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Outline

© Presheaves

© Stalks and sheaves

© Sheafification

@ Pushforward and pullback sheaves

© Sheaf cohomology
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Let X be a topological space.
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Presheaves

Let X be a topological space.
@ One way to study X is to study functions on X.
@ It turns out that studying functions on X alone is not enough.
@ Therefore, one studies functions on any open subset in X.

Let O(X) denote the category where objects are open sets in X, and arrows are
inclusions. A presheaf (of abelian groups) on X is a functor % : O(X)°® — Ab,
i.e. the following data.

o
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Let X be a topological space.
@ One way to study X is to study functions on X.
@ It turns out that studying functions on X alone is not enough.
@ Therefore, one studies functions on any open subset in X.

Let O(X) denote the category where objects are open sets in X, and arrows are
inclusions. A presheaf (of abelian groups) on X is a functor % : O(X)°® — Ab,
i.e. the following data.

@ For each open set U in X, an abelian group .#(U),
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Let X be a topological space.
@ One way to study X is to study functions on X.
@ It turns out that studying functions on X alone is not enough.
@ Therefore, one studies functions on any open subset in X.

Let O(X) denote the category where objects are open sets in X, and arrows are
inclusions. A presheaf (of abelian groups) on X is a functor % : O(X)°® — Ab,
i.e. the following data.

@ For each open set U in X, an abelian group .#(U),

@ for open sets V C U in X, a group homomorphism
resy_v : F(U) — F(V), called restriction from U to V

such that

o
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Presheaves

Let X be a topological space.
@ One way to study X is to study functions on X.
@ It turns out that studying functions on X alone is not enough.
@ Therefore, one studies functions on any open subset in X.

Let O(X) denote the category where objects are open sets in X, and arrows are
inclusions. A presheaf (of abelian groups) on X is a functor % : O(X)°® — Ab,
i.e. the following data.

@ For each open set U in X, an abelian group .#(U),

@ for open sets V C U in X, a group homomorphism
resy_v : F(U) — F(V), called restriction from U to V

such that

Q@ foropensets W C V C Uin X, resy_,yworesy_yv = resy_w,

@ for each open set U in X, resy_,y = id & ().

o
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Presheaves

Indeed, one can also speak of presheaves of rings, modules, ...

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is

given by U — A, with restrictions being the identity A — A.
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Presheaves

Indeed, one can also speak of presheaves of rings, modules, ...

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is
given by U — A, with restrictions being the identity A — A.

© Let x € X. If Ais an abelian group, the skyscraper (pre-)sheaf skysc, (A)

is given by U — {/04 ::i; Z:

with restrictions being evident.
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Indeed, one can also speak of presheaves of rings, modules, ...

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is
given by U — A, with restrictions being the identity A — A.

© Let x € X. If Ais an abelian group, the skyscraper (pre-)sheaf skysc, (A)
A if
isgivenbyUt—){ fxeU,

with restrictions being evident.

0 ifx¢U,

Q Let A be a commutative ring and X = Spec(A) with the Zariski topology.
Its structure (pre-)sheaf Ox is given by X\ V/(/) — lim Af, where, for

fel
each ideal | of A, V(I) = {p € Spec(A) : I C p}.
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Indeed, one can also speak of presheaves of rings, modules, ...

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is
given by U — A, with restrictions being the identity A — A.

© Let x € X. If Ais an abelian group, the skyscraper (pre-)sheaf skysc, (A)
A if
isgivenbyUt—){ fxeU,

with restrictions being evident.

0 ifx¢U,

Q Let A be a commutative ring and X = Spec(A) with the Zariski topology.
Its structure (pre-)sheaf Ox is given by X\ V/(/) — lim Af, where, for

fel
each ideal | of A, V(I) = {p € Spec(A) : I C p}.

Elements of I'(U, %) = H°(U, .F) := .Z(U) are called sections of .# over U.
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Indeed, one can also speak of presheaves of rings, modules, ...

Example

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is
given by U — A, with restrictions being the identity A — A.

© Let x € X. If Ais an abelian group, the skyscraper (pre-)sheaf skysc, (A)
A if
isgivenbyUt—){ fxeU,

with restrictions being evident.

0 ifx¢U,

Q Let A be a commutative ring and X = Spec(A) with the Zariski topology.
Its structure (pre-)sheaf Ox is given by X\ V/(/) — lim Af, where, for

fel
each ideal | of A, V(I) = {p € Spec(A) : I C p}.

v

Elements of (U, #) = H°(U, F) := .Z(U) are called sections of . over U. If
sel(U,Z)and V C U is open, we write s|y := resy_,v(s).
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Indeed, one can also speak of presheaves of rings, modules, ...

Example

@ U — %°(U,R), with the usual restrictions. If X is a smooth (resp.
complex analytic) manifold, U — €°°(U,R) (resp. U — (U, C)).

@ If Ais an abelian group, the constant presheaf AP associated to A is
given by U — A, with restrictions being the identity A — A.

© Let x € X. If Ais an abelian group, the skyscraper (pre-)sheaf skysc, (A)
A if
isgivenbyUt—){ fxeU,

with restrictions being evident.

0 ifx¢U,

Q Let A be a commutative ring and X = Spec(A) with the Zariski topology.
Its structure (pre-)sheaf Ox is given by X\ V/(/) — lim Af, where, for

fel
each ideal | of A, V(I) = {p € Spec(A) : I C p}.

v

Elements of (U, #) = H°(U, F) := .Z(U) are called sections of . over U. If
sel(U,Z)and V C U is open, we write s|y := resy_,y(s). A section over X
is called a global section.
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Presheaves

Definition

Let .#,% be presheaves on X. A morphisms of presheaves . % — ¥ is a natural
transformation ¢ : % — ¢, i.e. a collection ¢(U) : #(U) — ¢(U) of group
homomorphisms, where U C X are open, such that the diagram

7)) —Y g

resy—v l lfesu—»v

F(V) ———>4(V)

commutes for all inclusions V C U of open sets in X.
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Presheaves

Definition

Let .#,% be presheaves on X. A morphisms of presheaves . % — ¥ is a natural
transformation ¢ : % — ¢, i.e. a collection ¢(U) : #(U) — ¢(U) of group
homomorphisms, where U C X are open, such that the diagram

7)) —Y g

resy—v l lfesu—»v

F(V) ———>4(V)

commutes for all inclusions V C U of open sets in X.

o If s e I(U,.%), we shall write ¢(s) as a shorthand for ¢(U)(s). Then
@(slv) = ¢(s)|v for any open V C U.
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Presheaves

Definition

Let .#,% be presheaves on X. A morphisms of presheaves . % — ¥ is a natural
transformation ¢ : % — ¢, i.e. a collection ¢(U) : #(U) — ¢(U) of group
homomorphisms, where U C X are open, such that the diagram

7)) —Y g

resy—v l lfesu—»v

F(V) ———>4(V)

commutes for all inclusions V C U of open sets in X.

o If s e I(U,.%), we shall write ¢(s) as a shorthand for ¢(U)(s). Then
@(slv) = ¢(s)|v for any open V C U.

