The Integration of Differential Forms

Nguyễn Khánh Hưng

Ngày 18 tháng 6 năm 2020

Outline

Differential 1-Forms

2 Differential 2-Forms

Notations

Suppose $U \subset \mathbb{C}$ is an open subset.

- Denote by $\mathscr{E}(U)$ the \mathbb{C} -algebra of all those functions $f:U\to\mathbb{C}$ which are infinitely differentiable (with respect to the real coordinates).
- ullet Denote by $\mathscr{O}(U)$ the \mathbb{C} -algebra of all holomorphic functions on U.

Notations

Suppose $U\subset \mathbb{C}$ is an open subset.

- Denote by $\mathscr{E}(U)$ the \mathbb{C} -algebra of all those functions $f:U\to\mathbb{C}$ which are infinitely differentiable (with respect to the real coordinates).
- \bullet Denote by $\mathscr{O}(U)$ the $\mathbb{C}\text{-algebra}$ of all holomorphic functions on U.

Suppose X is a Riemann surface and $Y \subset X$ is an open subset.

- Denote by $\mathscr{E}(Y)$ the set of all functions $f:Y\to\mathbb{C}$ such that for every chart $z:U\to V\subset\mathbb{C}$ on X with $U\subset Y$ there exists a function $\widetilde{f}\in\mathscr{E}(V)$ with $f|U=\widetilde{f}\circ z.$
- Denote by $\mathscr{E}^{(1)}(Y)$ the vector space of differentiable 1-forms and by $\Omega(Y)$ the vector space of holomorphic 1-forms on Y.
- Denote by $\mathscr{E}^{(2)}(Y)$ the vector space of differentiable 2-forms on Y.

Outline

Differential 1-Forms

2 Differential 2-Forms

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$. We consider a piece-wise continuously differentiable curve in X, i.e. a continuous mapping

$$c:[0,1]\to X$$

for which there exists a partition

$$0 = t_0 < t_1 < \dots < t_n = 1$$

of the interval [0,1] and charts $(U_k,z_k),z_k=x_k+iy_k,k=1,\ldots,n$, such that $c([t_{k-1},t_k])\subset U_k$ and the functions

$$x_k \circ c : [t_{k-1}, t_k] \to \mathbb{R}, \ y_k \circ c : [t_{k-1}, t_k] \to \mathbb{R}$$

have continuous first order derivatives.

Definition of integration of 1-forms

On U_k we can write $\omega = f_k dx_k + g_k dy_k$, where the functions f_k, g_k are differentiable. Set

$$\int_c \omega := \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(f_k(c(t)) \frac{dx_k(c(t))}{dt} + g_k(c(t)) \frac{dy_k(c(t))}{dt} \right) dt.$$

Theorem 1

Suppose X is a Riemann surface, $c:[0,1]\to X$ is a piece-wise continuously differentiable curve and $F\in\mathscr{E}(X)$. Then

$$\int_{c} dF = F(c(1)) - F(c(0)).$$

Definition of primitives

Definition

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$. A function $F \in \mathscr{E}(X)$ is called a **primitive** of ω if $dF = \omega$.

Definition of primitives

Definition

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$. A function $F \in \mathscr{E}(X)$ is called a **primitive** of ω if $dF = \omega$.

Some properties of primitives:

- A differential form which has a primitive is closed.
- If F is a primitive of ω and $c \in \mathbb{C}$, then F + c is also a primitive of ω .
- If dF = 0 then F is a constant.

The Local Existence of Primitives

Consider $U:=\{z\in\mathbb{C}:|z|< r,r>0\}$ and $\omega\in\mathscr{E}^{(1)}(U).$ The differential form ω may be written

$$\omega = f dx + g dy; \quad f, g \in \mathscr{E}(U),$$

where x, y are the usual real coordinates on $\mathbb{R}^2 \cong \mathbb{C}$.

