Method Adams type for solving singular IDE

M.V.Bulatov ${ }^{1}$, D.T.Thanh ${ }^{2}$
${ }^{1}$ Instute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk State Technical University, Irkutsk, Russian Federation, email :mvbul@icc.ru
${ }^{2}$ Vietnamese Military Medical University, Ha Noi, Viet Nam, email :thanhdotien278@gmail.com

Keywords: integro-differential equation, multi-step methods

Abstract

In this paper, we consider a class of linear singular IDE: $$
\begin{equation*} A(t) x^{\prime}(t)+B(t) x(t)+\int_{0}^{t} K(t, s) x(s) d s=f(t) \tag{1} \end{equation*}
$$

where $A(t), B(t), K(t, s)-(n \times n)$-matrix, $t \in[0,1]$, $\operatorname{det} A(t) \equiv 0$, with given condition

$$
\begin{equation*}
x(0)=x_{0}, \tag{2}
\end{equation*}
$$

The construction of numerical algorithms for such systems is connected with great difficulties:

- due to the singular of the matrix A (t) explicit methods are not applicable;
- semi-explicit method is not always applicable, as matrix beam $\lambda A+B$ or $\lambda A+K$, may be singular;
- In addition, this class of equation includes integral equations of the first kind of Volterra with a kernel on the diagonal is not equal to zero. And many implicit multistep methods produce unstable process.

We propose to build a multi-step methods based on explicit Adams quadrature formula for the integral component and the extrapolation formulas for the first two components. Form of the method:

$$
\begin{equation*}
A_{i+1} \sum_{j=0}^{k} \alpha_{j} x_{i-j}+h B_{i+1} \sum_{j=0}^{k-1} \beta_{j} x_{i-j}+h^{2} \sum_{l=0}^{i} \omega_{i+1 l} K_{i+1 l} x_{l}=h f_{i+1} \tag{3}
\end{equation*}
$$