@ We have the category PSh(X) of presheaves on X.

Manh-Linh Nguyen An introduction to sheaves



Definition

Let .#,% be presheaves on X. A morphisms of presheaves . % — ¥ is a natural
transformation ¢ : % — ¢, i.e. a collection ¢(U) : #(U) — ¢(U) of group
homomorphisms, where U C X are open, such that the diagram

7)) —Y g

resy—v l lfesu—»v

F(V) ———>4(V)

commutes for all inclusions V C U of open sets in X.

o If s e I(U,.%), we shall write ¢(s) as a shorthand for ¢(U)(s). Then
@(slv) = ¢(s)|v for any open V C U.

@ We have the category PSh(X) of presheaves on X. For each open set U,
there is a section functor (U, —) : PSh(X) — Ab.
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If o : # — & is a morphism of presheaves on X, we define
@ the direct sum presheaf .# @ ¥, given by U — Z(U) @ 4(U),
@ the kernel presheaf ker ¢, given by U — ker ¢o(U),

@ the cokernel presheaf coker ¢, given by U — coker p(U).
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Presheaves

If o : # — & is a morphism of presheaves on X, we define
@ the direct sum presheaf .# @ ¥, given by U — .Z(U) @ 4 (U),
@ the kernel presheaf ker ¢, given by U — ker ¢o(U),
@ the cokernel presheaf coker ¢, given by U — coker p(U).

We say that ¢ is injective (resp., surjective, bijective) if for all open set U in X,
(V) is injective (resp., surjective, bijective).

<
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Presheaves

Definition

If o : # — & is a morphism of presheaves on X, we define
@ the direct sum presheaf .7 @ ¢, given by U — Z(U) @& ¢4(U),
@ the kernel presheaf ker ¢, given by U — ker ¢o(U),
@ the cokernel presheaf coker ¢, given by U — coker p(U).

We say that ¢ is injective (resp., surjective, bijective) if for all open set U in X,
(V) is injective (resp., surjective, bijective).

Proposition

@ The direct sum, kernel and cokernel presheaves deserve their names,
making PSh(X) an abelian category.
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Presheaves

Definition

If o : # — & is a morphism of presheaves on X, we define
@ the direct sum presheaf .7 @ ¢, given by U — Z(U) @& ¢4(U),
@ the kernel presheaf ker ¢, given by U — ker ¢o(U),
@ the cokernel presheaf coker ¢, given by U — coker p(U).

We say that ¢ is injective (resp., surjective, bijective) if for all open set U in X,
(V) is injective (resp., surjective, bijective).

Proposition

@ The direct sum, kernel and cokernel presheaves deserve their names,
making PSh(X) an abelian category.

@ ¢ is an isomorphism iff it is bijective.
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is Z, := lim .7 (V).
Usx
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is Z, := lim .7 (V).
Usx

o If U> x is open and s € #(U), its image sx in Zy is called its germ.
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is Z, := lim .7 (V).
Usx

o If U> x is open and s € #(U), its image sx in Zy is called its germ.

F is the group of germs of sections over neighborhoods of x.
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is % := lim .Z(U).
Usx

o If U> x is open and s € #(U), its image sx in Zy is called its germ.

F is the group of germs of sections over neighborhoods of x. If U,V > x are
open and s € Z(U), t € #(V), then s = ty iff s|w = t|w for some open
neighborhood W C UN V of x.
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is % := lim .Z(U).
Usx

o If U> xisopen and s € .Z(U), its image sx in % is called its germ.

F is the group of germs of sections over neighborhoods of x. If U,V > x are
open and s € Z(U), t € #(V), then s = ty iff s|w = t|w for some open
neighborhood W C UN V of x.

Example

@ Let X = C. The stalk at any point x € C of the sheaf U — (U, C) of
holomorphic functions is identified to the C-algebra C{z} of power series
in z with positive radius of converge.

y
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is % := lim .Z(U).
Usx

o If U> xisopen and s € .Z(U), its image sx in % is called its germ.

F is the group of germs of sections over neighborhoods of x. If U,V > x are
open and s € Z(U), t € #(V), then s = ty iff s|w = t|w for some open
neighborhood W C UN V of x.

Example

@ Let X = C. The stalk at any point x € C of the sheaf U — (U, C) of
holomorphic functions is identified to the C-algebra C{z} of power series
in z with positive radius of converge.

@ The constant presheaf AP has stalks A everywhere.

y
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is % := lim .Z(U).
Usx

o If U> xisopen and s € .Z(U), its image sx in % is called its germ.

F is the group of germs of sections over neighborhoods of x. If U,V > x are
open and s € Z(U), t € #(V), then s = ty iff s|w = t|w for some open
neighborhood W C UN V of x.

Example

@ Let X = C. The stalk at any point x € C of the sheaf U — (U, C) of
holomorphic functions is identified to the C-algebra C{z} of power series
in z with positive radius of converge.

@ The constant presheaf AP has stalks A everywhere.

© The skyscraper sheaf skysc, (A) has stalk A at y € {x} and 0 elsewhere.

y
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Stalks and sheaves

Definition

o If x € X, the stalk of a presheaf .7 at x is % := lim .Z(U).
Usx

o If U> xisopen and s € .Z(U), its image sx in % is called its germ.

F is the group of germs of sections over neighborhoods of x. If U,V > x are
open and s € Z(U), t € #(V), then s = ty iff s|w = t|w for some open
neighborhood W C UN V of x.

Example

@ Let X = C. The stalk at any point x € C of the sheaf U — (U, C) of
holomorphic functions is identified to the C-algebra C{z} of power series
in z with positive radius of converge.

@ The constant presheaf AP has stalks A everywhere.

© The skyscraper sheaf skysc, (A) has stalk A at y € {x} and 0 elsewhere.

© Let X = Spec(A) for a commutative ring A. For each p € X, Ox,, = Ay.
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € .Z(U;) for each i € I, such that for i,j € [,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.
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Stalks and sheaves

Definition

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € .Z(U;) for each i € I, such that for i,j € [,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € #(U;) for each i € I, such that for i,j € I,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Q@ U T°X,R), U T(X,R), U s(X,C) are all sheaves.

T — T — T — e —
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U= UI.E, U; of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € #(U;) for each i € I, such that for i,j € I,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Q@ U T°X,R), U T(X,R), U s(X,C) are all sheaves.

