Effective Nullstellensatz

Zbigniew Jelonek, Institute of Mathematics, Polish Academy of Sciences.

Abstract

Let \mathbb{K} be an algebraically closed field and let $X \subset \mathbb{K}^m$ be an *n*-dimensional affine variety. Assume that f_1, \ldots, f_k are polynomials which have no common zeros on X. We estimate the degrees of polynomials

 $A_i \in \mathbb{K}[X]$ such that $1 = \sum_{i=1}^k A_i f_i$ on X. Our estimate is sharp for $k \leq n$ and nearly sharp for k > n. Now assume that f_1, \ldots, f_k are polynomials on X. Let $I = (f_1, \ldots, f_k) \subset \mathbb{K}[X]$ be the ideal generated by f_i . It is well-known that there is a number e(I) (the Noether exponent) such that $\sqrt{I}^{e(I)} \subset I$. We give a sharp estimate of e(I) in terms of n, D and deg f_i . We also give similar estimates in the projective case.

Finally we obtain a result from elimination theory: if $f_1, \ldots, f_n \in \mathbb{K}[x_1, \ldots, x_n]$ is a system of polynomials with a finite number of common zeros, then we have the following optimal elimination:

$$\phi_i(x_i) = \sum_{j=1}^n f_j g_{ij}, \ i = 1, \dots, n,$$

where deg $f_j g_{ij} \leq \prod_{i=1}^n \deg f_i$.