The Local Existence of Primitives: Closed forms

Assume ω is *closed*. We have

$$d\omega = df \wedge dx + dg \wedge dy = \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy,$$

this is equivalent to $\partial g/\partial x=\partial f/\partial y$. We will prove that the following integral is a primitive of ω :

$$F(x,y) := \int_0^1 (f(tx,ty)x + g(tx,ty)y)dt, \text{ for } (x,y) \in U.$$

We can see directly that F is infinitely differentiable. We have to prove that $df=\omega$, i.e. $(\partial F/\partial x)=f$ and $(\partial F/\partial y)=g$. Differentiating we get

$$\frac{\partial F(x,y)}{\partial x} = \int_0^1 \left(\frac{\partial f}{\partial x}(tx,ty)tx + \frac{\partial g}{\partial x}(tx,ty)ty + f(tx,ty) \right) dt.$$

Since

$$\frac{\partial g}{\partial x} = \frac{\partial f}{\partial y} \text{ and } \frac{d}{dt} f(tx,ty) = \frac{\partial f}{\partial x}(tx,ty)x + \frac{\partial f}{\partial y}(tx,ty)y,$$

one then has

$$\frac{\partial F(x,y)}{\partial x} = \int_0^1 \left(t \frac{d}{dt} f(tx,ty) + f(tx,ty) \right) dt$$
$$= \int_0^1 \frac{d}{dt} (tf(tx,ty)) dt = f(x,y).$$

Similarly $\partial F/\partial y=g$. This proves that $dF=\omega$.

The Local Existence of Primitives: Holomorphic forms

Assume that ω is holomorphic, i.e.,

$$\omega = f dz$$
 with $f \in \mathscr{O}(U)$.

Let

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

be the Taylor series expansion of f. Then defining

$$F(z) := \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}$$

gives us a function $F \in \mathcal{O}(U)$ such that $dF = \omega$.

Theorem 2

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$ is a closed differential form. Then there exist a covering map $p:\widehat{X} \to X$ with \widehat{X} connected, and a primitive $F \in \mathscr{E}(\widehat{X})$ of the differential form $p^*\omega$.

Corollaries

- **1** Suppose X is a Riemann surface, $\pi:\widetilde{X}\to X$ its universal covering and $\omega\in\mathscr{E}^{(1)}(X)$ a closed differential form. Then there exists a primitive $f\in\mathscr{E}(X)$ of $\pi^*\omega$.
- **2** On a simply connected Riemann surface X every closed differential form $\omega \in \mathscr{E}^{(1)}(X)$ has a primitive $F \in \mathscr{E}(X)$.

Theorem 3

Suppose X is a Riemann surface, $\pi:\widetilde{X}\to X$ its universal covering. Suppose $\omega\in\mathscr{E}^{(1)}(X)$ a closed differential form and $F\in\mathscr{E}(X)$ is a primitive of $p^*\omega$. If $c:[0,1]\to X$ is a piece-wise continuously differentiable curve and $\hat{c}:[0,1]\to\widetilde{X}$ is a lifting of c then

$$\int_{c} \omega = F(\hat{c}(1)) - F(\hat{c}(0)).$$

Theorem 4

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$ is a closed differential form.

a If $a,b\in X$ are two points and $u,v:[0,1]\to X$ are two homotopic curves from a to b, then

$$\int_{u} \omega = \int_{v} \omega.$$

 $\mbox{\bf b} \mbox{ If } u,v:[0,1] \rightarrow X$ are two closed curves which are free homotopic, then

$$\int_{u} \omega = \int_{v} \omega.$$

Periods

Suppose X is a Riemann surface and $\omega \in \mathscr{E}^{(1)}(X)$ is a closed differential form. Then by theorem 4 one can define the integral

$$a_{\sigma} := \int_{\sigma} \omega, \quad \sigma \in \pi_1(X).$$

These integrals are called the **periods** of ω . Clearly

$$\int_{\sigma \cdot \tau} \omega = \int_{\sigma} \omega + \int_{\tau} \omega \text{ for } \sigma, \tau \in \pi_1(X).$$

We get a homomorphism $\pi_1(X) \to \mathbb{C}$. This homomorphism is called the **period homomorphism** associated to the closed differential form ω .

Example

Suppose $X=\mathbb{C}^*$; $\pi_1(\mathbb{C}^*)\cong \mathbb{Z}$. A generator of $\pi_1(\mathbb{C}^*)$ is represented by the curve $u:[0,1]\to \mathbb{C}^*$, $u(t)=e^{2\pi it}$. Let $\omega:=(dz/z)$, where z is the canonical coordinate. Then

$$\int_{u} \omega = \int_{u} \frac{dz}{z} = 2\pi i.$$

Hence the period homomorphism of ω is

$$\mathbb{Z} \to \mathbb{C}, \quad n \mapsto 2\pi i n.$$

Summands of Automorphy

Suppose X is a Riemann surface and $p:\widetilde{X}\to X$ is its universal covering. We know that $G:=\mathrm{Deck}(\widetilde{X}/X)\cong\pi_1(X)$.