@ Skyscraper sheaves skysc, (A) are sheaves. If X = Spec(A) for a
commutative ring A, its structure sheaf Ox is a sheaf.
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Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U = ;¢ Ui of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € #(U;) for each i € I, such that for i,j € I,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Q@ U T°X,R), U T(X,R), U s(X,C) are all sheaves.

@ Skyscraper sheaves skysc, (A) are sheaves. If X = Spec(A) for a
commutative ring A, its structure sheaf Ox is a sheaf.

@ If X ={0,1} with discrete topology and A # 0, the constant presheaf
AP fails gluability, therefore is not a sheaf.

Manh-Linh Nguyen An introduction to sheaves



Stalks and sheaves

A presheaf . on X is a sheaf if for any open set U in X, and any open cover
U = ;¢ Ui of U, the following conditions are satisfied.

@ (Locality) If s € #(U) such that s|y, =0 for all / € /, then s = 0.

@ (Gluability) Given s; € #(U;) for each i € I, such that for i,j € I,
siluny; = Sjlunu;, thereis s € F(U) such that s|y, = s; for i € /.

The category Sh(X) of sheaves on X is a full subcategory of PSh(X).

Q@ U T°X,R), U T(X,R), U s(X,C) are all sheaves.

@ Skyscraper sheaves skysc, (A) are sheaves. If X = Spec(A) for a
commutative ring A, its structure sheaf Ox is a sheaf.

@ If X ={0,1} with discrete topology and A # 0, the constant presheaf
AP fails gluability, therefore is not a sheaf.

@ The constant sheaf A is U — {locally constant functions U — A}.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢ : Zx — %, given by ¢x(sx) = ¢(s)x, which is functorial.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢ : Zx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q If ox =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢ : Zx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q If ox =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.

For the first claim, we want to show that ¢(U) = 0 for all open set U, i.e.
(s) =0 for all s € .#(U), which would follow from the injectivity of
G(U) = Tlicy%- But the later is just a consequence of the locality condition.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢ : Zx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q If ox =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.

For the first claim, we want to show that ¢(U) = 0 for all open set U, i.e.
(s) =0 for all s € .#(U), which would follow from the injectivity of

G(U) = Tlicy%- But the later is just a consequence of the locality condition.
Injectivity : Assume that ¢ is injective. Fix x € X. If U, V > x are open set,

s € Z(U) and t € .F(V) such that px(sx) = px(tx), then p(s)x = p(t)x,
meaning ¢(s)|w = ¢(t)|w in an open neighborhood W C UN V of x, i.e.
o(slw) = ©(t|w). Thus, slw = t|w, implying sx = tx, hence @y is injective.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢ : Zx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q If ox =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.

For the first claim, we want to show that ¢(U) = 0 for all open set U, i.e.
(s) =0 for all s € .#(U), which would follow from the injectivity of

G(U) = Tlicy%- But the later is just a consequence of the locality condition.
Injectivity : Assume that ¢ is injective. Fix x € X. If U, V > x are open set,
s € Z(U) and t € .F(V) such that px(sx) = px(tx), then p(s)x = p(t)x,
meaning ¢(s)|w = ¢(t)|w in an open neighborhood W C UN V of x, i.e.
o(slw) = ©(t|w). Thus, slw = t|w, implying sx = tx, hence @y is injective.
Conversely, assume that ¢« is injective for all x € X. Let U be open and

s, t € F(U) with ¢(s) = ¢(t). We have px(sc) = ¢(s)x = p(t)x = ¢x(tx),
hence sy = tx for all x € X. The injectivity of 4(U) — ],y % allows us to
conclude that s = t, i.e. ¢ is injective.
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Stalks and sheaves

Let ¢ : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢y : Fx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q@ If px =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.

Bijectivity : Assume now that ¢ is surjective. Fix x € X. Let U 5 x be open
and t € 4(U). Then there is some section s € .Z (U) with ¢(s) = t. It follows
that px(sx) = ©(S)x = tx, i.e. @x is surjective.
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Stalks and sheaves

Let p : F — & be a morphism of sheaves on X. For each x € X, we have a
homomorphism ¢y : Fx — %, given by ¢x(sx) = ¢(s)x, which is functorial.

Proposition

Q If ox =0 for all x € X, then ¢ = 0.

@ Injectivity and bijectivity (but not surjectivity !) can be checked stalkwise.

Bijectivity : Assume now that ¢ is surjective. Fix x € X. Let U 5 x be open
and t € 4(U). Then there is some section s € .Z (U) with ¢(s) = t. It follows
that px(sx) = ©(S)x = tx, i.e. @x is surjective.

Conversely, assume that ¢ is bijective for all x € X. Let U be open and

t € 4(U). For any x € U, there is an open neighborhood Vi C U of x and a
section r* € .# (V) such that p(r*)x = @x(ry) = tx, meaning

o(r*u,) = e(r*)|u, = t|u, in some open neighborhood Ux C Vi of x. We
obtain an open cover {Ux}xecy of U. Let s* := r*|y,. For x,y € U, one has
o(s*lu.nu,) = (rNunu, = tlunu, = e()|unu, = e(s"u,nu, ). Now, ¢ is
injective since it is injective stalkwise, so s*|y,~u, = $”|u,nu,. We can then
glue the s* (x € U) into a section s € % (U). Clearly, o(s) = t. O
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category.
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category. Problem : coker ¢ is not a sheaf!
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category. Problem : coker ¢ is not a sheaf!

Definition

Let .# be a presheaf on X. For each open set U, let 9/:( U) be the set of tuples
(5*) € [1xey Fx such that every point x € U admits an open neighborhood
V C U and a section t € .# (V) such that s* = t, for all y € V. Then

Z: U ,?A(U) defines a sheaf on X, called the sheafification of .%.
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category. Problem : coker ¢ is not a sheaf!

Definition

Let .# be a presheaf on X. For each open set U, let 9/:( U) be the set of tuples
(5*) € [1xey Fx such that every point x € U admits an open neighborhood
V C U and a section t € .# (V) such that s* = t, for all y € V. Then

Z: U ,?A(U) defines a sheaf on X, called the sheafification of .%.

There is a morphism of presheaves i : .F — .7, i(s) = (sx)xeu for s € F(U).
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category. Problem : coker ¢ is not a sheaf!

Definition

Let .# be a presheaf on X. For each open set U, let ﬁ:( U) be the set of tuples
(5*) € [1xey Fx such that every point x € U admits an open neighborhood

V C U and a section t € .# (V) such that s* = t, for all y € V. Then

Z: U ,?A(U) defines a sheaf on X, called the sheafification of .%.

There is a morphism of presheaves i : .F — .7, i(s) = (sx)xeu for s € F(U).

Proposition

-~

@ The morphism i : % — .% induces isomorphisms at the level of stalks.

o’
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Sheafification

Let ¢ : F — & be a morphism of sheaves on X. Then .Z ® ¢ and ker ¢ are
sheaves, making Sh(X) an additive category. Problem : coker ¢ is not a sheaf!

