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1. Introduction. Fractional delay differential equation is an important class14

that has many applications in practical problems of fractional differential equations.15

To our knowledge, the following approaches are commonly used to study the asymp-16

totic behavior of the solutions of these equations: I. Spectrum analysis method; II.17

Lyapunov–Razumikhin method; III. Comparison method.18

Regarding the spectrum analysis method, interested readers can refer to [14, 2, 21,19

24, 25]. The drawback of this approach is that it leads to solving complex fractions20

of fractional orders containing delays and thus requires many tools from complex21

analysis.22

One of the first attempts at formulating a Razumikhin-type theorem for delay23

fractional differential equations was [3]. Recently, this approach has been improved24

in [13, 30]. However, the lack of an effective Leibniz rule for fractional derivatives25

significantly reduces the validity of these results.26

Comparison arguments were used very early in fractional calculus, see e.g., [16].27

They seem to be particularly suitable for positive delay systems [19, 5, 12, 17, 27, 22].28

Halanay’s inequality is a well-known differential inequality primarily used to study29

the asymptotic behavior of solutions to delay differential equations. Named after Aris-30

tide Halanay, this inequality provides a fundamental comparison tool for estimating31

solutions in some types of systems, particularly in cases where delays may impact32

stability [7]. Its simplest form is stated as follows:33

Lemma 1.1. [7, pp. 378–380] Assume that τ ≥ 0 and f is a positive func-34

tion defined on [t0 − τ,∞), with derivative f ′ on [t0,∞). If f ′(t) ≤ −αf(t) +35

β supt−τ≤σ≤t f(σ) for t ≥ t0 and if α > β > 0, then there exist γ > 0 and k > 0 such36

that f(t) ≤ k exp (−γ(t− t0)) for t ≥ t0.37

In [28], the first fractional version of Halanay’s inequality was established to prove the38

stability and the dissipativity of fractional-order delay systems. Later, an extended39

version of [28, Lemma 2.3] was proposed in [9] to investigate the finite-time stability40

of nonlinear fractional order delay systems while other results have been developed in41
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2 L. V. THINH AND H. T. TUAN

[20, 15] (for the case with distributed delays), and in [10] (for the case with unbounded42

delays).43

Motivated by the above discussions, in light of a sub-semigroup property of clas-44

sical Mittag-Leffler functions, we propose a generalized fractional Halanay inequality45

which improves and generalizes the existing works [28, Lemma 2.3] and [9, Theo-46

rem 1.2] to the case where the coefficients vary and are not necessarily bounded.47

Then, the obtained inequality is applied to investigate the Mittag-Leffler stability of48

fractional-order delay systems in both cases: the systems with or without a structure49

that preserves the order of solutions.50

The rest of this paper is organized as follows. In section 2, some preliminaries51

and a fractional Hanlanay inequality are provided. In section 3, by combining the52

established fractional Halanay inequality with the property of preserving the order53

of the solutions, we present a new optimal estimate to characterize the asymptotic54

stability of fractional-order positive delay linear systems. Next, we consider general55

fractional-order delay linear systems. With the help of the Halanay-type inequality,56

a linear matrix inequality is designed to ensure the Mittag-Leffler stability of these57

systems. In section 4, several numerical examples are presented to illustrate the58

validity of the theoretical results.59

We close this section by introducing some symbols and definitions that will be used
throughout the article. Let N, R, R≥0, R+, R≤0, C be the set of natural numbers, real
numbers, nonnegative real numbers, positive real numbers, nonpositive real numbers,
and complex numbers, respectively. Let d ∈ N and Rd stands for the d-dimensional
real Euclidean space. Denote by Rd

≥0 the set of all vectors in Rd with nonnegative
entries, that is,

Rd
≥0 =

{
y = (y1, ..., yd)

T ∈ Rd : yi ≥ 0, 1 ≤ i ≤ d
}
,

Rd
+ the set of all vectors in Rd with positive entries, that is,

Rd
+ =

{
y = (y1, ..., yd)

T ∈ Rd : yi > 0, 1 ≤ i ≤ d
}
,

and Rd
≤0 the set of all vectors in Rd with nonpositive entries, that is,

Rd
≤0 =

{
y = (y1, ..., yd)

T ∈ Rd : yi ≤ 0, 1 ≤ i ≤ d
}
.

For two vectors u, v ∈ Rd, we write u ⪯ v if ui ≤ vi for all 1 ≤ i ≤ d. Let A =
(aij)1≤i,j≤d, B = (bij)1≤i,j≤d ∈ Rd×d, we write A ⪯ B if aij ≤ bij for all 1 ≤ i, j ≤ d.

For any x ∈ Rd, we set ∥x∥ :=

d∑
i=1

|xi|. Let A be a matrix in Rd×d. The transpose of A

is denoted by AT. The matrix A is Metzler if its off-diagonal entries are nonnegative.
It is said to be non-negative if all its entries are non-negative. A is Hurwitz matrix if
its spectrum σ(A) satisfies the stable condition

σ(A) ⊂ {λ ∈ C : ℜ(λ) < 0}.

If xTAx ≤ 0, ∀x ∈ Rd \ {0}, the matrix A is negative semi-definite and we write60

A ≤ 0. Given a closed interval J ⊂ R and X is a subset of Rd, we define C(J ;X) as61

the set of all continuous functions from J to X.62

For α ∈ (0, 1] and T > 0, the Riemann–Liouville fractional integral of a function
x : [0, T ] → R is defined by

Iα0+x(t) :=
1

Γ(α)

∫ t

0

(t− u)α−1x(u)du, t ∈ (0, T ],
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and its Caputo fractional derivative of the order α as

CDα
0+x(t) :=

d

dt
I1−α
0+ (x(t)− x(0)), t ∈ (0, T ],

here Γ(·) is the Gamma function and
d

dt
is the usual derivative. For d ∈ N and a

vector-valued function x(·) in Rd, we use the notation

CDα
0+x(t) :=

(
CDα

0+x1(t), . . . ,
CDα

0+xd(t)
)T

.