If $\sigma \in G$ and $f: \widetilde{X} \to \mathbb{C}$ is a function, then we can define $\sigma f: \widetilde{X} \to \mathbb{C}$ by $\sigma f:=f\circ \sigma^{-1}$. A function $f:\widetilde{X} \to \mathbb{C}$ is called **additively automorphic** with constant summands of automorphy, if there exist constants $a_{\sigma} \in \mathbb{C}, \sigma \in G$, such that

$$f - \sigma f = a_{\sigma}$$
 for every $\sigma \in G$.

The constants a_{σ} are called the **summands of automorphy** of f. The correspondence $\sigma \mapsto a_{\sigma}$ is a group homomorphism $\operatorname{Deck}(\widetilde{X}/X) \to \mathbb{C}$.

Theorem 5

Suppose X is a Riemann surface and $p:\widetilde{X}\to X$ is its universal covering.

- $\textbf{3} \ \ \text{If} \ \omega \in \mathscr{E}^{(1)}(X) \ \text{is a closed differential form and} \ F \in \mathscr{E}(\widetilde{X}) \ \text{is a} \\ \text{primitive of} \ p^*\omega, \ \text{then} \ F \ \text{is additively automorphic with constant} \\ \text{summands of automorphy.} \ \ \text{Its summands of automorphy} \\ a_\sigma, \sigma \in \operatorname{Deck}(\widetilde{X}/X), \ \text{are exactly the periods of} \ \omega \ \text{with respect to the} \\ \text{isomorphism} \ \pi_1(X) \cong \operatorname{Deck}(\widetilde{X}/X).$
- **6** Conversely suppose $F \in \mathscr{E}(\widetilde{X})$ is an additively automorphic function with constant summands of automorphy. Then there exists precisely one closed differential form $\omega \in \mathscr{E}^{(1)}(X)$ such that $dF = p^*\omega$.

Example

Suppose $\Gamma=\mathbb{Z}\gamma_1+\mathbb{Z}\gamma_2$ is a lattice in \mathbb{C} . Let $X:=\mathbb{C}/\Gamma$. The canonical quotient map $\pi:\mathbb{C}\to X$ is also the universal covering map and $\mathrm{Deck}(\mathbb{C}/\Gamma)$ is the group of all translations by vectors $\gamma\in\Gamma$. Consider the identity map $z:\mathbb{C}\to\mathbb{C}$. Then z is additively automorphic under the action of $\mathrm{Deck}(\mathbb{C}/X)$ with summands of automorphy $a_\gamma=\gamma,\gamma\in\Gamma$. Hence dz is invariant under covering transformations. Thus there exists a holomorphic differential form $\omega\in\Omega(X)$ such that $p^*\omega=dz$ and whose periods are exactly the elements of the lattice Γ .

Theorem

Suppose X is a Riemann surface. A closed differential form $\omega \in \mathscr{E}^{(1)}(X)$ has a primitive $f \in \mathscr{E}(X)$ iff all the periods of ω are zero.

Corollary

Suppose X is a compact Riemann surface and $\omega_1, \omega_2 \in \Omega(X)$ are two holomorphic differential forms which define the same period homomorphism $\pi_1(X) \to \mathbb{C}$. Then $\omega_1 = \omega_2$.

Outline

Differential 1-Forms

2 Differential 2-Forms

The integration of differential 2-forms on the complex plane

Suppose $U\subset\mathbb{C}$ is open and $\omega\in\mathscr{E}^{(2)}(U)$. Then ω may be written

$$\omega = f\, dx \wedge dy = \frac{i}{2} f\, dz \wedge d\bar{z}, \quad \text{where } f \in \mathscr{E}(U).$$

Assume that f vanishes outside of a compact subset of U. Then define

$$\iint_{U} \omega := \iint_{U} f(x, y) dx dy.$$

Suppose V is another open subset of $\mathbb C$ and $\phi:V\to U$ is a biholomorphic mapping. Then

$$\iint_{U} \omega = \iint_{V} \phi^* \omega.$$

The integration of differential 2-forms on a Riemann surface

Suppose X is a Riemann surface. The **support** of a differential form ω on X is defined as the closed set

$$\operatorname{Supp}(\omega) := \overline{\{a \in X : \omega(a) \neq 0\}}.$$

The integration of differential forms is defined in two steps.