Definition

Let .# be a presheaf on X. For each open set U, let ﬁ:( U) be the set of tuples
(5*) € [1xey Fx such that every point x € U admits an open neighborhood

V C U and a section t € .# (V) such that s* = t, for all y € V. Then

Z: U ,?A(U) defines a sheaf on X, called the sheafification of .%.

There is a morphism of presheaves i : .F — .7, i(s) = (sx)xeu for s € F(U).

Proposition

-~

@ The morphism i : % — .% induces isomorphisms at the level of stalks.

o If ¢ is a sheaf, any morphism ¢ : . % — ¢ factors uniquely through /.

Ve

F 9
7
-
I\L -
PR

-~ -
F

o’
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Sheafification

Let x € X.

The projections pr_,, : ﬁ(U) = [lcv Py = Fx Z(
for open sets U > x induce a homomorphism

Jx  Fx — Fx. For open sets U O V 3 x, we have \L
the commutative diagram on the right. Now,

pry_ ©i(V) is the map s — s, which is the same F(
as the vertical arrow % (V) — Z. The same holds

for U, which implies j o ix = idg, by universal l
property of direct limit. Hence iy is injective. ~

Ix Ix
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Sheafification

Let x € X.

The projections pr_,, : .Z(U) < [LevPy =P Z(U) L Z(U)
for open sets U > x induce a homomorphism
Jx  Fx — Fx. For open sets U O V 3 x, we have \L
the commutative diagram on the right. Now,

(

pry_, 0i(V) is the map s + sy, which is the same F(V) v F(V)
as the vertical arrow % (V) — Z. The same holds PPy
for U, which implies j o ix = idg, by universal
roperty of direct limit. Hence iy is injective. ~
property x5 T ——> T ——> T
i Jx

Now, any element of ., is the germ s, of a tuple s = (s¥) € .Z (U), where

U > x is open. By definition, there is an open neighborhood V C U of x and a
section t € .Z (V) such that t, =s” forall y € V, i.e. i(t)|]v = s|v. It follows

that ix(tx) = i(t)x = sx, hence ix is surjective. O
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Sheafification

Let x € X.

N = iUy =
The projections pry_,, : #(U) = [[,cy Fy = Fx Z(U) L Z(U)
for open sets U > x induce a homomorphism
Jx  Fx — Fx. For open sets U O V 3 x, we have \L
the commutative diagram on the right. Now,
(

pry_, 0i(V) is the map s + sy, which is the same F(V) v F(V)
as the vertical arrow % (V) — Z. The same holds PPy
for U, which implies j o ix = idg, by universal
roperty of direct limit. Hence iy is injective. ~
property x5 T ——> T ——> T
i Jx

Now, any element of ., is the germ s, of a tuple s = (s¥) € .Z (U), where

U > x is open. By definition, there is an open neighborhood V C U of x and a
section t € .Z (V) such that t, =s” forall y € V, i.e. i(t)|]v = s|v. It follows
that ix(tx) = i(t)x = sx, hence ix is surjective. O
We conclude that ix : #x — % is an isomorphism. In particular, if .7 is a
sheaf, i : % — Z is an isomorphism.
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Sheafification

Given a sheaf ¢ and a morphism ¢ : F — 4.
For any U open, the product

H@X:HQX%H%X

xeU xeU xel

induces a homomorphism go( ): (U) — %(U) which in turn gives a
morphism of sheaves ¢ : 79, making the diagram

F—r >y
i - >~
-

-~
79
@

Since the right vertical arrow is an isomorphism, ¢ lifts into a morphism

o :F — 9 such that o = poi. Finally, if ¢’ : # — 4 is such that

@' oi =@ = poi. Taking stalks at each x € X (which is functorial), and
cancelling out the isomorphism iy, gives px = 5. Therefore $ = ¢, showing
uniqueness. [
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Sheafification

If o : F — ¢ is a morphism of sheaves on X, the sheafification c&e?cp is the
cokernel in the category Sh(X), making Sh(X) an abelian category.
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Sheafification

If o : F — ¢ is a morphism of sheaves on X, the sheafification c&e?cp is the
cokernel in the category Sh(X), making Sh(X) an abelian category.

Proposition

© is an epimorphism in Sh(X) iff @« : F — % is surjective for all x € X.
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Sheafification

If o : F — ¢ is a morphism of sheaves on X, the sheafification c@gp is the
cokernel in the category Sh(X), making Sh(X) an abelian category.

Proposition

@ is an epimorphism in Sh(X) iff ¢x : %« — % is surjective for all x € X.

Assume that ¢y : Fx — Y is surjective for al x € X. Let ¢ : 4 — # is a
morphism of sheaves with ) o o = 0. For any x € X, {)x o ox = (0o p)x =0,
therefore 1) = 0 since @y is surjective. It follows that i) = 0.
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If o : . F — ¢ is a morphism of sheaves on X, the sheafification c&-er\go is the
cokernel in the category Sh(X), making Sh(X) an abelian category.

Proposition

© is an epimorphism in Sh(X) iff ox : %« — % is surjective for all x € X.

Conversely, assume that ¢ is an epimorphism. Let x € X and A := coker ©x.
Define a morphism 1 : ¢4 — skysc, (A) as follows. For an open set U, let ¢)(U)
be the composition 4(U) — % — A if x € U, and (U) = 0 otherwise. If

x € U, the composition is #x — % — A is 0, and the diagram

FU) ——— = 7,

w(U)i J{w

Z(U) 3 A

commutes. It follows that (¢ o ¢)(U) = (U) o p(U) = 0 in all cases, i.e.
1 o = 0, which implies 1) = 0. Since 1)y is precisely the projection ¥ — A,
we have coker o, = A =0, i.e. px is surjective. O
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Sheafification

Let ¢ : # — ¢4 be a morphism of sheaves on X. The image presheaf im ¢
given by U — im p(U) is the image of o in the category PSh(X). Its
sheafification im ¢ is the image of ¢ in the category Sh(X).
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Sheafification

Let ¢ : # — ¢4 be a morphism of sheaves on X. The image presheaf im ¢
given by U — im p(U) is the image of o in the category PSh(X). Its
sheafification im ¢ is the image of ¢ in the category Sh(X).

Proposition

A sequence of sheaves & 2 & Ly # on X is exact iff for all x € X, the

Px Px .
sequence Fy — % —» J is exact.
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Sheafification

Let ¢ : # — ¢4 be a morphism of sheaves on X. The image presheaf im ¢
given by U — im p(U) is the image of o in the category PSh(X). Its
sheafification im ¢ is the image of ¢ in the category Sh(X).