2. A generalized fractional Halanay inequality. In this part, we aim to63

derive a generalized Halanay-type inequality. To do this, some basic properties of the64

Mittag-Leffler functions need to be used (especially the sub-semigroup property of the65

classical Mittag-Leffler functions in Lemma 2.2 below).66

Let α, β ∈ R+. The Mittag-Leffler function Eα,β(·) : R → R is defined by

Eα,β(x) :=

∞∑
k=0

xk

Γ(αk + β)
, ∀x ∈ R.

When β = 1, for simplicity, we use the convention Eα(·) := Eα,1(·) to denote the67

classical Mittag-Leffler function.68

Throughout the rest of the paper, we always assume α ∈ (0, 1].69

Lemma 2.1. (i) Eα(t) > 0, Eα,α(t) > 0 for all t ∈ R and

lim
t→+∞

Eα(−t) = 0.

(ii) d
dtEα(t) = 1

αEα,α(t) for all t ∈ R and CDα
0+Eα(λt

α) = λEα(λt
α) for all70

λ ∈ R, t ≥ 0.71

Proof. (i) From [6, Corolary 3.7, p. 29], we have lim
t→+∞

Eα(−t) = 0. The asser-72

tions Eα(t) > 0, Eα,α(t) > 0 for all t ∈ R are implied from [6, Proposition 3.23, p.73

47] and [6, Lemma 4.25, p. 86].74

(ii) By a simple computation, it is easy to check that
d

dt
Eα(t) =

1

α
Eα,α(t) for all75

t ∈ R. The assertion CDα
0+Eα(λt

α) = λEα(λt
α) for all λ ∈ R, t ≥ 0 is derived from76

the fact that the function Eα(λt
α) is the unique solution of the initial value problem77

CDα
0+x(t) = λx(t), t > 0,78

x(0) = 1,79

see, for example, [6, Formula (7.2.15), p. 174].80

Lemma 2.2. (Sub-semigroup property)[15, Lemma 2.4] For λ > 0 and t, s ≥ 0,81

we have82

Eα(−λtα)Eα(−λsα) ≤ Eα(−λ(t+ s)α).83

Lemma 2.3. [4, Lemma 25] Let x : [0, T ] → R be continuous and the Caputo
fractional derivative CDα

0+x(t) exists on the interval (0, T ]. If there exists t1 ∈ (0, T ]
such that x(t1) = 0 and x(t) < 0, ∀t ∈ [0, t1), then

CDα
0+x(t1) ≥ 0.
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4 L. V. THINH AND H. T. TUAN

Theorem 2.4. Let w : [−τ,+∞) → R≥0 be continuous functions such that84
CDα

0+w(·) exists on (0,+∞) and a(·), b(·), c(·) are nonnegative continuous functions85

on [0,+∞). Consider the system86

CDα
0+w(t) ≤ −a(t)w(t) + b(t) sup

t−q(t)≤s≤t

w(s) + c(t), t > 0,(2.1)87

w(s) = φ(s), s ∈ [−τ, 0],(2.2)88

where τ > 0, φ : [−τ, 0] → R≥0 is a given continuous function and the delay function89

q : R≥0 → [0, τ ] is continuous. Suppose that sup
t≥0

c(t) is finite and one of the following90

two conditions holds.91

(i) a(·) is bounded on the interval [0,+∞) and a(t)− b(t) ≥ σ > 0, ∀t ≥ 0.92

(ii) a(·) is not necessarily bounded on [0,∞), a(t) ≥ a0 > 0, ∀t ≥ 0 and

sup
t≥0

b(t)

a(t)
≤ p < 1.

Then, there exists w0 ≥ 0, λ∗ > 0 such that93

(2.3) w(t) ≤ w0 +MEα(−λ∗tα), ∀t ≥ 0,94

where M = sup
s∈[−τ,0]

|φ(s)|.95

Proof. The proof of Theorem 2.4(i) can be obtained with a slight modification of96

the arguments used for Theorem 2.4(ii). To ensure clarity and conciseness, we will97

focus on providing a detailed discussion of Theorem 2.4(ii) only. This part of the98

proof is structured in three steps.99

Step 1. First, we prove that for each fixed t ≥ 0, there is a unique λ := λ(t) > 0100

that satisfies the equation101

(2.4) λ− a(t) +
b(t)

Eα(−λqα(t))
= 0.102

Indeed, let103

h(λ) := λ− a(t) +
b(t)

Eα(−λqα(t))
.104

By the fact that h(·) is a continuously differentiable function with respect to the105

variable λ on [0,+∞), by a simple computation and Lemma 2.1(ii), we obtain106

h′(λ) = 1 +
b(t)qα(t)Eα,α(−λqα(t))

α (Eα(−λqα(t)))
2 > 0, ∀λ ∈ R≥0.107

Notice that h(0) = −a(t) + b(t) < 0 and lim
λ→∞

h(λ) = ∞. Thus, the equation (2.4)108

(h(λ) = 0) has a unique root λ = λ(t) ∈ (0,∞).109

Step 2. Let110

λ∗ := inf
t≥0

{
λ(t) : λ(t)− a(t) +

b(t)

Eα(−λ(t)qα(t))
= 0

}
.111

It is obvious to see λ∗ ≥ 0. Suppose by contradiction that λ∗ = 0.112

Consider the case when the condition (i) is true. There is a a1 > 0 with a1 ≥113

a(t), ∀t ≥ 0. From the definition of λ∗, we can find a t1∗ ≥ 0 so that 0 < λ(t1∗) < ϵ1,114
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where ϵ1 is small enough satisfying ϵ1 < p̃1 and p̃1 is the unique root of the equation115

p̃1 − σ + a1

[
1

Eα(−p̃1τα)
− 1

]
= 0. Furthermore,116

0 = λ(t1∗)− a(t1∗) +
b(t1∗)

Eα(−λ(t1∗)q
α(t1∗))

117

< ϵ1 − a(t1∗) +
a(t1∗)− σ

Eα(−λ(t1∗)q
α(t1∗))

118

= ϵ1 −
σ

Eα(−λ(t1∗)q
α(t1∗))

+ a(t1∗)

[
1

Eα(−λ(t1∗)q
α(t1∗))

− 1

]
119

< ϵ1 − σ + a1

[
1

Eα(−ϵ1τα)
− 1

]
120

< p̃1 − σ + a1

[
1

Eα(−p̃1τα)
− 1

]
= 0,121

a contradiction. Here, the final estimate above is derived from strictly increasing to
the variable t on [0,∞) of the function g1(·) defined by

g1(t) := t− σ + a1

[
1

Eα(−tτα)
− 1

]
.

