. If A is an abelian group, the skyscraper (pre-)sheaf skysc_x(A) is given by U → $\begin{cases}
 A & \text{if } x \in U, \\
 0 & \text{if } x \notin U,
 \end{cases}$ with restrictions being evident.
- Let A be a commutative ring and X = Spec(A) with the Zariski topology. Its structure (pre-)sheaf \mathcal{O}_X is given by $X \setminus V(I) \mapsto \lim_{\substack{i \in I \\ f \in I}} A_f$, where, for each ideal I of A, $V(I) = \{ \mathfrak{p} \in \text{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Indeed, one can also speak of presheaves of rings, modules,...

Example

- U → C⁰(U, ℝ), with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, U → C[∞](U, ℝ) (resp. U → ℋ(U, ℂ)).
- **9** If A is an abelian group, the constant presheaf $\underline{A}^{\text{pre}}$ associated to A is given by $U \mapsto A$, with restrictions being the identity $A \to A$.
- O Let x ∈ X. If A is an abelian group, the skyscraper (pre-)sheaf skysc_x(A) is given by U → $\begin{cases}
 A & \text{if } x \in U, \\
 0 & \text{if } x \notin U,
 \end{cases}$ with restrictions being evident.
- Let A be a commutative ring and X = Spec(A) with the Zariski topology. Its structure (pre-)sheaf \mathcal{O}_X is given by $X \setminus V(I) \mapsto \lim_{\substack{i \in I \\ f \in I}} A_f$, where, for each ideal I of A, $V(I) = \{ \mathfrak{p} \in \text{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Elements of $\Gamma(U,\mathscr{F}) = \operatorname{H}^{0}(U,\mathscr{F}) := \mathscr{F}(U)$ are called sections of \mathscr{F} over U.

(人間) 人 ヨト 人 ヨト 二 ヨ

Indeed, one can also speak of presheaves of rings, modules,...

Example

- U → C⁰(U, ℝ), with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, U → C[∞](U, ℝ) (resp. U → ℋ(U, ℂ)).
- **9** If A is an abelian group, the constant presheaf $\underline{A}^{\text{pre}}$ associated to A is given by $U \mapsto A$, with restrictions being the identity $A \to A$.
- O Let x ∈ X. If A is an abelian group, the skyscraper (pre-)sheaf skysc_x(A) is given by U → $\begin{cases}
 A & \text{if } x \in U, \\
 0 & \text{if } x \notin U,
 \end{cases}$ with restrictions being evident.

• Let A be a commutative ring and X = Spec(A) with the Zariski topology. Its structure (pre-)sheaf \mathcal{O}_X is given by $X \setminus V(I) \mapsto \lim_{\substack{i \in I \\ f \in I}} A_f$, where, for each ideal I of A, $V(I) = \{ \mathfrak{p} \in \text{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Elements of $\Gamma(U,\mathscr{F}) = \operatorname{H}^{0}(U,\mathscr{F}) := \mathscr{F}(U)$ are called sections of \mathscr{F} over U. If $s \in \Gamma(U,\mathscr{F})$ and $V \subseteq U$ is open, we write $s|_{V} := \operatorname{res}_{U \to V}(s)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Indeed, one can also speak of presheaves of rings, modules,...

Example

- U → C⁰(U, ℝ), with the usual restrictions. If X is a smooth (resp. complex analytic) manifold, U → C[∞](U, ℝ) (resp. U → ℋ(U, ℂ)).
- If A is an abelian group, the constant presheaf <u>A</u>^{pre} associated to A is given by U → A, with restrictions being the identity A → A.
- O Let x ∈ X. If A is an abelian group, the skyscraper (pre-)sheaf skysc_x(A) is given by U → $\begin{cases}
 A & \text{if } x \in U, \\
 0 & \text{if } x \notin U,
 \end{cases}$ with restrictions being evident.
- Let A be a commutative ring and X = Spec(A) with the Zariski topology. Its structure (pre-)sheaf \mathcal{O}_X is given by $X \setminus V(I) \mapsto \lim_{\substack{f \in I \\ f \in I}} A_f$, where, for each ideal I of A, $V(I) = \{\mathfrak{p} \in \text{Spec}(A) : I \subseteq \mathfrak{p}\}.$

Elements of $\Gamma(U,\mathscr{F}) = \operatorname{H}^{0}(U,\mathscr{F}) := \mathscr{F}(U)$ are called sections of \mathscr{F} over U. If $s \in \Gamma(U,\mathscr{F})$ and $V \subseteq U$ is open, we write $s|_{V} := \operatorname{res}_{U \to V}(s)$. A section over X is called a global section.

Definition

Let \mathscr{F}, \mathscr{G} be presheaves on X. A morphisms of presheaves $\mathscr{F} \to \mathscr{G}$ is a natural transformation $\varphi : \mathscr{F} \to \mathscr{G}$, i.e. a collection $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ of group homomorphisms, where $U \subseteq X$ are open, such that the diagram

commutes for all inclusions $V \subseteq U$ of open sets in X.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition

Let \mathscr{F}, \mathscr{G} be presheaves on X. A morphisms of presheaves $\mathscr{F} \to \mathscr{G}$ is a natural transformation $\varphi : \mathscr{F} \to \mathscr{G}$, i.e. a collection $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ of group homomorphisms, where $U \subseteq X$ are open, such that the diagram

commutes for all inclusions $V \subseteq U$ of open sets in X.

• If $s \in \Gamma(U, \mathscr{F})$, we shall write $\varphi(s)$ as a shorthand for $\varphi(U)(s)$. Then $\varphi(s|_V) = \varphi(s)|_V$ for any open $V \subseteq U$.

Definition

Let \mathscr{F}, \mathscr{G} be presheaves on X. A morphisms of presheaves $\mathscr{F} \to \mathscr{G}$ is a natural transformation $\varphi : \mathscr{F} \to \mathscr{G}$, i.e. a collection $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ of group homomorphisms, where $U \subseteq X$ are open, such that the diagram

commutes for all inclusions $V \subseteq U$ of open sets in X.

- If s ∈ Γ(U, ℱ), we shall write φ(s) as a shorthand for φ(U)(s). Then φ(s|_V) = φ(s)|_V for any open V ⊆ U.
- We have the category PSh(X) of presheaves on X.

(ロ) (四) (E) (E) (E) (E)

Definition

Let \mathscr{F}, \mathscr{G} be presheaves on X. A morphisms of presheaves $\mathscr{F} \to \mathscr{G}$ is a natural transformation $\varphi : \mathscr{F} \to \mathscr{G}$, i.e. a collection $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ of group homomorphisms, where $U \subseteq X$ are open, such that the diagram

commutes for all inclusions $V \subseteq U$ of open sets in X.

- If $s \in \Gamma(U, \mathscr{F})$, we shall write $\varphi(s)$ as a shorthand for $\varphi(U)(s)$. Then $\varphi(s|_V) = \varphi(s)|_V$ for any open $V \subseteq U$.
- We have the category PSh(X) of presheaves on X. For each open set U, there is a section functor Γ(U, −) : PSh(X) → Ab.

Definition

If $\varphi:\mathscr{F}\to\mathscr{G}$ is a morphism of presheaves on X, we define

- **1** the direct sum presheaf $\mathscr{F} \oplus \mathscr{G}$, given by $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$,
- **2** the kernel presheaf ker φ , given by $U \mapsto \ker \varphi(U)$,
- **3** the cokernel presheaf coker φ , given by $U \mapsto \operatorname{coker} \varphi(U)$.

Definition

If $\varphi:\mathscr{F}\to\mathscr{G}$ is a morphism of presheaves on X, we define

- **1** the direct sum presheaf $\mathscr{F} \oplus \mathscr{G}$, given by $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$,
- **2** the kernel presheaf ker φ , given by $U \mapsto \ker \varphi(U)$,
- **9** the cokernel presheaf coker φ , given by $U \mapsto \operatorname{coker} \varphi(U)$.

We say that φ is injective (resp., surjective, bijective) if for all open set U in X, $\varphi(U)$ is injective (resp., surjective, bijective).

Definition

If $\varphi:\mathscr{F}\to\mathscr{G}$ is a morphism of presheaves on X, we define

- **1** the direct sum presheaf $\mathscr{F} \oplus \mathscr{G}$, given by $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$,
- **2** the kernel presheaf ker φ , given by $U \mapsto \ker \varphi(U)$,
- **9** the cokernel presheaf coker φ , given by $U \mapsto \operatorname{coker} \varphi(U)$.

We say that φ is injective (resp., surjective, bijective) if for all open set U in X, $\varphi(U)$ is injective (resp., surjective, bijective).

Proposition

• The direct sum, kernel and cokernel presheaves deserve their names, making **PSh**(X) an abelian category.

Definition

If $\varphi:\mathscr{F}\to\mathscr{G}$ is a morphism of presheaves on X, we define

- **9** the direct sum presheaf $\mathscr{F} \oplus \mathscr{G}$, given by $U \mapsto \mathscr{F}(U) \oplus \mathscr{G}(U)$,
- **2** the kernel presheaf ker φ , given by $U \mapsto \ker \varphi(U)$,
- **9** the cokernel presheaf coker φ , given by $U \mapsto \operatorname{coker} \varphi(U)$.

We say that φ is injective (resp., surjective, bijective) if for all open set U in X, $\varphi(U)$ is injective (resp., surjective, bijective).

Proposition

- The direct sum, kernel and cokernel presheaves deserve their names, making **PSh**(X) an abelian category.
- φ is an isomorphism iff it is bijective.

・ロト ・同ト ・ヨト ・ヨト

Definition

• If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \ni x} \mathscr{F}(U)$.

< A > < ∃ >

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \ni x} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

伺 ト イヨ ト イヨト

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \ni x} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x.