Proposition

A sequence of sheaves .F 2> @ Ly # on X is exact iff for all x € X, the

sequence Fy RANITY &) S5 is exact.

Assume that Z 24 % # on X is exact, i.e. the |nc|u5|on Yop=0,and
the inclusion im ¢ — ker ¢ induces an isomorphism im ¢ =5 kertp. Let x € X.
Recall that the sheafification im ¢ — im ¢ induces isomorphisms on stalks, so
that we have im px = (im ¢)x >~ im ¢, ~ ker 1)x.
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Sheafification

Let ¢ : # — ¢4 be a morphism of sheaves on X. The image presheaf im ¢
given by U — im p(U) is the image of o in the category PSh(X). Its
sheafification im ¢ is the image of ¢ in the category Sh(X).

Proposition

A sequence of sheaves .F 2> @ Ly # on X is exact iff for all x € X, the
sequence Fy RANITY &) S5 is exact.

Assume that Z 24 % # on X is exact, i.e. the |nc|u5|on Yop=0,and
the inclusion im ¢ — ker ¢ induces an isomorphism im ¢ =5 kertp. Let x € X.
Recall that the sheafification im ¢ — im ¢ induces isomorphisms on stalks, so
that we have im px = (im ¢)x >~ im ¢, ~ ker 1)x.

Conversely, assume that ker¢x = im px for all x € X. In particular,

(Yop)x =1xopx=0,s010p =0, ie. thereis an inclusion im ¢ — ker. It
induces a morphism i@ — ker ), which is an isomorphism since we have
isomorphisms ker ¢x = im @, = (im)x ~ imp,. O
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Sheafification

Example

Let X = C, 5 the sheaf of holomorphic functions and .7#* the sheaf of
non-vanishing holomorphic functions (on open subsets of C). The first is a
sheaf of C-vector spaces, whereas the second is a sheaf of (multiplicative)
abelian groups. Let d : 7# — % denote the derivation. A holomorphic function
on an open set U in C has derivative 0 iff its is constant on each connected
component of U. We have an exact sequence of sheaves of C-vector spaces,

05C oL 7.

In fact, taking stalk at any point x € C yields an exact sequence of C-vector
spaces

0—C— C{z} 2% c{z} —o.

For U open in C, we only have an exact sequence

0 C(U) —» #2(U) < #(U),

since surjectivity of d fails for U = C* (z — 1/z admits no primitive).

o’
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Sheafification

Example

Let X = C, 47 the sheaf of holomorphic functions and 77> the sheaf of
non-vanishing holomorphic functions (on open subsets of C). The first is a
sheaf of C-vector spaces, whereas the second is a sheaf of (multiplicative)
abelian groups. Let exp : 57 — ™ denote the exponential. We have the
exponential exact sequence,

0 — 2miZ — 0 =5 #% — 1.
In fact, taking stalk at any point x € C yields an exact sequence
0 — 2miZ — C{z} =% C{z}* = 1.

For U open in C, we only have an exact sequence

0 — 2miZ(U) — #(U) =2 27 (U),

since surjectivity of exp fails for U = C* (z — z admits no logarithm).
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Pushforward and pullback sheaves

Let f : X — Y be a continuous map of topological spaces and ¢4 a sheaf on Y.
We want to transport ¢ to a sheaf on X using f.
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Pushforward and pullback sheaves

Let f : X — Y be a continuous map of topological spaces and ¢4 a sheaf on Y.
We want to transport ¢ to a sheaf on X using f.

Definition

For each open set U in X, let f~*%(U) be the set of tuples (s*) € [, ., %
such that for every point x € U, there are open sets W in X, V in Y with
x€e W CU, f(W)C V, and a section t € 4(V) such that for every y € W,
one has s¥ = tf(,). Then f'¢ : U f~'¢(U) defines a sheaf on X, called
pullback or inverse image sheaf of & by f.
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Pushforward and pullback sheaves

Let f : X — Y be a continuous map of topological spaces and ¢4 a sheaf on Y.
We want to transport ¢ to a sheaf on X using f.

Definition

For each open set U in X, let f~*%(U) be the set of tuples (s*) € [, ., %
such that for every point x € U, there are open sets W in X, V in Y with
x€e W CU, f(W)C V, and a section t € 4(V) such that for every y € W,
one has s¥ = tf(,). Then f'¢ : U f~'¢(U) defines a sheaf on X, called
pullback or inverse image sheaf of & by f.

For each open set V in Y, there is an adjunction map

adj(V) : 9(V) — f 9 (f1(V)), s (SF(0) )xer—1(v)-
If f(x) € V, composing with f *@(f71(V)) — (f '9) yields a
homomorphism ¢(V) — (f'%)x. Fix x and let V varies through the open

neighborhoods of f(x), we get a homomorphism

adiy 1 Y — (F'9)x.
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Pushforward and pullback sheaves

Proposition

We have an isomorphism adj, : %(x) = (F19)x.
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Pushforward and pullback sheaves

Proposition

We have an isomorphism adj, : %(x) = (F19)x.

As Uopen 2 X varies, the projections

Prusf(x) - f~ g( ) — HyeUgf()’) — gf(x), 9(V) adj(V) f’I%(U)

induce a map px : (f719) — “r(x)- For open

sets V D V' 3 f(x), we have the iresvﬂw \Lresuﬂu/ )
commutative diagram on the right (where Pro=re)
U=f"Y(V)and U = (V). Now, (V)*>f g (U)

Prys(x) ©adj( V) is the map s — s¢(x), l (V) l w(x)
which is the same as the vertical arrow

4(V') = 9r(x). The same holds for V, thus

-1
px o adj, = idg, . Hence ad], is injective. ) T La (F9)x = Gr(x)
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Pushforward and pullback sheaves

Proposition

We have an isomorphism adj, : %(x) = (F19)x.

As Uopen 2 X varies, the projections

Prussrey t F 9 (U) = Tycu %oy — %o g(v) =Y g )

induce a map px : (f719) — “r(x)- For open

sets V D V' 3 f(x), we have the iresvﬂvl \Lresuﬂu/ )
commutative diagram on the right (where Pro=re)
U=f"Y(V)and U = (V). Now, (V)*>f g (U)

Prys(x) ©adj( V) is the map s — s¢(x), l (V) l w(x)
which is the same as the vertical arrow

G (V') = %r(x). The same holds for V, thus
px o adj, = iij;F(X)' Hence adj, is injective. Gr(x) T (F9)x o Y
As for surjectivity, take the germ s, of a tuple s = (s¥) € F % (U), Uspen > x.
By definition, there are opensets x ¢ W C Uin X, V D f(W) in Y and a
section t € ¢(V) such that for every y € W, one has s” = t¢(,). Therefore,
adj(V)(t)|w = s|w, so adj(V)(t)x = sx. A closer look into the above diagram
yields adj, (tr(x)) = adj(V)(t)x = sx. O

Manh-Linh Nguyen An introduction to sheaves



Pushforward and pullback sheaves

The construction £~ is functorial : given a morphism ¢ : ¢ — %’ of sheaves
on Y, the products [T, ¥rx) : [Tvey %) = [Licy % (x) (for each U open
in X), induce a morphism £~ : f 14 — £~ 14’ of sheaves on X.
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Pushforward and pullback sheaves

The construction £~ is functorial : given a morphism ¢ : ¢ — %’ of sheaves
on Y, the products [T, ¥rx) : [Tvey %) = [Licy % (x) (for each U open
in X), induce a morphism £~ : f 14 — £~ 14’ of sheaves on X.