Concerning the assumption (ii), there exists a t2∗ ≥ 0 such that 0 < λ(t2∗) < ϵ2,122

where ϵ2 > 0 is small enough satisfying123

(2.5) Eα(−ϵ2τ
α) > p and ϵ2 < p̃2124

with p̃2 is the unique root of the equation p̃2 − a0 +
pa0

Eα(−p̃2τα)
= 0. From the fact125

that g2(t) = t− a0 +
pa0

Eα(−tτα)
is strictly increasing with respect to the variable t on126

[0,∞), we conclude127

0 = λ(t2∗)− a(t2∗) +
b(t2∗)

Eα(−λ(t2∗)q
α(t2∗))

128

< ϵ2 − a(t2∗) +
pa(t2∗)

Eα(−λ(t2∗)q
α(t2∗))

129

= ϵ2 + a(t2∗)

[
p

Eα(−λ(t2∗)q
α(t2∗))

− 1

]
130

< ϵ2 + a0

[
p

Eα(−ϵ2τα)
− 1

]
131

< p̃2 + a0

[
p

Eα(−p̃2τα)
− 1

]
= 0,132

a contradiction.133

Step 3. Take134

M := sup
s∈[−τ,0]

|φ(s)|, c∗ := sup
t≥0

c(t).135

Assume that (ii) is true. Let w0 :=
c∗

(1− p)a0
≥ 0. To verify the statement (2.3), we136

first show that137

(2.6) w(t) < w0 + (M + ε)Eα(−(λ∗ − ε)tα), ∀t ≥ 0,138
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6 L. V. THINH AND H. T. TUAN

where ε > 0 is small arbitrarily (λ∗−ε > 0). Suppose by contradiction that statement139

(2.6) is not true. Due to w(0) = φ(0) <
c∗

(1− p)a0
+ M + ε, there is a t1 > 0 such140

that141

w(t1) = w0 + (M + ε)Eα(−(λ∗ − ε)tα1 ),142

w(t) < w0 + (M + ε)Eα(−(λ∗ − ε)tα), ∀t ∈ [0, t1).143

Define144

z(t) = w(t)− w0 − (M + ε)Eα(−(λ∗ − ε)tα), t ≥ 0.145

Then,146

z(t1) = 0 and z(t) < 0, ∀t ∈ [0, t1),147

by Lemma 2.3, it implies that148

(2.7) CDα
0+z(t1) ≥ 0.149

On the other hand,150

CDα
0+z(t1) =

CDα
0+w(t1) + (M + ε)(λ∗ − ε)Eα(−(λ∗ − ε)tα1 )151

≤ −a(t1)w(t1) + b(t1) sup
t1−q(t1)≤s≤t1

w(s)152

+ (M + ε)(λ∗ − ε)Eα(−(λ∗ − ε)tα1 ) + c∗153

= −w0a(t1)− a(t1)(M + ε)Eα(−(λ∗ − ε)tα1 )154

+ (M + ε)(λ∗ − ε)Eα(−(λ∗ − ε)tα1 ) + b(t1) sup
t1−q(t1)≤s≤t1

w(s) + c∗.155

Noting that h(·) is strictly increasing on [0,+∞), we have156

λ∗ − ε− a(t1) +
b(t1)

Eα(−(λ∗ − ε)qα(t1))
< λ(t1)− a(t1) +

b(t1)

Eα(−λ(t1)qα(t1))
.157

Case I: t1 ≤ q(t1). It is easy to check that sup
t1−q(t1)≤s≤t1

w(s) < w0 + (M + ε). From158

this,159

CDα
0+z(t1) < −w0a(t1)− a(t1)(M + ε)Eα(−(λ∗ − ε)tα1 )160

+ (M + ε)(λ∗ − ε)Eα(−(λ∗ − ε)tα1 ) + (M + ε)b(t1) + w0b(t1) + c∗161

= (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ∗ − ε− a(t1) +

b(t1)

Eα(−(λ∗ − ε)tα1 )

]
162

+ a(t1)

[
w0

b(t1)

a(t1)
− w0 +

c∗

a(t1)

]
163

≤ (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ∗ − ε− a(t1) +

b(t1)

Eα(−(λ∗ − ε)qα(t1))

]
164

+ a(t1)

[
w0p− w0 +

c∗

a0

]
165

< (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ(t1)− a(t1) +

b(t1)

Eα(−λ(t1)qα(t1))

]
166

= 0,167
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which contracts (2.7).168

Case 2: t1 > q(t1). In this case, we observe that169

sup
t1−q(t1)≤s≤t1

w(s) ≤ w0 + (M + ε) sup
t1−q(t1)≤s≤t1

Eα(−(λ∗ − ε)sα)170

= w0 + (M + ε)Eα(−(λ∗ − ε)(t1 − q(t1))
α).171

This together with Lemma 2.2 leads to172

CDα
0+z(t1) ≤ −a(t1)(M + ε)Eα(−(λ∗ − ε)tα1 ) + (M + ε)(λ∗ − ε)Eα(−(λ∗ − ε)tα1 )173

+ b(t1)Eα(−(λ∗ − ε)(t1 − q(t1))
α) + w0 [b(t1)− a(t1)] + c∗174

≤ (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ∗ − ε− a(t1) +

b(t1)Eα(−(λ∗ − ε)(t1 − q(t1))
α)