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \ni x} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x. If $U, V \ni x$ are open and $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$, then $s_x = t_x$ iff $s|_W = t|_W$ for some open neighborhood $W \subseteq U \cap V$ of x.

伺 と く ヨ と く ヨ と

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{\substack{U \ni x \\ U \ni x}} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x. If $U, V \ni x$ are open and $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$, then $s_x = t_x$ iff $s|_W = t|_W$ for some open neighborhood $W \subseteq U \cap V$ of x.

Example

Let X = C. The stalk at any point x ∈ C of the sheaf U → ℋ(U, C) of holomorphic functions is identified to the C-algebra C{z} of power series in z with positive radius of converge.

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{\substack{U \ni x \\ U \ni x}} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x. If $U, V \ni x$ are open and $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$, then $s_x = t_x$ iff $s|_W = t|_W$ for some open neighborhood $W \subseteq U \cap V$ of x.

Example

- Let X = C. The stalk at any point x ∈ C of the sheaf U → ℋ(U, C) of holomorphic functions is identified to the C-algebra C{z} of power series in z with positive radius of converge.
- **2** The constant presheaf $\underline{A}^{\text{pre}}$ has stalks A everywhere.

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \to x} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x. If $U, V \ni x$ are open and $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$, then $s_x = t_x$ iff $s|_W = t|_W$ for some open neighborhood $W \subseteq U \cap V$ of x.

Example

- Let X = C. The stalk at any point x ∈ C of the sheaf U → ℋ(U, C) of holomorphic functions is identified to the C-algebra C{z} of power series in z with positive radius of converge.
- **2** The constant presheaf $\underline{A}^{\text{pre}}$ has stalks A everywhere.
- **O** The skyscraper sheaf skysc_x(A) has stalk A at $y \in \overline{\{x\}}$ and 0 elsewhere.

Definition

- If $x \in X$, the stalk of a presheaf \mathscr{F} at x is $\mathscr{F}_x := \lim_{U \to x} \mathscr{F}(U)$.
- If $U \ni x$ is open and $s \in \mathscr{F}(U)$, its image s_x in \mathscr{F}_x is called its germ.

 \mathscr{F}_x is the group of germs of sections over neighborhoods of x. If $U, V \ni x$ are open and $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$, then $s_x = t_x$ iff $s|_W = t|_W$ for some open neighborhood $W \subseteq U \cap V$ of x.

Example

- Let X = C. The stalk at any point x ∈ C of the sheaf U → ℋ(U, C) of holomorphic functions is identified to the C-algebra C{z} of power series in z with positive radius of converge.
- **2** The constant presheaf $\underline{A}^{\text{pre}}$ has stalks A everywhere.
- **9** The skyscraper sheaf skysc_x(A) has stalk A at $y \in \overline{\{x\}}$ and 0 elsewhere.

• Let X = Spec(A) for a commutative ring A. For each $\mathfrak{p} \in X$, $\mathscr{O}_{X,\mathfrak{p}} = A_{\mathfrak{p}}$.

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

< ∃ > < ∃ >

< A >

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

(Locality) If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.

< ∃ > < ∃ >
Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **(Locality)** If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

伺 と く ヨ と く ヨ と

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **(Locality)** If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

伺 ト イヨト イヨト

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **Q** (Locality) If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Example

 $\ \, {\it O} \ \ \, U\mapsto {\mathscr C}^{\sf 0}(X,{\mathbb R}), U\mapsto {\mathscr C}^{\infty}(X,{\mathbb R}), U\mapsto {\mathscr H}(X,{\mathbb C}) \ {\it are \ all \ sheaves}.$

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **(Locality)** If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Example

- $U \mapsto \mathscr{C}^{0}(X, \mathbb{R}), U \mapsto \mathscr{C}^{\infty}(X, \mathbb{R}), U \mapsto \mathscr{H}(X, \mathbb{C}) \text{ are all sheaves.}$
- Skyscraper sheaves skysc_x(A) are sheaves. If X = Spec(A) for a commutative ring A, its structure sheaf O_X is a sheaf.

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **(Locality)** If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Example

- $\ \, {\boldsymbol{\mathsf{O}}} \ \, U\mapsto {\mathscr C}^0(X,{\mathbb R}), U\mapsto {\mathscr C}^\infty(X,{\mathbb R}), U\mapsto {\mathscr H}(X,{\mathbb C}) \ \, \text{are all sheaves}.$
- Skyscraper sheaves skysc_x(A) are sheaves. If X = Spec(A) for a commutative ring A, its structure sheaf O_X is a sheaf.
- If $X = \{0, 1\}$ with discrete topology and $A \neq 0$, the constant presheaf <u>A</u>^{pre} fails gluability, therefore is not a sheaf.

Definition

A presheaf \mathscr{F} on X is a sheaf if for any open set U in X, and any open cover $U = \bigcup_{i \in I} U_i$ of U, the following conditions are satisfied.

- **(Locality)** If $s \in \mathscr{F}(U)$ such that $s|_{U_i} = 0$ for all $i \in I$, then s = 0.
- **(Gluability)** Given $s_i \in \mathscr{F}(U_i)$ for each $i \in I$, such that for $i, j \in I$, $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, there is $s \in \mathscr{F}(U)$ such that $s|_{U_i} = s_i$ for $i \in I$.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Example

- $\ \, {\boldsymbol{\mathsf{O}}} \ \, U\mapsto {\mathscr C}^0(X,{\mathbb R}), U\mapsto {\mathscr C}^\infty(X,{\mathbb R}), U\mapsto {\mathscr H}(X,{\mathbb C}) \ \, \text{are all sheaves}.$
- Skyscraper sheaves skysc_x(A) are sheaves. If X = Spec(A) for a commutative ring A, its structure sheaf O_X is a sheaf.
- If $X = \{0, 1\}$ with discrete topology and $A \neq 0$, the constant presheaf <u>A</u>^{pre} fails gluability, therefore is not a sheaf.
- **9** The constant sheaf <u>A</u> is $U \mapsto \{\text{locally constant functions } U \rightarrow A\}$.

4 E b

Proposition

If $\varphi_x = 0$ for all $x \in X$, then $\varphi = 0$.

2 Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

If $\varphi_x = 0$ for all $x \in X$, then $\varphi = 0$.

2 Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

For the first claim, we want to show that $\varphi(U) = 0$ for all open set U, i.e. $\varphi(s) = 0$ for all $s \in \mathscr{F}(U)$, which would follow from the injectivity of $\mathscr{G}(U) \to \prod_{x \in U} \mathscr{G}_x$. But the later is just a consequence of the locality condition.

Proposition

9 If
$$\varphi_x = 0$$
 for all $x \in X$, then $\varphi = 0$.

2 Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

For the first claim, we want to show that $\varphi(U) = 0$ for all open set U, i.e. $\varphi(s) = 0$ for all $s \in \mathscr{F}(U)$, which would follow from the injectivity of $\mathscr{G}(U) \to \prod_{x \in U} \mathscr{G}_x$. But the later is just a consequence of the locality condition. Injectivity : Assume that φ is injective. Fix $x \in X$. If $U, V \ni x$ are open set, $s \in \mathscr{F}(U)$ and $t \in \mathscr{F}(V)$ such that $\varphi_x(s_x) = \varphi_x(t_x)$, then $\varphi(s)_x = \varphi(t)_x$, meaning $\varphi(s)|_W = \varphi(t)|_W$ in an open neighborhood $W \subseteq U \cap V$ of x, i.e. $\varphi(s|_W) = \varphi(t|_W)$. Thus, $s|_W = t|_W$, implying $s_x = t_x$, hence φ_x is injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

9 If
$$\varphi_x = 0$$
 for all $x \in X$, then $\varphi = 0$.

2 Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

For the first claim, we want to show that $\varphi(U) = 0$ for all open set U, i.e. $\varphi(s) = 0$ for all $s \in \mathscr{F}(U)$, which would follow from the injectivity of $\mathscr{G}(U) \to \prod_{x \in U} \mathscr{G}_x$. But the later is just a consequence of the locality condition. Injectivity : Assume that φ is injective. Fix $x \in X$. If $U, V \ni x$ are open set, $s \in \mathscr{F}(U)$ and $t \in \mathscr{F}(V)$ such that $\varphi_x(s_x) = \varphi_x(t_x)$, then $\varphi(s)_x = \varphi(t)_x$, meaning $\varphi(s)|_W = \varphi(t)|_W$ in an open neighborhood $W \subseteq U \cap V$ of x, i.e. $\varphi(s|_W) = \varphi(t|_W)$. Thus, $s|_W = t|_W$, implying $s_x = t_x$, hence φ_x is injective. Conversely, assume that φ_x is injective for all $x \in X$. Let U be open and $s, t \in \mathscr{F}(U)$ with $\varphi(s) = \varphi(t)$. We have $\varphi_x(s_x) = \varphi(s)_x = \varphi(t)_x = \varphi_x(t_x)$, hence $s_x = t_x$ for all $x \in X$. The injectivity of $\mathscr{G}(U) \to \prod_{x \in U} \mathscr{G}_x$ allows us to conclude that s = t, i.e. φ is injective.

イロト 不得下 イヨト イヨト

3

Proposition

If $\varphi_x = 0$ for all $x \in X$, then $\varphi = 0$.

Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

Bijectivity : Assume now that φ is surjective. Fix $x \in X$. Let $U \ni x$ be open and $t \in \mathscr{G}(U)$. Then there is some section $s \in \mathscr{F}(U)$ with $\varphi(s) = t$. It follows that $\varphi_x(s_x) = \varphi(s)_x = t_x$, i.e. φ_x is surjective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

If
$$\varphi_x = 0$$
 for all $x \in X$, then $\varphi = 0$.

Injectivity and bijectivity (but not surjectivity!) can be checked stalkwise.