Proposition

The functor £~ : Sh(Y) — Sh(X) is exact.
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Pushforward and pullback sheaves

The construction £~ is functorial : given a morphism 1) : 4 — ¢’ of sheaves
on Y, the products [T, ¥rx) : [Tvey %) = [Licy % (x) (for each U open
in X), induce a morphism f ¢ : f 19 — f 1’ of sheaves on X.

Proposition

The functor £~ : Sh(Y) — Sh(X) is exact.

Clearly f=1 is additive. If 0 = ¥ — &' — %" — 0 is an exact sequence of
sheaves on Y, we have a commutive diagram in Ab for each x € X,

0 Yrx) K7 Y 0

- F

0—— (F 1) ——> (F'9)e — (F9") —0

with the (isomorphic) vertical arrows being adjunctions. But exactness can be

verified stalkwise. O
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Pushforward and pullback sheaves

Let .7 be a sheaf on X.

@ Ifi: U< X is an inclusion of an open set, then i~1.% is canonically
isomorphic to the restriction sheaf .%|y on U given by V — (V).
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Pushforward and pullback sheaves

Let .7 be a sheaf on X.

@ Ifi: U< X is an inclusion of an open set, then i~1.% is canonically
isomorphic to the restriction sheaf .%|y on U given by V — (V).

Q If x € X and i : {x} < X is the inclusion, then i~*.% is the sheaf on {x}
given by {x} — Z,.
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Pushforward and pullback sheaves

Let .7 be a sheaf on X.

Example

@ Ifi: U< X is an inclusion of an open set, then i~1.% is canonically
isomorphic to the restriction sheaf .%|y on U given by V — (V).

Q If x € X and i : {x} < X is the inclusion, then i~*.% is the sheaf on {x}
given by {x} — Z,.

Definition

| A\

If f: X — Y is continuous, we define the pushfoward, or direct image sheaf
f.Z on Y by V = F(f~1(V)).
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Pushforward and pullback sheaves

Let .7 be a sheaf on X.

Example

@ Ifi: U< X is an inclusion of an open set, then i~1.% is canonically
isomorphic to the restriction sheaf .%|y on U given by V — (V).

Q If x € X and i : {x} < X is the inclusion, then i~*.% is the sheaf on {x}
given by {x} — Z,.

Definition

| A\

If f: X — Y is continuous, we define the pushfoward, or direct image sheaf
f.Z on Y by V = F(f~1(V)).

Indeed, this gives rise to an additive functor f, : Sh(X) — Sh(Y).
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Pushforward and pullback sheaves

Proposition

The functor £, : Sh(X) — Sh(Y) is left exact.
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Pushforward and pullback sheaves

Proposition

The functor £, : Sh(X) — Sh(Y) is left exact.

Given an exact sequence 0 — .Z% 2 &' Py 2", we show the exactness of

A LN N
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Pushforward and pullback sheaves

Proposition
The functor £, : Sh(X) — Sh(Y) is left exact.

—

Given an exact sequence 0 — .Z% 2 &' Py 2", we show the exactness of

A LN N

For all V openin Y, fip(V) = o(f " H(V)) : £.F — f.F’ is injective.

Manh-Linh Nguyen An introduction to sheaves



Pushforward and pullback sheaves

Proposition
The functor £, : Sh(X) — Sh(Y) is left exact

Given an exact sequence 0 — .Z% 2 &' Py 2", we show the exactness of

A LN N

For all V openin Y, fip(V) = o(f " H(V)) : £.F — f.F’ is injective.

To show exactness at f Z', first notice that the image im ¢ of an injective
morphism ¢ : # — F' of sheaves is a sheaf. Indeed, the morphism of
presheaves ¢ : % — imy is buectlve hence is an isomorphism, thus im ¢ is a
sheaf, so is im(f.). Exactness at .’ says that im p = ker. If V is open in Y,

m(fup(V)) = imp(f (V) = ker (f (V) = ker £.(4(V),

i.e. im(fip) = ker(fi1p) as desired. O
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Pushforward and pullback sheaves

For any continuous map f : X — Y, we have an isomorphism
HO”"Sh(X)(f_lg7 ﬁ) ~ HOI'T\Sh(y)(g7 f:‘“?\)7

natural in . € Sh(X) and 4 € Sh(Y), i.e. the functor f~* is left adjoint to f..
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Pushforward and pullback sheaves

For any continuous map f : X — Y, we have an isomorphism

Homsh(X)(f_lg, ﬁ) ~ H0m5h(y)(g, f*f),

natural in . € Sh(X) and 4 € Sh(Y), i.e. the functor f~* is left adjoint to f..

Recall the adjunction maps adj(V) : (V) — f'4((f"*(V)) = f.fF % (V),
s+ (Sr(x))xer—1(v) (for each V open in Y). They fit together to form the
adjunction morphism adj : 4 — f.f '%. Define a map

n=ngz: HomSh(X)(fflg,gz) — Homgp(vy(¥, f.7) by ¢ — fipoadj.
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Pushforward and pullback sheaves

1 : Homsn(x)(f 9, F) — Homgpy) (9, £..7), n(p) = fipoadj.

7 is injective. In fact, for each x € X, taking limit of the commutative square

n(e)(V)

g(V)

adj(V)l

fE (V) = Fig(Fi(v)) AW

as Vopen O f(x) varies, yields a commutative square

1(®)x
Gy — (T )1

T

(Flg), 2 = 7,

Since adj, is an isomorphism, if n(¢) = 0, we would have px = 0 for all x € X,
which implies ¢ = 0.