• Suppose $\phi:U\to V$ is a chart on X and $\omega\in\mathscr{E}^{(2)}(X)$ is a differential form whose support is compact and contained in U. We define

$$\iint\limits_X \omega := \iint\limits_U \omega := \iint\limits_V (\phi^{-1})^* \omega.$$

• Suppose $\omega \in \mathscr{E}^{(2)}(X)$ is an arbitrary differential form with compact support. There exists finitely many charts $\phi_k: U_k \to V_k, k=1,\ldots,n$ such that

$$\operatorname{Supp}(\omega) \subset \bigcup_{k=1}^n U_k.$$

We can find functions $f_k \in \mathcal{E}(X)$ with the following properties (partitions of unity):

Then $f_k\omega$ is a differential form whose support is compact and contained in U and $\omega = \sum_{k=1}^n f_k\omega$. Define

$$\iint\limits_{X} \omega := \sum_{k=1}^{n} \iint\limits_{X} f_k \omega.$$

Stokes' Theorem (Theorem 6-3, G.Springer, Introduction to Riemann Surfaces)

Suppose S is a Riemann surface. Let G be a regular region on S and ω be a differential 1-form on \overline{G} . Then

$$\iint\limits_{\partial G}\omega=\iint\limits_{G}d\omega.$$

Stokes' Theorem on the complex plane

Suppose $U\subset\mathbb{C}$ is open and $A\subset U$ is a compact subset with smooth boundary ∂A . Then for every differential form $\omega\in\mathscr{E}^{(1)}(U)$

$$\iint\limits_A d\omega = \int_{\partial A} \omega.$$

Theorem 7

Suppose X is a Riemann surface and $\omega\in\mathscr{E}^{(1)}(X)$ is a differential form with compact support. Then

$$\iint\limits_{X}d\omega=0.$$

Residue Theorem

Suppose X is a compact Riemann surface and a_1,\ldots,a_n are distinct points in X. Let $X':=X\setminus\{a_1,\ldots,a_n\}$. Then for every holomorphic 1-form $\omega\in\Omega(X')$ we have

$$\sum_{k=1}^{n} \operatorname{Res}_{a_k}(\omega) = 0.$$

Proof

Choose disjoint coordinate neighborhoods (U_k,z_k) of the a_k . We assume that $z_k(a_k)=0$ and $z_k(U_k)\subset\mathbb{C}$ is a disk. For every k choose a function f_k with compact support $\mathrm{Supp}(f_k)\subset U_k$ such that there exists an open $U_k'\subset U_k$ of a_k with $f_k|U_k'=1$. Set $g:=1-(f_1+\cdots+f_k)$. Then $g|U_k'=0$. Thus $g\omega\in\mathscr{E}^{(1)}(X)$. From Theorem 7

$$\iint\limits_X d(g\omega)=0.$$

Proof

Since ω is holomorphic, $d\omega=0$ on X'. On $U'_k\cap X'$ we have $f_k\omega=\omega$ and thus $d(f_k\omega)=0$. Hence $d(f_k\omega)\in \mathscr{E}^{(2)}(X)$ whose support is a compact subset of $U_k\setminus\{a_k\}$. Now $d(g\omega)=-\sum d(f_k\omega)$ implies

$$\sum_{k=1}^{n} \iint_{X} d(f_k \omega) = 0.$$

Hence we only have to show

$$\iint\limits_{X} d(f_k \omega) = -2\pi i \operatorname{Res}_{a_k}(\omega).$$

Proof

Since the support of $d(f_k\omega)$ is contained in U_k , we only integrate over U_k . We may identify U_k with the unit disk. There exists $0<\epsilon< R<1$ such that

$$\operatorname{Supp}(f_k) \subset \{|z_k| < R\} \text{ and } f_k|\{|z_k| \le \epsilon\} = 1.$$

But then

$$\iint\limits_{X} d(f_k \omega) = \iint\limits_{\epsilon \le |z_k| \le R} d(f_k \omega) = \int_{|z_k| = R} f_k \omega - \int_{|z_k| = \epsilon} f_k \omega$$
$$= -\int_{|z_k| = \epsilon} \omega = -2\pi i \operatorname{Res}_{a_k}(\omega)$$

by the Residue Theorem in the complex plane.

Corollary

Any non-constant meromorphic function f on a compact Riemann surface X has, counting multiplicities, as many zeros as poles.

Thank you for listening!