Bijectivity : Assume now that φ is surjective. Fix $x \in X$. Let $U \ni x$ be open and $t \in \mathscr{G}(U)$. Then there is some section $s \in \mathscr{F}(U)$ with $\varphi(s) = t$. It follows that $\varphi_x(s_x) = \varphi(s)_x = t_x$, i.e. φ_x is surjective. Conversely, assume that φ_x is bijective for all $x \in X$. Let U be open and $t \in \mathscr{G}(U)$. For any $x \in U$, there is an open neighborhood $V_x \subseteq U$ of x and a section $r^x \in \mathscr{F}(V_x)$ such that $\varphi(r^x)_x = \varphi_x(r_x^x) = t_x$, meaning $\varphi(r^x|_{U_x}) = \varphi(r^x)|_{U_x} = t|_{U_x}$ in some open neighborhood $U_x \subseteq V_x$ of x. We obtain an open cover $\{U_x\}_{x \in U}$ of U. Let $s^x := r^x|_{U_x}$. For $x, y \in U$, one has $\varphi(s^x|_{U_x \cap U_y}) = \varphi(r^x)|_{U_x \cap U_y} = t|_{U_x \cap U_y} = \varphi(r^y)|_{U_x \cap U_y} = \varphi(s^y|_{U_x \cap U_y})$. Now, φ is injective since it is injective stalkwise, so $s^x|_{U_x \cap U_y} = s^y|_{U_x \cap U_y}$. We can then glue the s^x ($x \in U$) into a section $s \in \mathscr{F}(U)$. Clearly, $\varphi(s) = t$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making $\mathbf{Sh}(X)$ an additive category.

-∢ ≣⇒

< 47 ▶

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making Sh(X) an additive category. Problem : coker φ is not a sheaf!

 Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making Sh(X) an additive category. Problem : coker φ is not a sheaf!

Definition

Let \mathscr{F} be a presheaf on X. For each open set U, let $\widehat{\mathscr{F}}(U)$ be the set of tuples $(s^x) \in \prod_{x \in U} \mathscr{F}_x$ such that every point $x \in U$ admits an open neighborhood $V \subseteq U$ and a section $t \in \mathscr{F}(V)$ such that $s^y = t_y$ for all $y \in V$. Then $\widehat{\mathscr{F}}: U \mapsto \widehat{\mathscr{F}}(U)$ defines a sheaf on X, called the sheafification of \mathscr{F} .

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making Sh(X) an additive category. Problem : coker φ is not a sheaf!

Definition

Let \mathscr{F} be a presheaf on X. For each open set U, let $\widehat{\mathscr{F}}(U)$ be the set of tuples $(s^x) \in \prod_{x \in U} \mathscr{F}_x$ such that every point $x \in U$ admits an open neighborhood $V \subseteq U$ and a section $t \in \mathscr{F}(V)$ such that $s^y = t_y$ for all $y \in V$. Then $\widehat{\mathscr{F}}: U \mapsto \widehat{\mathscr{F}}(U)$ defines a sheaf on X, called the sheafification of \mathscr{F} .

There is a morphism of presheaves $i: \mathscr{F} \to \widehat{\mathscr{F}}$, $i(s) = (s_x)_{x \in U}$ for $s \in \mathscr{F}(U)$.

A B > A B >

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making Sh(X) an additive category. Problem : coker φ is not a sheaf!

Definition

Let \mathscr{F} be a presheaf on X. For each open set U, let $\widehat{\mathscr{F}}(U)$ be the set of tuples $(s^x) \in \prod_{x \in U} \mathscr{F}_x$ such that every point $x \in U$ admits an open neighborhood $V \subseteq U$ and a section $t \in \mathscr{F}(V)$ such that $s^y = t_y$ for all $y \in V$. Then $\widehat{\mathscr{F}}: U \mapsto \widehat{\mathscr{F}}(U)$ defines a sheaf on X, called the sheafification of \mathscr{F} .

There is a morphism of presheaves $i: \mathscr{F} \to \widehat{\mathscr{F}}$, $i(s) = (s_x)_{x \in U}$ for $s \in \mathscr{F}(U)$.

Proposition

• The morphism $i:\mathscr{F}\to\widehat{\mathscr{F}}$ induces isomorphisms at the level of stalks.

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then $\mathscr{F} \oplus \mathscr{G}$ and ker φ are sheaves, making $\mathbf{Sh}(X)$ an additive category. Problem : coker φ is not a sheaf !

Definition

Let \mathscr{F} be a presheaf on X. For each open set U, let $\widehat{\mathscr{F}}(U)$ be the set of tuples $(s^{x}) \in \prod_{x \in U} \mathscr{F}_{x}$ such that every point $x \in U$ admits an open neighborhood $V \subseteq U$ and a section $t \in \mathscr{F}(V)$ such that $s^{y} = t_{y}$ for all $y \in V$. Then $\widehat{\mathscr{F}}: U \mapsto \widehat{\mathscr{F}}(U)$ defines a sheaf on X, called the sheafification of \mathscr{F} .

There is a morphism of presheaves $i: \mathscr{F} \to \widehat{\mathscr{F}}$, $i(s) = (s_x)_{x \in U}$ for $s \in \mathscr{F}(U)$.

Proposition

- The morphism $i:\mathscr{F}\to\widehat{\mathscr{F}}$ induces isomorphisms at the level of stalks.
- If \mathscr{G} is a sheaf, any morphism $\varphi:\mathscr{F}\to\mathscr{G}$ factors uniquely through i.

Let $x \in X$.

The projections $\operatorname{pr}_{U \to x} : \widehat{\mathscr{F}}(U) \hookrightarrow \prod_{y \in U} \mathscr{F}_y \to \mathscr{F}_x$ for open sets $U \ni x$ induce a homomorphism $j_x : \widehat{\mathscr{F}}_x \to \mathscr{F}_x$. For open sets $U \supseteq V \ni x$, we have the commutative diagram on the right. Now, $\operatorname{pr}_{V \to x} \circ i(V)$ is the map $s \mapsto s_x$, which is the same as the vertical arrow $\mathscr{F}(V) \to \mathscr{F}_x$. The same holds for U, which implies $j_x \circ i_x = \operatorname{id}_{\mathscr{F}_x}$ by universal property of direct limit. Hence i_x is injective.

Let $x \in X$.

The projections $\operatorname{pr}_{U \to x} : \widehat{\mathscr{F}}(U) \hookrightarrow \prod_{y \in U} \mathscr{F}_y \to \mathscr{F}_x$ for open sets $U \ni x$ induce a homomorphism $j_x : \widehat{\mathscr{F}}_x \to \mathscr{F}_x$. For open sets $U \supseteq V \ni x$, we have the commutative diagram on the right. Now, $\operatorname{pr}_{V \to x} \circ i(V)$ is the map $s \mapsto s_x$, which is the same as the vertical arrow $\mathscr{F}(V) \to \mathscr{F}_x$. The same holds for U, which implies $j_x \circ i_x = \operatorname{id}_{\mathscr{F}_x}$ by universal property of direct limit. Hence i_x is injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Now, any element of $\widehat{\mathscr{F}}_x$ is the germ s_x of a tuple $s = (s^y) \in \widehat{\mathscr{F}}(U)$, where $U \ni x$ is open. By definition, there is an open neighborhood $V \subseteq U$ of x and a section $t \in \mathscr{F}(V)$ such that $t_y = s^y$ for all $y \in V$, i.e. $i(t)|_V = s|_V$. It follows that $i_x(t_x) = i(t)_x = s_x$, hence i_x is surjective.

Let $x \in X$.

The projections $\operatorname{pr}_{U \to x} : \widehat{\mathscr{F}}(U) \hookrightarrow \prod_{y \in U} \mathscr{F}_y \to \mathscr{F}_x$ for open sets $U \ni x$ induce a homomorphism $j_x : \widehat{\mathscr{F}}_x \to \mathscr{F}_x$. For open sets $U \supseteq V \ni x$, we have the commutative diagram on the right. Now, $\operatorname{pr}_{V \to x} \circ i(V)$ is the map $s \mapsto s_x$, which is the same as the vertical arrow $\mathscr{F}(V) \to \mathscr{F}_x$. The same holds for U, which implies $j_x \circ i_x = \operatorname{id}_{\mathscr{F}_x}$ by universal property of direct limit. Hence i_x is injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Now, any element of $\widehat{\mathscr{F}}_x$ is the germ s_x of a tuple $s = (s^y) \in \widehat{\mathscr{F}}(U)$, where $U \ni x$ is open. By definition, there is an open neighborhood $V \subseteq U$ of x and a section $t \in \mathscr{F}(V)$ such that $t_y = s^y$ for all $y \in V$, i.e. $i(t)|_V = s|_V$. It follows that $i_x(t_x) = i(t)_x = s_x$, hence i_x is surjective. \Box We conclude that $i_x : \mathscr{F}_x \to \mathscr{G}_x$ is an isomorphism. In particular, if \mathscr{F} is a sheaf, $i : \mathscr{F} \to \widehat{\mathscr{F}}$ is an isomorphism.

Given a sheaf \mathscr{G} and a morphism $\varphi : \mathscr{F} \to \mathscr{G}$. For any U open, the product

$$\prod_{x\in U}\varphi_x:\prod_{x\in U}\mathscr{F}_x\to\prod_{x\in U}\mathscr{G}_x$$

induces a homomorphism $\widetilde{\varphi}(U) : \widehat{\mathscr{F}}(U) \to \widehat{\mathscr{G}}(U)$, which in turn gives a morphism of sheaves $\widetilde{\varphi} : \widehat{\mathscr{F}} \to \widehat{\mathscr{G}}$, making the diagram

Since the right vertical arrow is an isomorphism, $\tilde{\varphi}$ lifts into a morphism $\hat{\varphi} : \widehat{\mathscr{F}} \to \mathscr{G}$ such that $\varphi = \widehat{\varphi} \circ i$. Finally, if $\varphi' : \widehat{\mathscr{F}} \to \mathscr{G}$ is such that $\varphi' \circ i = \varphi = \widehat{\varphi} \circ i$. Taking stalks at each $x \in X$ (which is functorial), and cancelling out the isomorphism i_x , gives $\widehat{\varphi}_x = \varphi'_x$. Therefore $\widehat{\varphi} = \varphi'$, showing uniqueness.