Pushforward and pullback sheaves

Let v : 4 — f..Z be given. For each x € X, let bx C(feF)f(x) = Fx be the
map induced by £.Z (V) = Z(f (V) = Fx, Vopen > f(x). It is given by
bu(st(x)) = sx for any s € £,.F (V) = F(f*(V)). For each U open in X, the
product [T, cy(bx 0 ¥ri)  [lecy Gre) — [licy Fx takes f’lg(U) to
Z(U) ~ Z(U). These maps form a morphism ¢ : f (%) —» .Z = Z. Let
t € ¥9(V), V openin Y. The diagram

e(f7H(V))

//A\
g(V) 4> f g (f~1(V)) —— Z(f (V) — Z(f~1(V))

T |

£E%(V) oY) £ (V)

commutes for all V openin Y. Let s € 4(V). For any x € f *(V),

by (Y¥x(Sf(x))) = bx(¥(5)f(x)) = %(5)x. Hence, under the composition of the top
row, s = (Se(x) )xer—2(v) = (V(S)x)xer—1(v) = ¥(s), i.e. n(p) = fipoadj =9,
so 7 is surjective.
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Finally, we verify naturality of n = n¢, & in 4 and %, that is, for morphisms
0:9" — % and ¢ : F — F', we have a commutative diagram

HomSh (f 1{4 ) T Homsgp Y)(g, f;ﬁ)

\Lwo—oflﬁ f*wo—oel

Neg!t ’
HomSh(X)( lg/ f/) L HomSh(y)(%', f*yl).

Let ¢ : f 14 — .7 be any morphism. We have to show that
fup o fupoadjol = fu(th o o f10) o adj.

It suffices to show that adjof = f.f "' o adj. This is a direct computation.
Take s € 4'(V), V open in Y, then

£ f10(adj(s)) = £ 0((Sre0) )xer—1(v)) = (0(5)r(x))xer—1(v) = adj(6(s))

as desired. O]
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Sheaf cohomology

Proposition

The category Sh(X) has enough injectives.
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Sheaf cohomology

Proposition

The category Sh(X) has enough injectives.

Let % be any sheaf on X. For each x € X, embed % into a divisible group
Dy. Define the sheaf 2 on X by U — erU Dy, with restrictions being
projections. The composition .Z(U) — [], ., Zx < [1,cy Dx is injective for
each U open in X, hence &% — 9.

xeU xeU
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Sheaf cohomology

Proposition

The category Sh(X) has enough injectives.

—

Let .# be any sheaf on X. For each x € X, embed % into a divisible group
Dy. Define the sheaf & on X by U — [], .y Dx, with restrictions being
projections. The composition .Z#(U) — eru Fx eru Dy is injective for
each U open in X, hence .# < 2. It remains to show that 2 is injective, i.e. if
¢ 19 — S is an injective morphism, any morphism 1 : 4 — 9 lifts by ¢ into
a morphism S — 2.

e, x
wl .4 wi iex
A

2 2, — > D,
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Proposition

The category Sh(X) has enough injectives

OH%?%” 00— % ——
P "

wl .4 wi iex
s j

9 D ——> D,.

For each x € X, the projections Z(U) — Dx (for Uopen 3 x) induce a
homomorphism jx : 9x — Dy, under which the stalk s, of each tuple

s =(s”) € 2(U) maps to s*. Now, px : % — J is injective, so we can lift
Jx 0y into a map 0 : J& — Dx. For each U open, let 9(U) be the

composition S (U) — [],cy 7 l_IXE—U> 2(U). These maps form a morphism

0 : A — 2 of sheaves. Furthermore, if s € 4(U),
0(e(s)) = (07 ((s)x))xeu = Ux(¥(5)x))xeu = (s)

(the last equality comes from comparison on each coordinate x € U of 1(s),
and the definition of ji), so 6 o o = 1. |
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Sheaf cohomology

Proposition

The section functors (U, —) : Sh(X) — Ab, U open in X, are left exact.
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Sheaf cohomology

Proposition
The section functors (U, —) : Sh(X) — Ab, U open in X, are left exact.

Let 0 — 7 5 @ % 7 be an exact sequence of sheaves on X. We want to
show that 0 — .7 (U) 2, “(U) ), H(U) is exact.
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Sheaf cohomology

Proposition

The section functors (U, —) : Sh(X) — Ab, U open in X, are left exact.

Let 0 — 7 5 @ % 7 be an exact sequence of sheaves on X. We want to

show that 0 — .7 (U) 2, “(U) ), H(U) is exact.
Clearly, p(U) is injective and (U)o p(U) = (¢ o p)(U) = 0.
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Sheaf cohomology

Proposition

The section functors (U, —) : Sh(X) — Ab, U open in X, are left exact.

Let 0 — 7 5 @ % 7 be an exact sequence of sheaves on X. We want to

show that 0 — .7 (U) 2, “(U) ), H(U) is exact.

Clearly, ¢(U) is injective and ¥ (U) o p(U) = (¢ 0 ¢)(U) = 0.

Hence, it suffices to show that ker ¢)(U) C im ¢(U). Take any global section
s € 9(U) that is sent to 0 in s2°(U) by (U). For each x € U,

0 Z 25 9 2 7,

is exact, and ¥x(tx) = 1(t)x = 0, so there is an open neighborhood Ux C U of
x and a section s* € .%(Ux) with ¢(s*) = t|y,. For x,y € X,

o(s*lu.nu,) = 2(s)Nunu,) = tunu, = (v, = ¢(5" vy, )

SO 5X|Umuy = sy|Umey since ¢ is injective. It follows that the sections s* can
be glued together into a section s € .% (U). Obviously, p(s) = t. O
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Sheaf cohomology

Definition

Let # be a sheaf on X. For i > 0, the i-th cohomology group of X with
coefficient in .7 is H'(X,.Z) := R'T(X, =)(%).

(] 1 2
To compute, take any injective resolution 0 — % 90t T of 7,
then apply (X, —) to obtain a cochain complex of abelian groups,

0% 2°x) L 2 x) L

. . i "
where d® =0 and d' = 0'(X) for i > 1. Accordingly, H'(X,.%) := kTrrndd,-
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Sheaf cohomology

Definition

Let # be a sheaf on X. For i > 0, the i-th cohomology group of X with
coefficient in .7 is H'(X,.Z) := R'T(X, =)(%).

(] 1 2
To compute, take any injective resolution 0 — % 90t T of 7,
then apply (X, —) to obtain a cochain complex of abelian groups,

0% 2°x) L 2 x) L
0 __ i i . . i 7\ . ker di+1
where d° = 0 and d' = §'(X) for i > 1. Accordingly, H'(X, %) := o

Definition

A sheaf 2 on X is acyclic if H'(X, %) = 0 for all i > 0.

Injective sheaves are acyclic. A standard fact from homological algebra [nla] is

Theorem (de Rham-Weil isomorphism theorem)

The groups Hi(X, F), i 20, can be computed using acyclic resolutions.
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Sheaf cohomology

Definition

A sheaf % on X is flabby or flasque its restrictions are all surjective.
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Sheaf cohomology

Definition

A sheaf % on X is flabby or flasque its restrictions are all surjective.

Clearly, .Z is flabby iff for each U open, the restriction resx_.y is surjective.
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Sheaf cohomology

Definition

A sheaf % on X is flabby or flasque its restrictions are all surjective.