Eα(−(λ∗ − ε)tα1 )

]
175

≤ (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ∗ − ε− a(t1) +

b(t1)

Eα(−(λ∗ − ε)qα(t1))

]
176

< (M + ε)Eα(−(λ∗ − ε)tα1 )

[
λ(t1)− a(t1) +

b(t1)

Eα(−λ(t1)qα(t1))

]
177

= 0,178

a contradiction with (2.7). In short, we assert that (2.6) holds. Let ε → 0, the179

estimate (2.3) is checked completely, thus concluding the proof of part (ii).180

Finally, assuming that the conditions in (i) are satisfied, we choose w0 =
c∗

σ
≥ 0.181

By applying similar arguments as those presented above, we can derive the desired182

estimate.183

Remark 2.5. Theorem 2.4 is an extended and improved version of [28, Lemma184

2.3], [29, Lemma 4] and [9, Theorem 1.2].185

Remark 2.6. The key point in the proof of Theorem 2.4 is to compare the decay186

solutions of the original inequality with a given classical Mittag-Leffler function. The187

difficulty one faces in this situation is that Mittag-Leffler functions in general do not188

have the semigroup property as exponential functions. Fortunately, the sub-semigroup189

property (see Lemma 2.2) is enough for us to overcome that obstacle.190

With a slight modification of the arguments in the proof of Theorem 2.4, we can191

readily extend this result to the case with different delays, as follows:192

Theorem 2.7. Let w : [−τ,+∞) → R+ be a continuous function such that193
CDα

0+w(·) exists on (0,+∞) and a(·), bk(·), c(·) are nonnegative continuous func-194

tions on [0,+∞), k = 1, . . . ,m. Consider the system195

CDα
0+w(t) ≤ −a(t)w(t) +

m∑
k=1

bk(t) sup
t−qk(t)≤s≤t

w(s) + c(t), t > 0,196

w(t) = φ(t), t ∈ [−τ, 0],197

where φ : [−τ, 0] → R+ is continuous, the delays qk(·), k = 1, . . . ,m, are continuous198

and bounded by τ , i.e., 0 ≤ qk(t) ≤ τ, ∀t ≥ 0, ∀k = 1, . . . ,m. Suppose that sup
t≥0

c(t) =199

c∗ and one of the following two conditions is true.200

(C1) a(·) is bounded on [0,+∞), a(t)−
m∑

k=1

bk(t) ≥ σ > 0, ∀t ≥ 0.201

This manuscript is for review purposes only.



8 L. V. THINH AND H. T. TUAN

(C2) a(·) is not necessarily bounded on [0,∞), a(t) ≥ a0 > 0, ∀t ≥ 0 and202

sup
t≥0

m∑
k=1

bk(t)

a(t)
≤ p < 1.203

Then, there exists w0 > 0, λ∗ > 0 such that204

w(t) ≤ w0 + sup
s∈[−τ,0]

|φ(s)|Eα(−λ∗tα), ∀t ≥ 0,205

where206

λ∗ = inf
t≥0

{
λ(t) : λ(t)− a(t) +

m∑
k=1

bk(t)

Eα(−λ(t)qαk (t))
= 0

}
,207

w0 =


c∗

σ
in the case when the assumption (C1) is satisfied,

c∗

(1− p)a0
in the case when the assumption (C2) is satisfied.

208

3. Mittag-Leffler stability of fractional-order delay linear systems.209

3.1. Fractional-order delay systems with a structure that preserves the210

order of solutions. The positive fractional-order system has been studied by many211

authors before, see e.g., [19, 5, 12, 17, 27, 22]. The method was to use comparison212

arguments. In the current work, we are concerned with these systems when their initial213

conditions are arbitrary by exploiting a Halanay-type inequality combined with the214

property of preserving the order of the solutions. This is a new approach that seems215

to have never appeared in the literature.216

Our research object in this section is the system217

CDα
0+x(t) = A(t)x(t) +B(t)x(t− q(t)), ∀t > 0,(3.1)218

x(t) = φ(t), ∀t ∈ [−τ, 0],(3.2)219

where A(·), B(·) : [0,+∞) → Rd×d are continuous matrix-valued functions, the delay220

function q(·) : [0,+∞) → [0, τ ] is continuous, and φ(·) : [−τ, 0] → Rd is a given221

continuous initial condition. Due to [26, Theorem 2.2], it can be shown that the222

initial value problem (3.1)–(3.2) has a unique global solution on [−τ,+∞) denoted by223

Φ(·, φ).224

Lemma 3.1. [22, Lemma 2.1] Suppose that for each t ∈ [0,+∞), A(t) is a Metzler225

matrix and B(t) is a nonnegative matrix. Then, for any initial condition φ(·) ⪰ 0 on226

[−τ, 0], the solution Φ(·, φ) of the systems (3.1)–(3.2) satisfies227

Φ(·, φ) ⪰ 0 on [0,+∞).228

Lemma 3.2. Consider the system (3.1). Assume that A(t) is a Metzler Matrix229

and B(t) is a nonnegative matrix for each t ≥ 0. Let φ, φ ∈ C([−τ, 0];Rd) with230

φ(s) ⪯ φ(s), ∀s ∈ [−τ, 0]. Then,231

Φ(t, φ) ⪯ Φ(t, φ) for all t ≥ 0.232

Proof. Define233

z(t) := Φ(t, φ)− Φ(t, φ), ∀t ≥ −τ.234
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Then,235

CDα
0+z(t) =

CDα
0+Φ(t, φ)−

CDα
0+Φ(t, φ)236

=

(
A(t)Φ(t, φ) +B(t)Φ(t− q(t), φ)

)
−

(
A(t)Φ(t, φ) +B(t)Φ(t− q(t), φ)

)
237

= A(t)

[
Φ(t, φ)− Φ(t, φ)

]
+B(t)

[
Φ(t− q(t), φ)− Φ(t− q(t), φ)