If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves on X, the sheafification $\widehat{\operatorname{coker} \varphi}$ is the cokernel in the category $\operatorname{Sh}(X)$, making $\operatorname{Sh}(X)$ an abelian category.

If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves on X, the sheafification $\widehat{\operatorname{coker} \varphi}$ is the cokernel in the category $\operatorname{Sh}(X)$, making $\operatorname{Sh}(X)$ an abelian category.

Proposition

 φ is an epimorphism in **Sh**(X) iff $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ is surjective for all $x \in X$.

伺 ト イヨト イヨト

If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves on X, the sheafification $\widehat{\operatorname{coker} \varphi}$ is the cokernel in the category $\operatorname{Sh}(X)$, making $\operatorname{Sh}(X)$ an abelian category.

Proposition

 φ is an epimorphism in Sh(X) iff $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ is surjective for all $x \in X$.

Assume that $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ is surjective for al $x \in X$. Let $\psi : \mathscr{G} \to \mathscr{H}$ is a morphism of sheaves with $\psi \circ \varphi = 0$. For any $x \in X$, $\psi_x \circ \varphi_x = (\psi \circ \varphi)_x = 0$, therefore $\psi_x = 0$ since φ_x is surjective. It follows that $\psi = 0$.

(日) (日) (日)

If $\varphi : \mathscr{F} \to \mathscr{G}$ is a morphism of sheaves on X, the sheafification $\operatorname{coker} \varphi$ is the cokernel in the category $\operatorname{Sh}(X)$, making $\operatorname{Sh}(X)$ an abelian category.

Proposition

 φ is an epimorphism in Sh(X) iff $\varphi_x : \mathscr{F}_x \to \mathscr{G}_x$ is surjective for all $x \in X$.

Conversely, assume that φ is an epimorphism. Let $x \in X$ and $A := \operatorname{coker} \varphi_x$. Define a morphism $\psi : \mathscr{G} \to \operatorname{skysc}_x(A)$ as follows. For an open set U, let $\psi(U)$ be the composition $\mathscr{G}(U) \to \mathscr{G}_x \to A$ if $x \in U$, and $\psi(U) = 0$ otherwise. If $x \in U$, the composition is $\mathscr{F}_x \to \mathscr{G}_x \to A$ is 0, and the diagram

commutes. It follows that $(\psi \circ \varphi)(U) = \psi(U) \circ \varphi(U) = 0$ in all cases, i.e. $\psi \circ \varphi = 0$, which implies $\psi = 0$. Since ψ_x is precisely the projection $\mathscr{G}_x \to A$, we have coker $\varphi_x = A = 0$, i.e. φ_x is surjective.

伺 ト イヨト イヨト

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. The image presheaf im φ given by $U \mapsto \operatorname{im} \varphi(U)$ is the image of φ in the category $\mathsf{PSh}(X)$. Its sheafification $\operatorname{im} \varphi$ is the image of φ in the category $\mathsf{Sh}(X)$.

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. The image presheaf im φ given by $U \mapsto \operatorname{im} \varphi(U)$ is the image of φ in the category $\mathsf{PSh}(X)$. Its sheafification $\operatorname{im} \varphi$ is the image of φ in the category $\mathsf{Sh}(X)$.

Proposition

A sequence of sheaves $\mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ on X is exact iff for all $x \in X$, the sequence $\mathscr{F}_x \xrightarrow{\varphi_x} \mathscr{G}_x \xrightarrow{\psi_x} \mathscr{H}_x$ is exact.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. The image presheaf im φ given by $U \mapsto \operatorname{im} \varphi(U)$ is the image of φ in the category $\mathsf{PSh}(X)$. Its sheafification $\operatorname{im} \varphi$ is the image of φ in the category $\mathsf{Sh}(X)$.

Proposition

A sequence of sheaves $\mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ on X is exact iff for all $x \in X$, the sequence $\mathscr{F}_x \xrightarrow{\varphi_x} \mathscr{G}_x \xrightarrow{\psi_x} \mathscr{H}_x$ is exact.

Assume that $\mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ on X is exact, i.e. the inclusion $\psi \circ \varphi = 0$, and the inclusion im $\varphi \to \ker \psi$ induces an isomorphism $\widehat{\operatorname{im} \varphi} \xrightarrow{\simeq} \ker \psi$. Let $x \in X$. Recall that the sheafification im $\varphi \to \operatorname{im} \varphi$ induces isomorphisms on stalks, so that we have $\operatorname{im} \varphi_x = (\operatorname{im} \varphi)_x \simeq \operatorname{im} \varphi_x \simeq \ker \psi_x$.

(日) (日) (日)

Let $\varphi : \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. The image presheaf im φ given by $U \mapsto \operatorname{im} \varphi(U)$ is the image of φ in the category $\mathsf{PSh}(X)$. Its sheafification $\operatorname{im} \varphi$ is the image of φ in the category $\mathsf{Sh}(X)$.

Proposition

A sequence of sheaves $\mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ on X is exact iff for all $x \in X$, the sequence $\mathscr{F}_x \xrightarrow{\varphi_x} \mathscr{G}_x \xrightarrow{\psi_x} \mathscr{H}_x$ is exact.

Assume that $\mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ on X is exact, i.e. the inclusion $\psi \circ \varphi = 0$, and the inclusion im $\varphi \to \ker \psi$ induces an isomorphism im $\varphi \xrightarrow{\simeq} \ker \psi$. Let $x \in X$. Recall that the sheafification im $\varphi \to \inf \varphi$ im φ induces isomorphisms on stalks, so that we have im $\varphi_x = (\operatorname{im} \varphi)_x \simeq \operatorname{im} \varphi_x \simeq \ker \psi_x$. Conversely, assume that $\ker \psi_x = \operatorname{im} \varphi_x$ for all $x \in X$. In particular, $(\psi \circ \varphi)_x = \psi_x \circ \varphi_x = 0$, so $\psi \circ \varphi = 0$, i.e. there is an inclusion im $\varphi \to \ker \psi$. It induces a morphism $\operatorname{im} \varphi \to \ker \psi$, which is an isomorphism since we have isomorphisms $\ker \psi_x = \operatorname{im} \varphi_x = (\operatorname{im} \varphi)_x \simeq \operatorname{im} \varphi_x$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let $X = \mathbb{C}$, \mathscr{H} the sheaf of holomorphic functions and \mathscr{H}^{\times} the sheaf of non-vanishing holomorphic functions (on open subsets of \mathbb{C}). The first is a sheaf of \mathbb{C} -vector spaces, whereas the second is a sheaf of (multiplicative) abelian groups. Let $d : \mathscr{H} \to \mathscr{H}$ denote the derivation. A holomorphic function on an open set U in \mathbb{C} has derivative 0 iff its is constant on each connected component of U. We have an exact sequence of sheaves of \mathbb{C} -vector spaces,

$$0 \to \underline{\mathbb{C}} \to \mathscr{H} \xrightarrow{d} \mathscr{H} \to 0.$$

In fact, taking stalk at any point $x\in\mathbb{C}$ yields an exact sequence of $\mathbb{C}\text{-vector}$ spaces

$$0 \to \mathbb{C} \to \mathbb{C}\{z\} \xrightarrow{\partial/\partial z} \mathbb{C}\{z\} \to 0.$$

For U open in \mathbb{C} , we only have an exact sequence

$$0 \to \underline{\mathbb{C}}(U) \to \mathscr{H}(U) \xrightarrow{d} \mathscr{H}(U),$$

since surjectivity of *d* fails for $U = \mathbb{C}^{\times}$ ($z \mapsto 1/z$ admits no primitive).

Example

Let $X = \mathbb{C}$, \mathscr{H} the sheaf of holomorphic functions and \mathscr{H}^{\times} the sheaf of non-vanishing holomorphic functions (on open subsets of \mathbb{C}). The first is a sheaf of \mathbb{C} -vector spaces, whereas the second is a sheaf of (multiplicative) abelian groups. Let exp : $\mathscr{H} \to \mathscr{H}^{\times}$ denote the exponential. We have the exponential exact sequence,

$$0 \to \underline{2\pi i \mathbb{Z}} \to \mathscr{H} \xrightarrow{\exp} \mathscr{H}^{\times} \to 1.$$

In fact, taking stalk at any point $x \in \mathbb{C}$ yields an exact sequence

$$0 \to 2\pi i \mathbb{Z} \to \mathbb{C}\{z\} \xrightarrow{\exp} \mathbb{C}\{z\}^{\times} \to 1.$$

For U open in \mathbb{C} , we only have an exact sequence

$$0 \to \underline{2\pi i \mathbb{Z}}(U) \to \mathscr{H}(U) \xrightarrow{\exp} \mathscr{H}^{\times}(U),$$

since surjectivity of exp fails for $U = \mathbb{C}^{\times}$ ($z \mapsto z$ admits no logarithm).

Let $f : X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. We want to transport \mathscr{G} to a sheaf on X using f.

Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. We want to transport \mathscr{G} to a sheaf on X using f.