Clearly, .Z is flabby iff for each U open, the restriction resx_.y is surjective.

Proposition

If0— 7 %9 Y 2 — 0is a short exact sequence of sheaves on X with .#
flabby, then ¢ (U) : 9(U) — s(U) is surjective for all U open in X.
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Sheaf cohomology

Definition

A sheaf % on X is flabby or flasque its restrictions are all surjective.

Clearly, .Z is flabby iff for each U open, the restriction resx_.y is surjective.

Proposition

If0— 7 %9 Y 2 — 0is a short exact sequence of sheaves on X with .#
flabby, then (V) : 9(U) — S (U) is surjective for all U open in X.

Let there be t € J#(U). The set of sections s of ¥(V) (for some Vopen C U)
such that ¥(s) = t|v is nonempty since v is surjective on stalks. Take such a
section s € 4(V) that is maximal for the restriction order. We claim that

V = U, for if there exists x € U — V, then there is a section r € ¥(W),

U D Woepen 3 x with (r)x = ¥x(r«) = tx. Squeeze W if necessary to get

Y(r) = tlw. Now, ¥(slvaw) = tlvaw = ¥(rlvaw), so

slvaw = rlvaw + ©(v), where v € #(V N W), by exactness. Since .7 is
flabby, one can extend v to a section w € .# (W) and replace r by r — o(w).
Now s|vaw = rlvaw, so we can glue them together into a section

s’ € 9(V U W) with ¢(s") = t|yvuw, contradicting the maximality of s. OJ

Manh-Linh Nguyen An introduction to sheaves



Sheaf cohomology

If0 - % — ¢ — 2 — 0 is a short exact sequence of sheaves with .% and ¥
flabby, then 7 is flabby.
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If0 - % — ¢ — 2 — 0 is a short exact sequence of sheaves with .% and ¥
flabby, then 7 is flabby.

In fact, for V C U open in X, we have a commutative diagram with exact
rows, and the middle vertical arrow is surjective.

0 Z(U) Z(U) H(U) ——>0
0 F(V) (V) H(V)—>0. O
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Sheaf cohomology

If0 - % — ¢ — 2 — 0 is a short exact sequence of sheaves with .% and ¥
flabby, then 7 is flabby.

In fact, for V C U open in X, we have a commutative diagram with exact
rows, and the middle vertical arrow is surjective.

0 Z(U) Z(U) H(U) ——>0
0 F(V) (V) H(V)—>0. O

Every sheaf .# can be embedded into a flabby sheaf (Godement construction)
C°Z, given by U — [L.cu Z, and restrictions being projections. The
embedding .% — C°.Z is indeed given by taking stalks.
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Sheaf cohomology

Proposition

If .7 is an injective sheaf, it is flabby.
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Proposition

If .7 is an injective sheaf, it is flabby.

Let p : F — & be an embedding, with ¢ flabby. Since .% is injective, the
identity .# — Z lifts into a retraction ¢ : 4 — .F of ¢.

In particular, 1(U) is surjective for any U open in X. When V C U are open,
we have a commutative diagram

IU) 7 9V
(V) iw(V)
F(U) L F(v)

with surjective vertical arrows and upper horizontal arrow. It follows that the
restriction resy_,y : F(U) — Z (V) is also surjective. O
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Sheaf cohomology

Proposition

If & is a flabby sheaf, it is acyclic (therefore, sheaf cohomology can be
computed using flabby resolution).
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Sheaf cohomology

Proposition

If & is a flabby sheaf, it is acyclic (therefore, sheaf cohomology can be
computed using flabby resolution).

Embed .Z into an injective sheaf ¢ and let .7 denotes the cokernel (in Sh(X))
of # — 4. We have a short exact sequence 0 - .F — 4 — # — 0 of flabby
sheaves. Consider the long exact sequence in cohomology

0— ZF(X) = 9(X) » H#(X) - H(X,.Z) > H'(X,9) - H' (X, F) — - .

Let us proceed to prove by induction on i > 1 that H'(X,.%) = 0 for any flabby
sheaf .7. Indeed, for i > 1, since ¢ is injective, the first and last groups in

H'(X,9) - H' (X, ) -» H(X, Z) - H(X,9)
vanish, so H**(X,.Z) ~ H'(X, ). Now, 4(X) — #(X) is surjective, so the

map 27 (X) — HY(X, %) is 0. But H*(X,¥) = 0, thus H*(X,.#) = 0. The
inductive step is trivial. O
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Example

o]
Let F be a sheaf on X. Consider the Godement construction 0 — % 5—>/Ciff.
We can extend this exact sequence to the right by setting C'.% := C°coker §'—1

and letting &' be the composition C'~*.% — coker §i—1 — C'.Z for i > 1.

0 g2, 098 g &
cmo cml
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Example

Let .Z be a sheaf on X. Consider the Godement construction 0 — .% i c°z.

T &

We can extend this exact sequence to the right by setting C'.% := C°coker §—1
and letting &' be the composition C'~*.% — coker §i—1 — C'.Z for i > 1.

0 g2, 098 g &
cmo cml

One obtains a flabby resolution of .%#, called its Godement canonical resolution.
Applying (X, —) yields

0% crzx) L ctex) L

allowing one to compute H'(X,.%) := ker d”l/ im d’. Historically, this was
Godement's original definition of the groups H'(X,.%).
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Sheaf cohomology

Example

Let X be a smooth manifold. The sheaves of smooth differential forms on open
sets of X form a flabby [Leel3, Lemma 2.26] resolution of the constant sheaf R,

0-R-Q° Lot 4 ...

(where d is the exterior derivates, and exactness follows from Poincaré lemma).
Hence, H'(X,R) ~ Hjr(X), where the later denote de Rham cohomology.
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Example

Let X be a smooth manifold. The sheaves of smooth differential forms on open
sets of X form a flabby [Leel3, Lemma 2.26] resolution of the constant sheaf R,

0-R-Q° Lot 4 ...

(where d is the exterior derivates, and exactness follows from Poincaré lemma).
Hence, H'(X,R) ~ Hizr(X), where the later denote de Rham cohomology.

On the other hand, let Ciing(—,R) be the presheaves of singular cochains with
real coefficients. There is an exact sequence in of presheaves,

re S S
0— Rp — C(s)ing(faR) - C:ing(77R) o,

where ¢ denotes the coboundary maps (because it is exact at the level of stalks,
by taking limit through a contractible fundamental system of neighborhoods).
Their sheafifications €' are flabby, and give a resolution R — €. It follows
that H'(X,R) ~ H'(€°*(X)) ~ HL,.(X,R) (the later isomorphisms are subtle,

see [Cib05, Prosition 2.1] for details). This proves de Rham theorem.
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Thank you for your attention !
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