]
238

= A(t)z(t) +B(t)z(t− q(t)), ∀t > 0,239

and240

z(s) = φ(s)− φ(s) ⪰ 0 for all s ∈ [−τ, 0].241

From Lemma 3.1, it implies z(t) ⪰ 0, ∀t ≥ 0 or Φ(t, φ) ⪯ Φ(t, φ), ∀t ≥ 0. The proof242

is complete.243

Theorem 3.3. Consider the system (3.1)–(3.2). Suppose A(t) is Metzler and244

B(t) is nonnegative for each t ≥ 0. Additionally, assume that there exist a0 > 0, p ∈245

(0, 1) satisfying246

(3.3) max
j∈{1,...,d}

d∑
i=1

aij(t) ≤ −a0 and

max
j∈{1,...,d}

d∑
i=1

bij(t)

max
j∈{1,...,d}

d∑
i=1

aij(t)

≥ −p247

for all t ≥ 0. Then, for any φ ∈ C([−τ, 0];Rd), the solution Φ(·, φ) converges to the248

origin, i.e.,249

lim
t→∞

Φ(t, φ) = 0.250

Furthermore, we can find a constant λ > 0 such that251

(3.4) ∥Φ(t, φ)∥ ≤
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λtα) for all t ≥ 0.252

Proof. Case 1. We first take the initial condition φ(·) ∈ C([−τ, 0];Rd
≥0) on253

[−τ, 0]. To simplify notation, we also denote x(·) = (x1(·), . . . , xd(·))T as the solution254

of system (3.1)–(3.2). By Lemma 3.1, we have xi(t) ≥ 0 for all t ≥ 0 and i = 1, . . . , d.255

Let256

X(t) := x1(t) + x2(t) + · · ·+ xd(t), ∀t ∈ [−τ,+∞).257
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It is easy to check that258

CDα
0+X(t) =CDα

0+x1(t) +
CDα

0+x2(t) + · · ·+CDα
0+xd(t)259

=

d∑
j=1

a1j(t)xj(t) +

d∑
j=1

b1j(t)xj(t− q(t)) +

d∑
j=1

a2j(t)xj(t) +

d∑
j=1

b2j(t)xj(t− q(t))260

+ · · ·+
d∑

j=1

adj(t)xj(t) +

d∑
j=1

bdj(t)xj(t− q(t))261

=

d∑
i=1

ai1(t)x1(t) +

d∑
i=1

ai2(t)x2(t) + · · ·+
d∑

i=1

aid(t)xd(t)262

+

d∑
i=1

bi1(t)x1(t− q(t)) +

d∑
i=1

bi2(t)x2(t− q(t)) + · · ·+
d∑

i=1

bid(t)xd(t− q(t))263

≤
(

max
j∈{1,...,d}

d∑
i=1

aij(t)

)
X(t) +

(
max

j∈{1,...,d}

d∑
i=1

bij(t)

)
X(t− q(t)), ∀t > 0.264

Let265

a(t) := − max
j∈{1,...,d}

d∑
i=1

aij(t) and b(t) := max
j∈{1,...,d}

d∑
i=1

bij(t)266

for all t ≥ 0. It follows from the assumption (3.3) that a(t) and b(t) satisfy the267

condition (ii) in Theorem 2.4. This leads to that there exists a λ > 0 such that268

(3.5) 0 ≤ X(t) ≤
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λtα) for all t ≥ 0.269

Case 2. Next, let φ(·) ∈ C([−τ, 0];Rd
≤0). Put z(t) := −x(t), t ≥ −τ . Then,270

CDα
0+z(t) = −CDα

0+x(t) = −
(
A(t)x(t) +B(t)x(t− q(t))

)
271

= A(t)z(t) +B(t)z(t− q(t)), ∀t > 0,272

z(s) = −x(s) = −φ(s) ⪰ 0, ∀s ∈ [−τ, 0].273

As shown in Case 1, there is a λ > 0 satisfying274

0 ≤ zi(t) ≤
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λtα) for all t ≥ 0 and i = 1, . . . , d,275

or276

(3.6) −
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λtα) ≤ xi(t) ≤ 0 for all t ≥ 0 and i = 1, . . . , d.277

Case 3. Finally, we consider φ(·) ∈ C([−τ, 0];Rd). For s ∈ [−τ, 0], define

φ+(s) := (φ+
1 (s), . . . , φ

+
d (s))

T and φ−(s) := (φ−
1 (s), . . . , φ

−
d (s))

T,

where278

φ+
i (s) =

{
φi(s) if φi(s) ≥ 0,

−φi(s) if φi(s) < 0,
and φ−

i (s) =

{
φi(s) if φ(s) ≤ 0,

−φi(s) if φi(s) > 0
279
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for i = 1, . . . , d. Then, φ+(·) ∈ C([−τ, 0];Rd
≥0), φ−(·) ∈ C([−τ, 0];Rd

≤0) and280

φ−(s) ⪯ φ(s) ⪯ φ+(s) for all s ∈ [−τ, 0].281

From Lemma 3.2, we see282

(3.7) Φ(t, φ−) ⪯ Φ(t, φ) ⪯ Φ(t, φ+) for all t ≥ 0.283

Furthermore, from (3.5) and (3.6), we can find λ1, λ2 > 0 satisfying284

0 ≤ Φi(t, φ
+) ≤

(
sup

s∈[−τ,0]

∥φ+(s)∥
)
Eα(−λ1t

α) =

(
sup

s∈[−τ,0]

∥φ(s)∥
)
Eα(−λ1t

α),

(3.8)

285

0 ≥ Φi(t, φ
−) ≥ −

(
sup

s∈[−τ,0]

∥φ−(s)∥
)
Eα(−λ2t

α) = −
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λ2t

α),

(3.9)

286

for all t ≥ 0 and i = 1, . . . , d. By combining (3.7), (3.8) and (3.9), it leads to287

−
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λ2t

α) ≤ Φi(t, φ) ≤
(

sup
s∈[−τ,0]

∥φ(s)∥
)
Eα(−λ1t

α)288

for all t ≥ 0 and i = 1, . . . , d, and thus the estimate (3.4) is verified with the parameter289