Definition

For each open set U in X, let $f^{-1}\mathscr{G}(U)$ be the set of tuples $(s^{x}) \in \prod_{x \in U} \mathscr{G}_{f(x)}$ such that for every point $x \in U$, there are open sets W in X, V in Y with $x \in W \subseteq U$, $f(W) \subseteq V$, and a section $t \in \mathscr{G}(V)$ such that for every $y \in W$, one has $s^{y} = t_{f(y)}$. Then $f^{-1}\mathscr{G} : U \mapsto f^{-1}\mathscr{G}(U)$ defines a sheaf on X, called pullback or inverse image sheaf of \mathscr{G} by f. Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. We want to transport \mathscr{G} to a sheaf on X using f.

Definition

For each open set U in X, let $f^{-1}\mathscr{G}(U)$ be the set of tuples $(s^{x}) \in \prod_{x \in U} \mathscr{G}_{f(x)}$ such that for every point $x \in U$, there are open sets W in X, V in Y with $x \in W \subseteq U$, $f(W) \subseteq V$, and a section $t \in \mathscr{G}(V)$ such that for every $y \in W$, one has $s^{y} = t_{f(y)}$. Then $f^{-1}\mathscr{G} : U \mapsto f^{-1}\mathscr{G}(U)$ defines a sheaf on X, called pullback or inverse image sheaf of \mathscr{G} by f.

For each open set V in Y, there is an adjunction map

$$\operatorname{\mathsf{adj}}(V):\mathscr{G}(V) o f^{-1}\mathscr{G}(f^{-1}(V)),\qquad s\mapsto (s_{f(x)})_{x\in f^{-1}(V)}.$$

If $f(x) \in V$, composing with $f^{-1}\mathscr{G}(f^{-1}(V)) \to (f^{-1}\mathscr{G})_x$ yields a homomorphism $\mathscr{G}(V) \to (f^{-1}\mathscr{G})_x$. Fix x and let V varies through the open neighborhoods of f(x), we get a homomorphism

$$\operatorname{adj}_{x}:\mathscr{G}_{f(x)}\to (f^{-1}\mathscr{G})_{x}.$$
Proposition

We have an isomorphism $\operatorname{adj}_{x} : \mathscr{G}_{f(x)} \xrightarrow{\simeq} (f^{-1}\mathscr{G})_{x}$.

イロン イボン イヨン イヨン

Proposition

We have an isomorphism $\operatorname{adj}_{x} : \mathscr{G}_{f(x)} \xrightarrow{\simeq} (f^{-1}\mathscr{G})_{x}$.

As $U_{\text{open}} \ni x$ varies, the projections $\operatorname{pr}_{U \to f(x)} : f^{-1}\mathscr{G}(U) \hookrightarrow \prod_{y \in U} \mathscr{G}_{f(y)} \to \mathscr{G}_{f(x)}$, induce a map $p_x : (f^{-1}\mathscr{G})_x \to \mathscr{G}_{f(x)}$. For open sets $V \supseteq V' \ni f(x)$, we have the commutative diagram on the right (where $U = f^{-1}(V)$ and $U' = f^{-1}(V')$). Now, $\operatorname{pr}_{U' \to f(x)} \circ \operatorname{adj}(V)$ is the map $s \mapsto s_{f(x)}$, which is the same as the vertical arrow $\mathscr{G}(V') \to \mathscr{G}_{f(x)}$. The same holds for V, thus $p_x \circ \operatorname{adj}_x = \operatorname{id}_{\mathscr{G}_{f(x)}}$. Hence adj_x is injective.

Proposition

We have an isomorphism $\operatorname{adj}_{x} : \mathscr{G}_{f(x)} \xrightarrow{\simeq} (f^{-1}\mathscr{G})_{x}$.

As $U_{open} \ni x$ varies, the projections $\operatorname{pr}_{U \to f(x)} : f^{-1}\mathscr{G}(U) \hookrightarrow \prod_{y \in U} \mathscr{G}_{f(y)} \to \mathscr{G}_{f(x)},$ $\mathscr{G}(V) \xrightarrow{\operatorname{adj}(V)} f^{-1}\mathscr{G}(U)$ induce a map $p_X : (f^{-1}\mathscr{G})_X \to \mathscr{G}_{f(X)}$. For open sets $V \supset V' \ni f(x)$, we have the commutative diagram on the right (where $U = f^{-1}(V)$ and $U' = f^{-1}(V')$. Now, $\operatorname{pr}_{U' \to f(x)} \circ \operatorname{adj}(V)$ is the map $s \mapsto s_{f(x)}$, which is the same as the vertical arrow $\mathscr{G}(V') \to \mathscr{G}_{f(x)}$. The same holds for V, thus $p_x \circ adj_x = id_{\mathscr{G}_{f(x)}}$. Hence adj_x is injective. As for surjectivity, take the germ s_x of a tuple $s = (s^y) \in f^{-1}\mathscr{G}(U), U_{\text{open}} \ni x$. By definition, there are open sets $x \in W \subseteq U$ in X, $V \supseteq f(W)$ in Y and a section $t \in \mathscr{G}(V)$ such that for every $y \in W$, one has $s^y = t_{f(y)}$. Therefore, $\operatorname{adj}(V)(t)|_W = s|_W$, so $\operatorname{adj}(V)(t)_x = s_x$. A closer look into the above diagram yields $\operatorname{adj}_{X}(t_{f(X)}) = \operatorname{adj}(V)(t)_{X} = s_{X}$.

The construction f^{-1} is functorial : given a morphism $\psi : \mathscr{G} \to \mathscr{G}'$ of sheaves on *Y*, the products $\prod_{x \in U} \psi_{f(x)} : \prod_{x \in U} \mathscr{G}_{f(x)} \to \prod_{x \in U} \mathscr{G}'_{f(x)}$ (for each *U* open in *X*), induce a morphism $f^{-1}\psi : f^{-1}\mathscr{G} \to f^{-1}\mathscr{G}'$ of sheaves on *X*. The construction f^{-1} is functorial : given a morphism $\psi : \mathscr{G} \to \mathscr{G}'$ of sheaves on *Y*, the products $\prod_{x \in U} \psi_{f(x)} : \prod_{x \in U} \mathscr{G}_{f(x)} \to \prod_{x \in U} \mathscr{G}'_{f(x)}$ (for each *U* open in *X*), induce a morphism $f^{-1}\psi : f^{-1}\mathscr{G} \to f^{-1}\mathscr{G}'$ of sheaves on *X*.

Proposition

The functor f^{-1} : **Sh**(Y) \rightarrow **Sh**(X) is exact.

The construction f^{-1} is functorial : given a morphism $\psi : \mathscr{G} \to \mathscr{G}'$ of sheaves on *Y*, the products $\prod_{x \in U} \psi_{f(x)} : \prod_{x \in U} \mathscr{G}_{f(x)} \to \prod_{x \in U} \mathscr{G}'_{f(x)}$ (for each *U* open in *X*), induce a morphism $f^{-1}\psi : f^{-1}\mathscr{G} \to f^{-1}\mathscr{G}'$ of sheaves on *X*.

Proposition

The functor f^{-1} : **Sh**(Y) \rightarrow **Sh**(X) is exact.

Clearly f^{-1} is additive. If $0 \to \mathscr{G} \to \mathscr{G}' \to \mathscr{G}'' \to 0$ is an exact sequence of sheaves on Y, we have a commutive diagram in **Ab** for each $x \in X$,

with the (isomorphic) vertical arrows being adjunctions. But exactness can be verified stalkwise.

Let \mathscr{F} be a sheaf on X.

Example

If i : U → X is an inclusion of an open set, then i⁻¹ 𝔅 is canonically isomorphic to the restriction sheaf 𝔅|_U on U given by V → 𝔅(V).

< (17) > < (17) > <

-∢ ≣ →

Let \mathscr{F} be a sheaf on X.

Example

- If i : U → X is an inclusion of an open set, then i⁻¹ 𝔅 is canonically isomorphic to the restriction sheaf 𝔅|_U on U given by V → 𝔅(V).
- If x ∈ X and i : {x} → X is the inclusion, then i⁻¹ F is the sheaf on {x} given by {x} → F_x.

Let \mathscr{F} be a sheaf on X.

Example

- If i : U → X is an inclusion of an open set, then i⁻¹ 𝔅 is canonically isomorphic to the restriction sheaf 𝔅|_U on U given by V → 𝔅(V).
- If x ∈ X and i: {x} → X is the inclusion, then i⁻¹ 𝔅 is the sheaf on {x} given by {x} → 𝔅.

Definition

If $f: X \to Y$ is continuous, we define the pushfoward, or direct image sheaf $f_*\mathscr{F}$ on Y by $V \mapsto \mathscr{F}(f^{-1}(V))$.

Let \mathscr{F} be a sheaf on X.

Example

- If i : U → X is an inclusion of an open set, then i⁻¹ 𝔅 is canonically isomorphic to the restriction sheaf 𝔅|_U on U given by V → 𝔅(V).
- If x ∈ X and i: {x} → X is the inclusion, then i⁻¹ 𝔅 is the sheaf on {x} given by {x} → 𝔅.

Definition

If $f: X \to Y$ is continuous, we define the pushfoward, or direct image sheaf $f_*\mathscr{F}$ on Y by $V \mapsto \mathscr{F}(f^{-1}(V))$.

Indeed, this gives rise to an additive functor f_* : **Sh**(*X*) \rightarrow **Sh**(*Y*).

Proposition

The functor $f_* : \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$ is left exact.

э

Proposition

The functor $f_* : \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$ is left exact.

Given an exact sequence $0\to\mathscr{F}\xrightarrow{\phi}\mathscr{F}'\xrightarrow{\psi}\mathscr{F}''$, we show the exactness of

$$0 \to f_*\mathscr{F} \xrightarrow{f_*\varphi} f_*\mathscr{F}' \xrightarrow{f_*\psi} f_*\mathscr{F}''$$

Proposition

The functor $f_* : \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$ is left exact.

Given an exact sequence $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{F}' \xrightarrow{\psi} \mathscr{F}''$, we show the exactness of

$$0 \to f_*\mathscr{F} \xrightarrow{f_*\varphi} f_*\mathscr{F}' \xrightarrow{f_*\psi} f_*\mathscr{F}''$$

For all V open in Y, $f_*\varphi(V) = \varphi(f^{-1}(V)) : f_*\mathscr{F} \to f_*\mathscr{F}'$ is injective.

Proposition

The functor $f_* : \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$ is left exact.

Given an exact sequence $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{F}' \xrightarrow{\psi} \mathscr{F}''$, we show the exactness of

$$0 \to f_*\mathscr{F} \xrightarrow{f_*\varphi} f_*\mathscr{F}' \xrightarrow{f_*\psi} f_*\mathscr{F}''$$

For all V open in Y, $f_*\varphi(V) = \varphi(f^{-1}(V)) : f_*\mathscr{F} \to f_*\mathscr{F}'$ is injective. To show exactness at $f_*\mathscr{F}'$, first notice that the image im φ of an injective morphism $\varphi : \mathscr{F} \to \mathscr{F}'$ of sheaves is a sheaf. Indeed, the morphism of presheaves $\varphi : \mathscr{F} \to \operatorname{im} \varphi$ is bijective, hence is an isomorphism, thus im φ is a sheaf, so is $\operatorname{im}(f_*\varphi)$. Exactness at \mathscr{F}' says that $\operatorname{im} \varphi = \ker \psi$. If V is open in Y,

$$\operatorname{im}(f_*\varphi(V)) = \operatorname{im}\varphi(f^{-1}(V)) = \operatorname{ker}\psi(f^{-1}(V)) = \operatorname{ker} f_*(\psi(V)),$$

i.e. $im(f_*\varphi) = ker(f_*\psi)$ as desired.

Theorem

For any continuous map $f: X \to Y$, we have an isomorphism

$$\mathsf{Hom}_{\mathsf{Sh}(X)}(f^{-1}\mathscr{G},\mathscr{F})\simeq\mathsf{Hom}_{\mathsf{Sh}(Y)}(\mathscr{G},f_*\mathscr{F}),$$

natural in $\mathscr{F} \in \mathbf{Sh}(X)$ and $\mathscr{G} \in \mathbf{Sh}(Y)$, i.e. the functor f^{-1} is left adjoint to f_* .

Theorem

For any continuous map $f: X \to Y$, we have an isomorphism

$$\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Sh}}(X)}(f^{-1}\mathscr{G},\mathscr{F})\simeq\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Sh}}(Y)}(\mathscr{G},f_*\mathscr{F}),$$

natural in $\mathscr{F} \in \mathbf{Sh}(X)$ and $\mathscr{G} \in \mathbf{Sh}(Y)$, i.e. the functor f^{-1} is left adjoint to f_* .

Recall the adjunction maps $\operatorname{adj}(V) : \mathscr{G}(V) \to f^{-1}\mathscr{G}((f^{-1}(V)) = f_*f^{-1}\mathscr{G}(V),$ $s \mapsto (s_{f(x)})_{x \in f^{-1}(V)}$ (for each V open in Y). They fit together to form the adjunction morphism $\operatorname{adj} : \mathscr{G} \to f_*f^{-1}\mathscr{G}.$ Define a map $\eta = \eta_{\mathscr{G},\mathscr{F}} : \operatorname{Hom}_{\operatorname{sh}(X)}(f^{-1}\mathscr{G},\mathscr{F}) \to \operatorname{Hom}_{\operatorname{sh}(Y)}(\mathscr{G}, f_*\mathscr{F})$ by $\varphi \mapsto f_*\varphi \circ \operatorname{adj}.$

(日) (日) (日)

$$\eta: \operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathscr{G}, \mathscr{F}) \to \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathscr{G}, f_*\mathscr{F}), \qquad \eta(\varphi) = f_*\varphi \circ \operatorname{adj}.$$

 η is injective. In fact, for each $x \in X$, taking limit of the commutative square

as $V_{\mathsf{open}}
i f(x)$ varies, yields a commutative square

$$\begin{array}{c|c} \mathscr{G}_{f(x)} & \xrightarrow{\eta(\varphi)_{x}} (f_{*}\mathscr{F})_{f(x)} \\ & \mathsf{adj}_{x} \\ & \downarrow \\ (f^{-1}\mathscr{G})_{x} \xrightarrow{\varphi_{x}} & \mathscr{F}_{x}. \end{array}$$

Since adj_x is an isomorphism, if $\eta(\varphi) = 0$, we would have $\varphi_x = 0$ for all $x \in X$, which implies $\varphi = 0$.

Let $\psi : \mathscr{G} \to f_*\mathscr{F}$ be given. For each $x \in X$, let $b_x : (f_*\mathscr{F})_{f(x)} \to \mathscr{F}_x$ be the map induced by $f_*\mathscr{F}(V) = \mathscr{F}(f^{-1}(V)) \to \mathscr{F}_x$, $V_{\text{open}} \ni f(x)$. It is given by $b_x(s_{f(x)}) = s_x$ for any $s \in f_*\mathscr{F}(V) = \mathscr{F}(f^{-1}(V))$. For each U open in X, the product $\prod_{x \in U} (b_x \circ \psi_{f(x)}) : \prod_{x \in U} \mathscr{G}_{f(x)} \to \prod_{x \in U} \mathscr{F}_x$ takes $f^{-1}\mathscr{G}(U)$ to $\widehat{\mathscr{F}}(U) \simeq \mathscr{F}(U)$. These maps form a morphism $\varphi : f^{-1}(\mathscr{G}) \to \mathscr{F} \xrightarrow{\simeq} \mathscr{F}$. Let $t \in \mathscr{G}(V)$, V open in Y. The diagram

$$\mathscr{G}(V) \xrightarrow{\varphi(f^{-1}(V))} \mathscr{\widehat{F}}(f^{-1}(V)) \xrightarrow{\varphi(f^{-1}(V))} \xrightarrow{\varphi} \mathscr{F}(f^{-1}(V))$$

$$\downarrow^{=} \qquad = \downarrow$$

$$f_*f^{-1}\mathscr{G}(V) \xrightarrow{f_*\varphi(V)} f_*\mathscr{F}(V)$$

commutes for all V open in Y. Let $s \in \mathscr{G}(V)$. For any $x \in f^{-1}(V)$, $b_x(\psi_x(s_{f(x)})) = b_x(\psi(s)_{f(x)}) = \psi(s)_x$. Hence, under the composition of the top row, $s \mapsto (s_{f(x)})_{x \in f^{-1}(V)} \mapsto (\psi(s)_x)_{x \in f^{-1}(V)} \mapsto \psi(s)$, i.e. $\eta(\varphi) = f_*\varphi \circ \operatorname{adj} = \psi$, so η is surjective.

Finally, we verify naturality of $\eta = \eta_{\mathscr{G},\mathscr{F}}$ in \mathscr{G} and \mathscr{F} , that is, for morphisms $\theta: \mathscr{G}' \to \mathscr{G}$ and $\psi: \mathscr{F} \to \mathscr{F}'$, we have a commutative diagram

$$\begin{split} \operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathscr{G},\mathscr{F}) & \longrightarrow \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathscr{G}, f_*\mathscr{F}) \\ & \left| \begin{array}{c} & & \\ \psi^{\circ - \circ f^{-1}\theta} & & \\ & & \\ \psi^{\circ - \circ f^{-1}\theta} & & \\ & & \\ \operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathscr{G}', \mathscr{F}') & \longrightarrow \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathscr{G}', f_*\mathscr{F}'). \end{split} \end{split}$$

Let $\varphi:f^{-1}\mathscr{G}\to\mathscr{F}$ be any morphism. We have to show that

$$f_*\psi \circ f_*\varphi \circ \operatorname{\mathsf{adj}} \circ \theta = f_*(\psi \circ \varphi \circ f^{-1}\theta) \circ \operatorname{\mathsf{adj}}.$$

It suffices to show that $\operatorname{adj} \circ \theta = f_* f^{-1} \theta \circ \operatorname{adj}$. This is a direct computation. Take $s \in \mathscr{G}'(V)$, V open in Y, then

$$f_*f^{-1}\theta(\mathsf{adj}(s)) = f^{-1}\theta((s_{f(x)})_{x \in f^{-1}(V)}) = (\theta(s)_{f(x)})_{x \in f^{-1}(V)} = \mathsf{adj}(\theta(s))$$

as desired.

A B M A B M

Proposition

The category Sh(X) has enough injectives.

<ロ> (日) (日) (日) (日) (日)

э

Proposition

The category Sh(X) has enough injectives.

Let \mathscr{F} be any sheaf on X. For each $x \in X$, embed \mathscr{F}_x into a divisible group D_x . Define the sheaf \mathscr{D} on X by $U \mapsto \prod_{x \in U} D_x$, with restrictions being projections. The composition $\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x \hookrightarrow \prod_{x \in U} D_x$ is injective for each U open in X, hence $\mathscr{F} \hookrightarrow \mathscr{D}$.

向 ト イヨ ト イヨト

Proposition

The category Sh(X) has enough injectives.

Let \mathscr{F} be any sheaf on X. For each $x \in X$, embed \mathscr{F}_x into a divisible group D_x . Define the sheaf \mathscr{D} on X by $U \mapsto \prod_{x \in U} D_x$, with restrictions being projections. The composition $\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x \hookrightarrow \prod_{x \in U} D_x$ is injective for each U open in X, hence $\mathscr{F} \hookrightarrow \mathscr{D}$. It remains to show that \mathscr{D} is injective, i.e. if $\varphi : \mathscr{G} \to \mathscr{H}$ is an injective morphism, any morphism $\psi : \mathscr{G} \to \mathscr{D}$ lifts by φ into a morphism $\mathscr{H} \to \mathscr{D}$.