λ := min{λ1, λ2}. In particular, for any φ(·) ∈ C([−τ, 0];Rd), then290

lim
t→∞

Φ(t, φ) = 0,291

which finishes the proof.292

Remark 3.4. Consider system (3.1)–(3.2). Suppose that the following assump-293

tions hold.294

(R1) − max
j∈{1,...,d}

d∑
i=1

aij(t) is bounded from above on [0,∞).295

(R2) sup
t≥0

{ max
j∈{1,...,d}

d∑
i=1

aij(t) + max
j∈{1,...,d}

d∑
i=1

bij(t)} ≤ −σ with some positive con-296

stant σ.297

Then, by Theorem 2.4, the conclusions of Theorem 3.3 are still true.298

Remark 3.5. Although also established in the class of positive systems like The-299

orems 4.5, 4.6 in [22], Theorem 3.3 in the current paper provides a new criterion to300

study the asymptotic behavior of solutions with arbitrary initial conditions. Indeed,301

compared to [22, Theorem 4.5], Theorem 3.3 does not require the boundedness of the302

coefficient matrices or the Hurwitz characteristic of the dominant system. Meanwhile,303

compared to [22, Theorem 4.5], it is significantly simpler and even allows conclusions304

about the stability of the systems without having to solve additional supporting in-305

equalities. In section 4, we will show specific numerical examples to clarify these306

findings.307

3.2. General fractional-order delay linear systems. This section deals with308

general fractional-order delay linear systems. Based on the Halanay inequality estab-309

lished in Theorem 2.4, a linear matrix inequality has been designed to ensure their310

Mittag-Lefler stability.311
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12 L. V. THINH AND H. T. TUAN

Consider the system312

CDα
0+x(t) = A(t)x(t) +B(t)x(t− q(t)), ∀t > 0,(3.10)313

x(t) = φ(t), ∀t ∈ [−τ, 0].(3.11)314

Here, A(·), B(·) : [0,∞) → Rd×d are continuous, τ > 0, q(·) : [0,∞) → [0, τ ] is a315

continuous delay function, and φ ∈ C([−τ, 0];Rd) is an arbitrary initial condition.316

Lemma 3.6. ([1, Lemma 1, Remark 1], [23, Theorem 2]) Let x : [0,+∞) → Rd317

be continuous and assume that the Caputo fractional derivative CDα
0+x(·) exists on318

(0,∞). Then, for any t ≥ 0, we have319

(3.12) CDα
0+

[
xT(t)x(t)

]
≤ 2xT(t)CDα

0+x(t).320

Remark 3.7. Inequality (3.12) is a key tool in analyzing the asymptotic behavior321

of fractional differential equations. The original version was proposed by Aguila-322

Camacho, Duarte-Mermoud, and Gallegos [1, Lemma 1, Remark 1] for differentiable323

functions, and it was later extended by Trinh and Tuan [23, Theorem 2] to Caputo324

fractionally differentiable functions.325

Theorem 3.8. Consider the system (3.10)–(3.11). Suppose that there exist two326

nonnegative continuous functions γ(·), σ(·) : [0,∞) → R≥0 such that the following327

linear matrix inequality is satisfied328

(3.13)

(
[A(t)]T +A(t) + γ(t)Id B(t)

[B(t)]T −σ(t)Id

)
≤ 0, ∀t ≥ 0,329

where Id is the identity matrix in Rd×d. In addition,330

(3.14) γ(t) ≥ a0 > 0, ∀t ≥ 0, and sup
t≥0

σ(t)

γ(t)
≤ p < 1.331

Then, there exists a positive parameter λ > 0 satisfying332

∥Φ(t, φ)∥ ≤
√

sup
s∈[−τ,0]

∥φT(s)φ(s)∥
√
Eα(−λtα), ∀t ≥ 0.333

Proof. Let x(·) : [−τ,∞) → Rd be the solution of the system (3.10)–(3.11).334

Denote W (t) := xT(t)x(t), ∀t ≥ −τ , then W (·) is a continuous, nonnegative function335

on [−τ,+∞). Using Lemma 3.6 and the condition (3.13), we have336

CDα
0+W (t) + γ(t)W (t)− σ(t) sup

t−q(t)≤s≤t

W (s)337

≤ 2xT(t)CDα
0+x(t) + γ(t)xT(t)x(t)− σ(t)xT(t− q(t))x(t− q(t))338

= 2xT(t) [A(t)x(t) +B(t)x(t− q(t))] + γ(t)xT(t)x(t)− σ(t)xT(t− q(t))x(t− q(t))339

=
(
xT(t) xT(t− q(t))

)([A(t)]T +A(t) + γ(t)Id B(t)
[B(t)]T −σ(t)Id

)(
x(t)

x(t− q(t))

)
340

≤ 0, ∀t > 0.341

It follows from Theorem 2.4 (due to the functions γ(·) and σ(·) verify the condition342

(3.14)) that there is a λ > 0 so that343

W (t) ≤ sup
s∈[−τ,0]

∥φT(s)φ(s)∥Eα(−λtα), ∀t ≥ 0.344
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This implies that345

∥Φ(t, φ)∥ ≤
√

sup
s∈[−τ,0]

∥φT(s)φ(s)∥
√

Eα(−λtα), ∀t ≥ 0.346

The proof is complete.347

Remark 3.9. Theorem 3.8 is a significant extension of [8, Proposition 2]. Fur-348

thermore, the convergence rate of the solutions to the origin is also discussed in this349

result.350

Remark 3.10. Theorem 3.8 is a constructive result. It suggests combining a frac-351

tional Halanay inequality with the design of suitable linear matrix inequalities to352

derive various stability conditions of general delay linear systems.353

Remark 3.11. Because the norms on Rd are equivalent, the correctness of the354

conclusions in Theorem 3.3 and Theorem 3.8 on the asymptotic stability of the systems355

and the convergence rate of solutions to the origin does not depend on the defined356

norm.357

Remark 3.12. In addition to the approach presented in Theorem 3.8, we can358

establish additional sufficient criteria for ensuring the stability of general fractional-359

order differential systems with bounded delays by combining the Halanay inequality360

(Theorem 2.4) with positive representation theory (e.g., [11]). These criteria extend361

beyond the framework of positive system theory.362

4. Numerical examples. This section provides numerical examples to illus-363

trate the validity of the proposed theoretical results.364

Example 1. Consider the system365

CDα
0+x(t) = A(t)x(t) +B(t)x(t− q(t)), t ∈ (0,∞),(4.1)366

y(s) = φ(s), s ∈ [−τ, 0],(4.2)367

where α = 0.45, φ ∈ C([−τ, 0],R3),368

A(t) =


−0.7− 1√

1 + t
− 0.005t 1− 1√

1 + t
0.3 + 0.2 sin t

0.1 + 0.003t −3− 0.8

1 + t
− 0.003t 0.15 + 0.001t

0.4 +
1√
1 + t

1 +
0.8

1 + t
+ 0.001t −1− 0.004t

 , t ≥ 0,369

B(t) =


0.002t2 sin2 t

1 + t2
0.0015t 0

0.0005t 0.05 +
0.1

2 + t
0.001t

0.1 0.05− 0.1

2 + t

0.12

3 + t

 , t ≥ 0,370

and the delay

q(t) = 2− cos4 t, t ≥ 0.
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It is obvious that τ = 2. By a simple calculation, we obtain371

max
j∈{1,2,3}

3∑
i=1

aij(t)372

= max{−0.2− 0.002t, −1− 0.002t− 1√
1 + t

, −0.55 + 0.2 sin t− 0.003t}373

= −0.2− 0.002t, ∀t ≥ 0,374

max
j∈{1,2,3}

3∑
i=1

bij(t)375

= max{0.1 + 0.0005t+
0.002t2 sin2 t

1 + t2
, 0.1 + 0.0015t, 0.001t+

0.12

3 + t
}376

= 0.0015t+ 0.1, ∀t ≥ 0.377

This leads to378

max
j∈{1,2,3}

3∑
i=1

aij(t) ≤ −0.2, ∀t ≥ 0,379

max
j∈{1,2,3}

3∑
i=1

bij(t)

max
j∈{1,2,3}

3∑
i=1

aij(t)

= −0.0015t+ 0.1

0.002t+ 0.2
≥ −0.75, ∀t ≥ 0.380

Thus, the assumptions in Theorem 3.3 are satisfied. From this, the solution Φ(·, φ) of381

the initial value problem (4.1)–(4.2) converges to the origin for any φ ∈ C([−2, 0];R3).382

Choosing383

a(t) := 0.2 + 0.002t, b(t) := 0.1 + 0.0015t, ∀t ≥ 0.384

It is easy to check that for λ = 0.075, we have385

λ− a(t) +
b(t)

Eα(−λqα(t))
= −0.125− 0.002t+

0.1 + 0.0015t

E0.45(−0.075q0.45(t))
386

≤ −0.125− 0.002t+
0.1 + 0.0015t

E0.45(−0.075× 20.45)
387

< −0.125− 0.002t+
0.1 + 0.0015t

0.8
388

=
−0.0001t

0.8
389

≤ 0, ∀t ≥ 0.390

Taking

φ(s) :=

 0.2− 0.4 cos s
0.1 + 0.1s

log(s+ 3)− 0.5

 , s ∈ [−2, 0].

Because sup
s∈[−2,0]

∥φ(s)∥ = 1.2, Theorem 3.3 points out that391

∥Φ(t, φ)∥ ≤ 1.2E0.45(−0.075t0.45), t ≥ 0.392

393
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Fig. 1. Orbits of the solution of the system (4.1) with the initial condition φ(s) = (0.2 −
0.4 cos s, 0.1 + 0.1s, log(s+ 3)− 0.5)T on [−2, 0].

Remark 4.1. Because some coefficients aij(·) and bij(·) in system (4.1) are un-394

bounded, the following approaches are unsuitable for analyzing the asymptotic be-395

havior of the system’s solutions: spectral analysis of the characteristic polynomial, as396

in [2, Theorem 2], [21, Theorem 4] and [24, Theorem 1]; comparison arguments, as in397

[5, Theorem 1] and [22, Theorem 4.5]; combining comparison arguments with spectral398

analysis of the characteristic polynomial, as in [18, Theorem 2]; and the application399

of integral inequalities, as in [8, Proposition 1].400

On the other hand, it is extremely complicated to find parameters γ > 0 and401

w = (w1, w2, w3)
T ∈ R3

+ that satisfy the following inequalities for all t ≥ 0:402 

(
−0.7− 1√

1 + t
− 0.005t

)
w1 +

(
1− 1√

1 + t

)
w2 + (0.3 + 0.2 sin t)w3

+
0.002t2 sin2 t

1 + t2
w1

E0.45(−γ20.45)
+

0.0015tw2

E0.45(−γ20.45)
≤ −w1γ,

(0.1 + 0.003t)w1 +

(
−3− 0.8

1 + t
− 0.003t

)
w2 + (0.15 + 0.001t)w3

+
(0.0005t)w1

E0.45(−γ20.45)
+

(
0.2 + 0.05t

2 + t

)
w2

E0.45(−γ20.45)
+

(0.001t)w3

E0.45(−γ20.45)
≤ −w2γ,(

0.4 +
1√
1 + t

)
w1 +

(
1 +

0.8

1 + t
+ 0.001t

)
w2 + (−1− 0.004t)w3

+
0.1w1

E0.45(−γ20.45)
+

(
0.05t

2 + t

)
w2

E0.45(−γ20.45)
+

0.12

3 + t

w3

E0.45(−γ20.45)
≤ −w3γ.