Proposition

The category Sh(X) has enough injectives.

For each $x \in X$, the projections $\mathscr{D}(U) \to D_x$ (for $U_{\text{open}} \ni x$) induce a homomorphism $j_x : \mathscr{D}_x \to D_x$, under which the stalk s_x of each tuple $s = (s^y) \in \mathscr{D}(U)$ maps to s^x . Now, $\varphi_x : \mathscr{D}_x \to \mathscr{H}_x$ is injective, so we can lift $j_x \circ \psi_x$ into a map $\theta^x : \mathscr{H}_x \to D_x$. For each U open, let $\theta(U)$ be the composition $\mathscr{H}(U) \to \prod_{x \in U} \mathscr{H}_x \xrightarrow{\prod_{x \in U} \theta^x} \mathscr{D}(U)$. These maps form a morphism $\theta : \mathscr{H} \to \mathscr{D}$ of sheaves. Furthermore, if $s \in \mathscr{G}(U)$,

$$\theta(\varphi(s)) = (\theta^{\times}(\varphi(s)_{\times}))_{x \in U} = (j_{\times}(\psi(s)_{\times}))_{x \in U} = \psi(s)$$

(the last equality comes from comparison on each coordinate $x \in U$ of $\psi(s)$, and the definition of j_x), so $\theta \circ \varphi = \psi$.

Proposition

The section functors $\Gamma(U, -)$: **Sh**(X) \rightarrow **Ab**, U open in X, are left exact.

Proposition

The section functors $\Gamma(U, -)$: **Sh**(X) \rightarrow **Ab**, U open in X, are left exact.

Let $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ be an exact sequence of sheaves on X. We want to show that $0 \to \mathscr{F}(U) \xrightarrow{\varphi(U)} \mathscr{G}(U) \xrightarrow{\psi(U)} \mathscr{H}(U)$ is exact.

伺 とうき とうと

Proposition

The section functors $\Gamma(U, -)$: **Sh**(X) \rightarrow **Ab**, U open in X, are left exact.

Let $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ be an exact sequence of sheaves on X. We want to show that $0 \to \mathscr{F}(U) \xrightarrow{\varphi(U)} \mathscr{G}(U) \xrightarrow{\psi(U)} \mathscr{H}(U)$ is exact. Clearly, $\varphi(U)$ is injective and $\psi(U) \circ \varphi(U) = (\psi \circ \varphi)(U) = 0$.

伺 と く ヨ と く ヨ と

Proposition

The section functors $\Gamma(U, -)$: **Sh**(X) \rightarrow **Ab**, U open in X, are left exact.

Let $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H}$ be an exact sequence of sheaves on X. We want to show that $0 \to \mathscr{F}(U) \xrightarrow{\varphi(U)} \mathscr{G}(U) \xrightarrow{\psi(U)} \mathscr{H}(U)$ is exact. Clearly, $\varphi(U)$ is injective and $\psi(U) \circ \varphi(U) = (\psi \circ \varphi)(U) = 0$. Hence, it suffices to show that ker $\psi(U) \subseteq \operatorname{im} \varphi(U)$. Take any global section $s \in \mathscr{G}(U)$ that is sent to 0 in $\mathscr{H}(U)$ by $\psi(U)$. For each $x \in U$,

$$0 \to \mathscr{F}_x \xrightarrow{\varphi_x} \mathscr{G}_x \xrightarrow{\psi_x} \mathscr{H}_x$$

is exact, and $\psi_x(t_x) = \psi(t)_x = 0$, so there is an open neighborhood $U_x \subseteq U$ of x and a section $s^x \in \mathscr{F}(U_x)$ with $\varphi(s^x) = t|_{U_x}$. For $x, y \in X$,

$$\varphi(\mathbf{s}^{\mathsf{X}}|_{U_{\mathsf{X}}\cap U_{\mathsf{Y}}}) = \varphi(\mathbf{s}^{\mathsf{X}})|_{U_{\mathsf{X}}\cap U_{\mathsf{Y}}}) = t|_{U_{\mathsf{X}}\cap U_{\mathsf{Y}}} = \varphi(\mathbf{s}^{\mathsf{Y}})|_{U_{\mathsf{X}}\cap U_{\mathsf{Y}}}) = \varphi(\mathbf{s}^{\mathsf{Y}}|_{U_{\mathsf{X}}\cap U_{\mathsf{Y}}}),$$

so $s^{x}|_{U_{x}\cap U_{y}} = s^{y}|_{U_{x}\cap U_{y}}$ since φ is injective. It follows that the sections s^{x} can be glued together into a section $s \in \mathscr{F}(U)$. Obviously, $\varphi(s) = t$.

Definition

Let \mathscr{F} be a sheaf on X. For $i \ge 0$, the *i*-th cohomology group of X with coefficient in \mathscr{F} is $\mathrm{H}^{i}(X, \mathscr{F}) := R^{i}\Gamma(X, -)(\mathscr{F}).$

To compute, take any injective resolution $0 \to \mathscr{F} \xrightarrow{\delta^0} \mathscr{D}^0 \xrightarrow{\delta^1} \mathscr{D}^1 \xrightarrow{\delta^2} \cdots$ of \mathscr{F} , then apply $\Gamma(X, -)$ to obtain a cochain complex of abelian groups,

$$0 \xrightarrow{d^{\mathbf{0}}} \mathscr{D}^{\mathbf{0}}(X) \xrightarrow{d^{\mathbf{1}}} \mathscr{D}^{\mathbf{1}}(X) \xrightarrow{d^{\mathbf{2}}} \cdots,$$

where $d^0 = 0$ and $d^i = \delta^i(X)$ for $i \ge 1$. Accordingly, $\mathrm{H}^i(X, \mathscr{F}) := \frac{\ker d^{i+1}}{\operatorname{im} d^i}$.

伺 と く ヨ と く ヨ と

Definition

Let \mathscr{F} be a sheaf on X. For $i \ge 0$, the *i*-th cohomology group of X with coefficient in \mathscr{F} is $\mathrm{H}^{i}(X, \mathscr{F}) := R^{i}\Gamma(X, -)(\mathscr{F}).$

To compute, take any injective resolution $0 \to \mathscr{F} \xrightarrow{\delta^0} \mathscr{D}^0 \xrightarrow{\delta^1} \mathscr{D}^1 \xrightarrow{\delta^2} \cdots$ of \mathscr{F} , then apply $\Gamma(X, -)$ to obtain a cochain complex of abelian groups,

$$0 \xrightarrow{d^{\mathbf{0}}} \mathscr{D}^{\mathbf{0}}(X) \xrightarrow{d^{\mathbf{1}}} \mathscr{D}^{\mathbf{1}}(X) \xrightarrow{d^{\mathbf{2}}} \cdots,$$

where $d^0 = 0$ and $d^i = \delta^i(X)$ for $i \ge 1$. Accordingly, $\mathrm{H}^i(X, \mathscr{F}) := \frac{\ker d^{i+1}}{\operatorname{im} d^i}$

Definition

A sheaf \mathscr{D} on X is acyclic if $\operatorname{H}^{i}(X, \mathscr{D}) = 0$ for all i > 0.

Injective sheaves are acyclic. A standard fact from homological algebra [nla] is

Theorem (de Rham-Weil isomorphism theorem)

The groups $\operatorname{H}^{i}(X, \mathscr{F})$, $i \ge 0$, can be computed using acyclic resolutions.

Definition

A sheaf \mathscr{F} on X is flabby or flasque its restrictions are all surjective.

э

Definition

A sheaf \mathscr{F} on X is flabby or flasque its restrictions are all surjective.

Clearly, \mathscr{F} is flabby iff for each U open, the restriction $\operatorname{res}_{X \to U}$ is surjective.

Definition

A sheaf \mathscr{F} on X is flabby or flasque its restrictions are all surjective.

Clearly, \mathscr{F} is flabby iff for each U open, the restriction $\operatorname{res}_{X \to U}$ is surjective.

Proposition

If $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H} \to 0$ is a short exact sequence of sheaves on X with \mathscr{F} flabby, then $\psi(U) : \mathscr{G}(U) \to \mathscr{H}(U)$ is surjective for all U open in X.

Definition

A sheaf \mathscr{F} on X is flabby or flasque its restrictions are all surjective.

Clearly, \mathscr{F} is flabby iff for each U open, the restriction $\operatorname{res}_{X \to U}$ is surjective.

Proposition

If $0 \to \mathscr{F} \xrightarrow{\varphi} \mathscr{G} \xrightarrow{\psi} \mathscr{H} \to 0$ is a short exact sequence of sheaves on X with \mathscr{F} flabby, then $\psi(U) : \mathscr{G}(U) \to \mathscr{H}(U)$ is surjective for all U open in X.

Let there be $t \in \mathscr{H}(U)$. The set of sections s of $\mathscr{G}(V)$ (for some $V_{\text{open}} \subseteq U$) such that $\psi(s) = t|_V$ is nonempty since ψ is surjective on stalks. Take such a section $s \in \mathscr{G}(V)$ that is maximal for the restriction order. We claim that V = U, for if there exists $x \in U - V$, then there is a section $r \in \mathscr{G}(W)$, $U \supseteq W_{\text{open}} \ni x$ with $\psi(r)_x = \psi_x(r_x) = t_x$. Squeeze W if necessary to get $\psi(r) = t|_W$. Now, $\psi(s|_{V\cap W}) = t|_{V\cap W} = \psi(r|_{V\cap W})$, so $s|_{V\cap W} = r|_{V\cap W} + \varphi(v)$, where $v \in \mathscr{F}(V \cap W)$, by exactness. Since \mathscr{F} is flabby, one can extend v to a section $w \in \mathscr{F}(W)$ and replace r by $r - \varphi(w)$. Now $s|_{V\cap W} = r|_{V\cap W}$, so we can glue them together into a section $s' \in \mathscr{G}(V \cup W)$ with $\psi(s') = t|_{V\cup W}$, contradicting the maximality of s.