403

It is therefore challenging to test the asymptotic stability and estimate the conver-404

gence rate of solutions approaching the origin for system (4.1)–(4.2) by utilizing [22,405

Theorem 4.6].406
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Example 2. Consider the system407

CDα
0+x(t) = A(t)x(t) +B(t)x(t− q(t)), t ∈ (0,∞),(4.3)408

x(s) = φ(s), s ∈ [−τ, 0],(4.4)409

where α = 0.75,410

A(t) =

−3− 1√
1 + t

5− 1√
1 + t

0.2 +
1

1 + t
−6.6− 0.2√

1 + t

 , B(t) =

 t sin2 t

1 + t2
1.15 +

0.1

2 + t

1.5 0.1 +
0.2

2 + t

 ,411

and the delay

q(t) =
1 + e−t

2
, t ≥ 0.

We see that τ = 1 and412

max
j∈{1,2}

2∑
i=1

aij(t) = max{−2.8− 1√
1 + t

+
1

1 + t
,−1.6− 1.2√

1 + t
}413

= −1.6− 1.2√
1 + t

,414

max
j∈{1,2}

2∑
i=1

bij(t) = max{1.5 + t sin2 t

1 + t2
; 1.25 +

0.3

2 + t
}415

= 1.5 +
t sin2 t

1 + t2
.416

It easy to check that max
j∈{1,2}

2∑
i=1

aij(t) is bounded on [0,+∞), and417

max
j∈{1,2}

2∑
i=1

aij(t) + max
j∈{1,2}

2∑
i=1

bij(t) = −0.1− 1.2√
1 + t

+
t sin2 t

1 + t2
418

< −0.1 +
t

1 + t2
− 1√

1 + t
419

< −0.1, ∀t ≥ 0.420

By Remark 3.4, for any φ ∈ C([−1, 0];R2), the solution Φ(·, φ) of (4.3) converges to421

the origin. Taking422

a(t) = 1.6 +
1.2√
1 + t

, b(t) = 1.5 +
t sin2 t

1 + t2
, t ≥ 0,423
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Fig. 2. Orbits of the solution of the system (4.3) with the initial condition φ(s) = (0.3 +
0.4 sin s, 0.1 + 0.5s)T on [−1, 0].

and choosing λ = 0.02, we observe424

λ− a(t) +
b(t)

Eα(−λqα(t))
= −1.58− 1.2√

1 + t
+

1.5 +
t sin2 t

1 + t2

E0.75(−0.02q0.75(t))
425

≤ −1.58− 1.2√
1 + t

+
1.5 +

t

1 + t2

E0.75(−0.02)
426

< −1.58− 1.2√
1 + t

+
1.5 +

t

1 + t2

0.97
427

= −0.0326

0.97
+

1

0.97

(
t

1 + t2
− 1.164√

1 + t

)
428

< 0, ∀t ≥ 0.429

Thus, by Theorem 3.3, we obtain the estimate

∥Φ(t, φ)∥ ≤ sup
s∈[−1,0]

∥φ(s)∥E0.75(−0.02t0.75), ∀t ≥ 0.

Figure 2 describes the trajectories of the solution of the initial value problem (4.3)–430

(4.4) with φ(s) = (0.3 + 0.4 sin s, 0.1 + 0.5s)T on [−1, 0].431

Remark 4.2. In Example 2, we have432

A(t) ⪯ Â :=

(
−3 5
1.2 −6.6

)
, B(t) ⪯ B̂ :=

(
0.5 1.2
1.5 0.2

)
, ∀t ≥ 0.433
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However, Â + B̂ =

(
−2.5 6.2
2.7 −6.4

)
is not a Hurwitz matrix because σ(Â + B̂) =434

{λ1, λ2}, here λ1 ≈ 0.0824 and λ2 ≈ −8.9824. Thus, one cannot apply [22, Theorem435

4.5] to this case.436

Remark 4.3. Similar to Example 1, Example 2 is provided to demonstrate the437

validity of Theorem 2.4. However, a key distinction in this example is that, despite438

being a positive system with bounded coefficient matrices, it cannot be dominated by439

an asymptotically stable positive system. As a result, the asymptotic behavior of its440

solutions cannot be analyzed through simple comparison arguments.441

We conclude this section with an example of a non-positive system that lies beyond442

the scope of Theorem 3.3 in this paper, as well as Theorems [3, Theorem 3.2] and [10,443

Theorem 2].444

Example 3. Consider the system445

CDα
0+x(t) = −a(t)x(t) + b(t)x(t− q(t)), t ∈ (0,∞),(4.5)446

y(s) = φ(s), s ∈ [−τ, 0],(4.6)447

where α = 0.65, a(t) = 0.2 + 0.002t, b(t) = −0.02
√
t, q(t) = 1 +

1

2 + sin t
for t ≥ 0.448

Taking γ(t) = 0.3, σ(t) = 0.2 for all t ≥ 0, then the condition (3.14) holds. Moreover,449 (
−2a(t) + γ(t) b(t)

b(t) −σ(t)

)
=

(
−0.1− 0.004t −0.02

√
t

−0.02
√
t −0.2

)
< 0, ∀t ≥ 0,450

and thus the condition (3.13) is also true. Using Theorem 3.8, it shows that the451

solution Φ(·, φ) converges to the origin for any φ ∈ C([−2, 0];R). Furthermore, by a452

simple computation, for λ = 0.05, we see453

λ− γ(t) +
σ(t)

Eα(−λqα(t))
= −0.25 +

0.2

E0.65(−0.05q0.65(t))
454

≤ −0.25 +
0.2

E0.65(−0.05× 20.65)
455

≈ −0.25 +
0.2

0.9179
< 0, ∀t ≥ 0.456

Hence, the following estimate is true

|Φ(t, φ)| ≤
√

sup
s∈[−2,0]

|φ(s)|2
√

E0.65(−0.05t0.65), ∀t ≥ 0.

Figure 3 depicts the orbits of the solution of the system (4.5) with the initial condition457

φ(s) = 0.3− 0.5 cos(2s) on [−2, 0].458
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Fig. 3. Orbits of the solution of the system (4.5) with the initial condition φ(s) = 0.3 −
0.5 cos(2s) on [−2, 0].
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