Corollary

If $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ is a short exact sequence of sheaves with \mathscr{F} and \mathscr{G} flabby, then \mathscr{H} is flabby.

(人間) シスヨン スヨン

э

Corollary

If $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ is a short exact sequence of sheaves with \mathscr{F} and \mathscr{G} flabby, then \mathscr{H} is flabby.

In fact, for $V \subseteq U$ open in X, we have a commutative diagram with exact rows, and the middle vertical arrow is surjective.

Corollary

If $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ is a short exact sequence of sheaves with \mathscr{F} and \mathscr{G} flabby, then \mathscr{H} is flabby.

In fact, for $V \subseteq U$ open in X, we have a commutative diagram with exact rows, and the middle vertical arrow is surjective.

$$\begin{array}{cccc} 0 \longrightarrow \mathscr{F}(U) \longrightarrow \mathscr{G}(U) \longrightarrow \mathscr{H}(U) \longrightarrow 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ 0 \longrightarrow \mathscr{F}(V) \longrightarrow \mathscr{G}(V) \longrightarrow \mathscr{H}(V) \longrightarrow 0. \end{array}$$

Example

Every sheaf \mathscr{F} can be embedded into a flabby sheaf (Godement construction) $C^0 \mathscr{F}$, given by $U \mapsto \prod_{x \in U} \mathscr{F}_x$, and restrictions being projections. The embedding $\mathscr{F} \hookrightarrow C^0 \mathscr{F}$ is indeed given by taking stalks.

(同) (三) (三)
Proposition

If ${\mathscr F}$ is an injective sheaf, it is flabby.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proposition

If ${\mathscr F}$ is an injective sheaf, it is flabby.

Let $\varphi: \mathscr{F} \to \mathscr{G}$ be an embedding, with \mathscr{G} flabby. Since \mathscr{F} is injective, the identity $\mathscr{F} \to \mathscr{F}$ lifts into a retraction $\psi: \mathscr{G} \to \mathscr{F}$ of φ .

In particular, $\psi(U)$ is surjective for any U open in X. When $V \subseteq U$ are open, we have a commutative diagram

$$\begin{array}{c|c} \mathscr{G}(U) \xrightarrow[\operatorname{res}_{U \to V}]{} \mathscr{G}(V) \\ \psi(U) & \downarrow \\ \mathscr{F}(U) \xrightarrow[\operatorname{res}_{U \to V}]{} \mathscr{F}(V) \end{array}$$

with surjective vertical arrows and upper horizontal arrow. It follows that the restriction $\operatorname{res}_{U \to V} : \mathscr{F}(U) \to \mathscr{F}(V)$ is also surjective.

Proposition

If ${\mathscr F}$ is a flabby sheaf, it is acyclic (therefore, sheaf cohomology can be computed using flabby resolution).

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

If \mathscr{F} is a flabby sheaf, it is acyclic (therefore, sheaf cohomology can be computed using flabby resolution).

Embed \mathscr{F} into an injective sheaf \mathscr{G} and let \mathscr{H} denotes the cokernel (in Sh(X)) of $\mathscr{F} \hookrightarrow \mathscr{G}$. We have a short exact sequence $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H} \to 0$ of flabby sheaves. Consider the long exact sequence in cohomology

$$0 o \mathscr{F}(X) o \mathscr{G}(X) o \mathscr{H}(X) o \operatorname{H}^1(X, \mathscr{F}) o \operatorname{H}^1(X, \mathscr{G}) o \operatorname{H}^1(X, \mathscr{F}) o \cdots$$

Let us proceed to prove by induction on $i \ge 1$ that $\operatorname{H}^{i}(X, \mathscr{F}) = 0$ for any flabby sheaf \mathscr{F} . Indeed, for $i \ge 1$, since \mathscr{G} is injective, the first and last groups in

$$\operatorname{H}^{i}(X, \mathscr{G}) \to \operatorname{H}^{i}(X, \mathscr{H}) \to \operatorname{H}^{i+1}(X, \mathscr{F}) \to \operatorname{H}^{i+1}(X, \mathscr{G})$$

vanish, so $\mathrm{H}^{i+1}(X,\mathscr{F}) \simeq \mathrm{H}^{i}(X,\mathscr{H})$. Now, $\mathscr{G}(X) \to \mathscr{H}(X)$ is surjective, so the map $\mathscr{H}(X) \to \mathrm{H}^{1}(X,\mathscr{F})$ is 0. But $\mathrm{H}^{1}(X,\mathscr{G}) = 0$, thus $\mathrm{H}^{1}(X,\mathscr{F}) = 0$. The inductive step is trivial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let \mathscr{F} be a sheaf on X. Consider the Godement construction $0 \to \mathscr{F} \xrightarrow{\delta^0} C^0 \mathscr{F}$. We can extend this exact sequence to the right by setting $C^i \mathscr{F} := C^0 \operatorname{coker} \delta^{i-1}$ and letting δ^i be the composition $C^{i-1} \mathscr{F} \to \operatorname{coker} \delta^{i-1} \to C^i \mathscr{F}$ for $i \ge 1$.

Example

Let \mathscr{F} be a sheaf on X. Consider the Godement construction $0 \to \mathscr{F} \xrightarrow{\delta^0} C^0 \mathscr{F}$. We can extend this exact sequence to the right by setting $C^i \mathscr{F} := C^0 \operatorname{coker} \delta^{i-1}$ and letting δ^i be the composition $C^{i-1} \mathscr{F} \to \operatorname{coker} \delta^{i-1} \to C^i \mathscr{F}$ for $i \ge 1$.

One obtains a flabby resolution of \mathscr{F} , called its Godement canonical resolution. Applying $\Gamma(X, -)$ yields

$$0 \xrightarrow{d^{\mathbf{0}}} C^{\mathbf{0}} \mathscr{F}(X) \xrightarrow{d^{\mathbf{1}}} C^{\mathbf{1}} \mathscr{F}(X) \xrightarrow{d^{\mathbf{2}}} \cdots,$$

allowing one to compute $\mathrm{H}^{i}(X,\mathscr{F}) := \ker d^{i+1} / \operatorname{im} d^{i}$. Historically, this was Godement's original definition of the groups $\mathrm{H}^{i}(X,\mathscr{F})$.

Example

Let X be a smooth manifold. The sheaves of smooth differential forms on open sets of X form a flabby [Lee13, Lemma 2.26] resolution of the constant sheaf $\underline{\mathbb{R}}$,

$$0 \to \underline{\mathbb{R}} \to \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \cdots$$

(where *d* is the exterior derivates, and exactness follows from Poincaré lemma). Hence, $\operatorname{H}^{i}(X, \mathbb{R}) \simeq \operatorname{H}^{i}_{dR}(X)$, where the later denote de Rham cohomology.

< ∃⇒

< 🗇 🕨

< ∃⇒

Example

Let X be a smooth manifold. The sheaves of smooth differential forms on open sets of X form a flabby [Lee13, Lemma 2.26] resolution of the constant sheaf $\underline{\mathbb{R}}$,

$$0 \to \underline{\mathbb{R}} \to \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \cdots$$

(where *d* is the exterior derivates, and exactness follows from Poincaré lemma). Hence, $\mathrm{H}^{i}(X, \mathbb{R}) \simeq \mathrm{H}^{i}_{\mathsf{dR}}(X)$, where the later denote de Rham cohomology. On the other hand, let $\mathrm{C}^{i}_{\mathsf{sing}}(-, \mathbb{R})$ be the presheaves of singular cochains with real coefficients. There is an exact sequence in of presheaves,

$$0 \to \underline{\mathbb{R}}^{\mathsf{pre}} \xrightarrow{\delta} \mathrm{C}^{\mathbf{0}}_{\mathsf{sing}}(-, \mathbb{R}) \xrightarrow{\delta} \mathrm{C}^{\mathbf{1}}_{\mathsf{sing}}(-, \mathbb{R}) \to \cdots,$$

where δ denotes the coboundary maps (because it is exact at the level of stalks, by taking limit through a contractible fundamental system of neighborhoods). Their sheafifications \mathscr{C}^i are flabby, and give a resolution $\underline{\mathbb{R}} \to \mathscr{C}^{\bullet}$. It follows that $\mathrm{H}^i(X,\underline{\mathbb{R}}) \simeq \mathrm{H}^i(\mathscr{C}^{\bullet}(X)) \simeq \mathrm{H}^i_{\mathrm{sing}}(X,\mathbb{R})$ (the later isomorphisms are subtle, see [Cib05, Prosition 2.1] for details). This proves de Rham theorem.

(人間) シスヨン スヨン

Thank you for your attention !

э

・ 同 ト ・ ヨ ト ・ ヨ ト

References I

- Daniel Cibotaru, Sheaf cohomology, 2005, https://www3.nd.edu/~lnicolae/sheaves_coh.pdf.
- Antoine Ducros, Introduction à la théorie des schémas, https: //webusers.imj-prg.fr/~antoine.ducros/Cours-schemas.pdf.
- Birger Iversen, *Cohomology of sheaves*, Springer, 1984.
- John M. Lee, Introduction to smooth manifolds, Springer-Verlag, 2013.
- https://ncatlab.org/nlab/show/derived+functor+in+ homological+algebra#ViaAcyclicResolutions.
- Ravi Vakil, Foundations of algebraic geometry, 2017, http: //math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf.