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Abstract. In this paper, we present upper and lower estimates for the Lya-

punov exponents of discrete linear systems with triangular time-varying coef-
ficients. These estimates are expressed by the diagonal elements of the coeffi-

cient matrix. As a conclusion from these estimates, we also obtain bounds for

the Grobman regularity coefficient.

1. Introduction

It is well known that every linear system with variable coefficients can be reduced
by Lyapunov transformation of coordinates to a triangular system [4], i.e. a system
in which all coefficients are triangular matrices. Therefore, the study of dynamic
properties invariant with respect to Lyapunov transformations can be reduced, at
least from a theoretical point of view, to the study of the properties of triangular
systems. It is also known that some of the dynamic properties and the numerical
characteristics describing them are uniquely determined for triangular systems by
their diagonal, as is the case, for example, with the uniform exponential dichotomy
and its spectrum [15]. Such properties or characteristics are called diagonally sig-
nificant. In this paper, we deal with the Lyapunov exponents and the Grobman
regularity coefficient of discrete linear systems with variable coefficients. They be-
long to the group of numerical characteristics that are invariant with respect to
Lyapunov transformations but are not diagonally significant. Therefore, the ques-
tion arises about the possibility of estimating them, for triangular systems, through
the elements of the diagonal. This problem is the main objective of this paper.

Fundamentally speaking, one could raise the question not of an estimate, but of
an exact calculation of the Lyapunov exponents of a triangular system, since its
solutions are given explicitly. However, apart from the cumbersomeness of calcula-
tions using these formulas, there would still be the difficulty that the basis described
by them is not necessarily normal, so that its Lyapunov exponents do not always
coincide with the Lyapunov exponents of the system, and all known methods of
transition from a given basis to a normal one are practically inefficient. Therefore,
the purpose of this paper is to construct simple estimates of Lyapunov exponents
in terms of diagonal coefficients.

Based on the obtained estimates for the Lyapunov exponents, we will also pro-
pose bounds for the so-called Grobman regularity coefficient. While the importance
of Lyapunov exponents in the description of dynamic properties is widely known
(see e.g. [4] and the references therein), the role of the Grobman coefficient is
less known. First of all, the Grobman coefficient determines whether the system
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is Lyapunov regular. A system is regular if and only if the Grobman regularity
coefficient is zero ([4]). In [9] it was shown that the perturbation with the Lya-
punov exponent less then opposite of the Grobman regularity coefficient, do not
change the Lyapunov exponents i.e. the Lyapunov exponents of the perturbed an
unperturbed systems are the same. Finally in [3] a condition for stability of non-
uniform dichotomy has been established and this condition requires that Grobman
regularity coefficient is sufficient small. Thus, having in mind the importance of
the stability results in the theory of dynamical systems, it is crucial to obtain sharp
estimates for the Grobman regularity coefficient. Let us note that in the literature,
apart from the Grobman regularity coefficient, the Lyapunov and Perron regularity
coefficients are also considered. A complete description of the relations between
Lyapunov, Perron and Grobman regularity coefficients is presented in [12].

It should be noted that one of the upper bounds of Grobman regularity coeffi-
cient presented in this paper (right hand side of (18)) has already appeared in paper
[3, Theorem 6] and [4, Theorem 3.1.3]. However, its proof is based, in both publi-
cations, on a certain bound for elements of the transition matrix ([3, Lemma A.1]
and [4, Lemma 3.1.4]), which is not true. The corrected proof has been published
in [5] together with a lower bound, however our lower bounds are more accurate.
In the last paper an applications of these bounds for a simple proof of the Oseledets
ergodic theorem has been also presented.

The work is organized as follows. In the next section we present some facts
from abstract theory of Lyapunov exponent and we provide some concepts from
theory of linear difference equations. In the third section we formulate the main
results. Proofs of the main results are contained in section fourth. The fifth section
is devoted to examples that illustrate relations between the obtained bounds.

Notations: We define a sum
b∑

j=a

to be equal to zero and product
b∏

j=a

to equal

to one if b < a. By ⟨·, ·⟩ and ∥·∥ we will denote the standard scalar product in
Rd and the corresponding norm, respectively. For a d by d matrix M its operator
norm will be denoted by ∥M∥ and the transposition of M by MT . For any d ∈ N, a
sequence of invertible d by d matrices A = (A(n))n∈N is called a Lyapunov sequence
if it is bounded and its inverse sequence A−1 = (A−1(n))n∈N is bounded. By
LLya(N,Rd×d) we denote the set of all Lyapunov sequences and by L∞(N,Rd×d)
the set of all bounded sequences of d by d matrices. For A ∈ L∞(N,Rd×d) we
define ∥A∥∞ = sup

n∈N
∥A(n)∥ . If for all n ∈ N the matrix A(n) is upper-triangular

(lower-triangular), then we will say that the sequence A is upper-triangular (lower-
triangular). A sequence A will be called triangular if it is upper-triangular or
lower-triangular. We also will use the symbol Rd

∗ for the set Rd\{0} and symbol N1

for the set {1, 2, ...}.

2. Preliminaries

2.1. Abstract theory of Lyapunov exponents. Below we present some facts
from the abstract theory of Lyapunov exponents, which we will use later for Lya-
punov exponents of discrete time-varying linear systems with coefficients in the set
LLya(N,Rd×d). The abstract theory of Lyapunov exponents was initiated by works
of Yu. S. Bogdanov ([6] and [7] see also [17]). The modern approach to this theory
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is presented in monographs [2, 4]. All the results collected below are proven in
paragraph 2 of [8, Chapter 1].

Definition 1. A function λ : Rd → R∪{−∞} is called a Lyapunov exponent if

(1) λ (vc) = λ (v) for each v ∈ Rd and c ∈ R∗,
(2) λ (u+ v) ≤ max {λ (u) , λ (v)},
(3) λ (v) = −∞ if and only if v = 0.

The set
{
λ(x0) : x0 ∈ Rd

∗
}

is finite and contains at most d elements. Denote
them as follows

−∞ < λ′
1 < λ′

2 < . . . < λ′
r < ∞.

Thus, for each λ′
i, i = 1, ..., r, the set

(1) Ei :=
{
v ∈ Rd

∗ : λ(v) ≤ λ′
i

}
∪ {0}

is a subspace of Rd. Additionally we set E0 = {0}. The multiplicity di of λ′
i is

defined as
dimEi − dimEi−1, i = 1, ..., r.

Define the sequence

Λ =

λ′
1, ..., λ

′
1︸ ︷︷ ︸,

d1 times

λ′
2, ..., λ

′
2︸ ︷︷ ︸

d2 times

, ...λ′
r, ..., λ

′
r︸ ︷︷ ︸

dr times

 ,

i.e. Λ is a sequence consisting of numbers λ′
1 < λ′

2 < . . . < λ′
rand λ′

i appears di
times, i = 1, ..., r.

Definition 2. A base {v1, ..., vd} of Rd is called normal for the Lyapunov exponent
λ if for each K ⊆ {1, ..d} and any cj ∈ R∗, j ∈ K we have

λ

∑
j∈K

cjvj

=max
j∈K

λ (vj) .

Theorem 3. A base {v1, ..., vd} of Rd is normal for the Lyapunov exponent λ if
and only if there exists a permutations π of the set {1, ..., d} such that

Λ =
(
λ
(
vπ(1)

)
, ..., λ

(
vπ(d)

))
.

Theorem 4. For any base {x1, ..., xd} of Rd and any Lyapunov exponent λ there ex-
ists an upper-triangular (lower-triangular) matrix C such that the columns x′

1, ..., x
′
d

of X ′ = XC forms a normal base for λ, where X is a matrix formed from vectors
x1, ..., xd as columns. Moreover, for each such a matrix C we have

(2) λ (x′
i) ≤ λ (xi) .

Definition 5. Two bases {u1, ..., ud} and {v1, ..., vd} of Rd are called dual if ⟨ui, vj⟩ =
0 and ⟨ui, vi⟩ = 1 for all i, j = 1, ..., d, i ̸= j. Two Lyapunov exponents λ, µ are
called dual if for any dual bases {u1, ..., ud} and {v1, ..., vd} of Rd we have

λ (ui) + µ (vi) ≥ 0 for i = 1, ..., d.

Suppose that U = {u1, ..., ud} and V = {v1, ..., vd} are dual bases of Rd and λ, µ
are dual Lyapunov exponents we define

γ (U, V ) = max
i=1,...,d

(λ(ui) + µ(vi)) ,
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and then the Grobman regularity coefficient σG (λ, µ) of a pair (λ, µ) is defined as

(3) σG (λ, µ) = inf γ (U, V ) ,

where the infimum is taken over all pairs (U, V ) of dual bases of Rd.

Theorem 6. Suppose that λ, µ are dual Lyapunov exponents and U , V are dual
bases. If U is normal for λ or V is normal for µ then σG (λ, µ) = γ (U, V ).

2.2. Some concepts from theory of difference equations. Consider a discrete
time-varying linear system

(4) x(n+ 1) = A(n)x(n), n ∈ N,
whereA = (A(n))n∈N ∈ LLya(N,Rd×d). The transition matrix ΦA = (ΦA(n,m))n,m∈N
of system (4) is defined by

ΦA(n,m) =


A(n− 1) . . . A(m) for n > m,

Id for n = m,

Φ−1
A (m,n) for n < m.

For x0 ∈ Rd we denote by (x(n, x0))n∈N the solution of (4) with an initial condition
x(0, x0) = x0. To recall the notion of the Lyapunov exponent of the solution
(x(n, x0))n∈N, we define the characteristic exponent χ(g) (might take the value

+∞ or −∞) of a sequence g = (g(n))n∈N of vectors from Rd as

χ(g) := lim sup
n→∞

1

n
ln ∥g(n)∥ .

The Lyapunov exponent of the solution (x(n, x0))n∈N denoted as λA(x0) is given
by λA(x0) = χ((x(n, x0))n∈N), i.e.

λA(x0) = lim sup
n→∞

1

n
ln ∥x(n, x0)∥.

It is well known (see e.g. [3]) that for each A ∈ LLya(N,Rd×d) the function λA is
a Lyapunov exponent understood according with Definition 1 and therefore as we
know from the previous section the set

{
λA(x0) : x0 ∈ Rd

∗
}
is finite and contains at

most d elements. Denote the elements of
{
λA(x0) : x0 ∈ Rd

∗
}
as follows

−∞ < λ′
1 (A) < λ′

2 (A) < . . . < λ′
r (A) < ∞

and denote the multiplicity of λ′
i(A) by di, i = 1, ...r. The sequence

Λ =

λ′
1(A), ..., λ′

1(A)︸ ︷︷ ︸,
d1 times

λ′
2(A), ..., λ′

2(A)︸ ︷︷ ︸
d2 times

, ...λ′
r(A), ..., λ′

r(A)︸ ︷︷ ︸
dr times

 ,

i.e. Λ is a sequence consisting of numbers λ′
1(A) < λ′

2(A) < . . . < λ′
r(A) and

λ′
i appears di times, i = 1, ..., r. The sequence Λ will be called the Lyapunov

spectrum of (4). We assume that the Lyapunov spectrum is numbered in non-
decreasing order. Then, the largest Lyapunov exponent λd(A) can be computed as
follows (see [4]).

Lemma 7. If A ∈ LLya(N,Rd×d), then

λd(A) = lim sup
n→∞

1

n
ln ∥ΦA(n, 0)∥.
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Definition 8. For any base {x1, ..., xd} of Rd the sequence of matrices X =
(X(n))n∈N, X(n) ∈ Rd×d containing the vectors x(n, x1), . . . , x(n, xd) as columns
is called fundamental matrix of system (4). If the base {x1, ..., xd} is normal for
λA, then the sequence X = (X(n))n∈N will be called normal fundamental matrix of
system (4).

We define a so called adjoint system

(5) y(n+ 1) = B(n)y(n), n ∈ N

whereB(n) = A−T(n) :=
(
A−1(n)

)T
, n ∈ N. To denote the sequence

((
A−1(n)

)T)
n∈N

we will use the symbol A−T.

Definition 9 (Kinematic equivalence). System (4) is kinematically equivalent to
system

(6) y(n+ 1) = C(n)y(n), C ∈ LLya(N,Rd×d)

if there exists a Lyapunov sequence T = (T (n))n∈N ∈ LLya(N,Rd×d) such that

(7) C(n) = T−1(n+ 1)A(n)T (n) for all n ∈ N.

In that case we will also say that sequences (A(n))n∈N and (C(n))n∈N are kinemat-
ically equivalent and that transformation T establishes this equivalence.

Observe that if (4) and (6) are kinematically equivalent and that transformation
T establishes this equivalence, then (x(n))n∈N is a solution of (4) if and only if

(y(n))n∈N , y(n) = T−1(n)x(n) is a solution of (6).
The following result is well known (see e.g. [4]).

Theorem 10. Suppose that sequences (A(n))n∈N and (C(n))n∈N are kinematically
equivalent and that transformation T establishes this equivalence. We have

λA (x0) = λC (T (0)x0) , x0 ∈ Rd
∗.

In particular, kinematically equivalent systems have the same Lyapunov spectrum.

Remark 11. Suppose that {u1, ..., ud} and {v1, ..., vd} are dual bases of Rd, then
we have

λA (ui) + λA−T (vi) ≥ lim sup
n→∞

1

n
ln ∥ΦA(n, 0)ui∥∥ΦA−T(n, 0)vi∥ ≥

lim sup
n→∞

1

n
ln |⟨ΦA(n, 0)ui,ΦA−T(n, 0)vi⟩| = lim sup

n→∞

1

n
ln |⟨ui, vi⟩| = 0

i.e. the Lyapunov exponents λA and λA−T are dual. The Grobman coefficients
σG(A) of system (4) is defined as σG(A) := σG(λA, λA−T). This may be defined
equivalently as follows

(8) σG (A) = min
X∈Ψ(A)

max
j=1,...,d

(χ (xj) + χ (yj)) ,

where Ψ(A) is the set of all fundamental matrices of system (4) and xj, yj is the
j−th column of X, X−T, respectively.
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3. Statements of the main results

3.1. Symbols and notations. For a triangular A = (A(n))n∈N ∈ LLya(N,Rd×d),

A(n) = [aij(n)]i,j=1,...,d we define sequences Ad = (Ad(n))n∈N ∈ LLya(N,Rd×d),

A|l =
(
A|l (n)

)
n∈N

and A|l = (A|l (n))n∈N ∈ LLya(N,Rl×l), where Ad(n) is a

matrix that has on its diagonal the elements of the diagonal of matrix A(n), and

zeros elsewhere, A|l (n)is formed by deleting the last d− l rows and d− l columns
in matrix A(n) and A|l (n) is formed by deleting the first l rows and l columns in
matrix A(n) i.e.

Ad(n) =


a11(n) 0 · · · 0

0 a22(n)
...

...
. . . 0

0 · · · 0 add(n)

 ,

A|l (n) =


a11(n) a12(n) · · · a1l(n)

a21(n) a22(n)
...

...
. . . al−1,l(n)

al1(n) · · · al,l−1(n) all(n)


and

A|l (n) =


al+1,l+1(n) al+1,l+2(n) · · · al+1,d(n)

0 al+2,l+2(n)
...

...
. . . ad−1,d(n)

ad1(n) · · · ad,d−1(n) add(n)

 .

We denote

ai := lim sup
n→∞

1

n
ln

∣∣∣∣∣
n−1∏
i=0

aii(n)

∣∣∣∣∣ , ai := lim inf
n→∞

1

n
ln

∣∣∣∣∣
n−1∏
i=0

aii(n)

∣∣∣∣∣ .
Let ∆ai := ai − ai. Moreover, for n, k ∈ N, n ≥ k, we define

ϕAd
(n, k) = max

{∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣ : j = 1, ..., d

}
,

ϕ
Ad

(n, k) = min

{∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣ : j = 1, ..., d

}
.
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Finally, we introduce the following quantities

Ω (A) = inf
N∈N1

1

N

(
lim sup
n→∞

1

n

n−1∑
i=0

lnϕAd
((i+ 1)N, iN)

)
,(9)

Ω (A) = sup
N∈N1

1

N

(
lim sup
n→∞

1

n

n−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)

)
,

ω(A) = inf
N∈N1

1

N

(
lim inf
n→∞

1

n

n−1∑
i=0

lnϕAd
((i+ 1)N, iN)

)
,

ω(A) = sup
N∈N1

1

N

(
lim inf
n→∞

1

n

n−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)

)
.

Remark 12. (i) Observe that the quantities Ω (A) , Ω (A) , ω(A) and ω(A) depend
only on diagonal elements of matrices A(n).
(ii) The quantities Ω (A) , Ω (A) , ω(A) and ω(A) are known in the literature as
central exponents and were introduced by R. E. Vinograd in [16] (see also [8, p.
114, 163-167]) for estimate changes of Lyapunov exponents of linear time-varying
differential equations under arbitrary small perturbations. Other properties and
applications of central exponents are discussed in the monograph [14]. A version of
central exponents for discrete linear time-varying systems is analyzed in monograph
[10]. It should be noted, however, that the central exponents are usually defined based
on the entire matrix of coefficients, not just their elements from the main diagonal
as we did above. In this approach, our definition becomes a theorem saying that
central exponents are diagonally significant (see [11, Theorem 6]).

Remark 13. If the sequence A = (A(n))n∈N is triangular, then

ϕA−T
d |

l

(n, k) = ϕ−1

Ad|l
(n, k) and ϕ

A−T
d |l (n, k) = ϕ−1

Ad|l
(n, k)

for all k, n ∈ N, n > k, l = 1, ..., d. Therefore, for l = 1, ..., d

Ω (A|l) = −ω(A−T
∣∣
l
), Ω (A|l) = −ω(A−T

∣∣
l
)

and

Ω
(
A|l
)
= −ω(A−T

∣∣l), Ω
(
A|l
)
= −ω(A−T

∣∣l).
3.2. Statements of the main results. The next three theorems contain the main
result of our paper. The first two theorems present the lower and upper bounds
for the columns of the fundamental matrix of an upper-triangular system and the
adjoint system by diagonal elements. In the first of them, we additionally assume
that the fundamental matrix is normal. The third theorem gives upper and lower
bounds for the Grobman regularity coefficient. From the first two theorems, the
estimations for the Lyapunov exponents of the upper-triangular system, expressed
by the diagonal elements, result as a conclusion.

Theorem 14. Consider system (4) with upper-triangular sequence A = (A(n))n∈N ∈
LLya(N,Rd×d). Then, the following statements hold:
(i) For any normal upper-triangular fundamental matrix X = (X(n))n∈N of (4) we
have

(10) aj ≤ χ (xj) ≤ aj +

j−1∑
l=1

∆al, j = 1, ...d,
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where xj = (xj(n))n∈N and xj(n) is the j−th column of X(n), j = 1, ..., d.
(ii) For any normal lower-triangular fundamental matrix Y = (Y (n))n∈N of system
(5) we have

(11) −aj ≤ χ (yj) ≤ −aj +

d∑
l=j+1

∆al, j = 1, ..., d,

where yj = (yj(n))n∈N and yj(n) is the j−th column of Y (n), j = 1, ..., d.

Theorem 15. Consider system (4) with upper-triangular sequence A = (A(n))n∈N ∈
LLya(N,Rd×d). Then, the following statements hold:
(i) For any upper-triangular fundamental matrix X = (X(n))n∈N of (4) we have

(12) Ω(A|j) ≤ χ (xj) ≤ Ω(A|j),
where xj = (xj(n))n∈N and xj(n) is the j−th column of X(n), j = 1, ..., d.
(ii) For any lower-triangular fundamental matrix Y = (Y (n))n∈N of (5) we have

(13) −ω(A|j) ≤ χ (yj) ≤ −ω(A|j),
where yj = (yj(n))n∈N and yj(n) is the j−th column of Y (n), j = 1, ..., d.

Corollary 16. For any upper-triangular sequence A ∈ LLya(N,Rd×d) there exist
permutations π1, π2, π3 and π4 of the set {1, ..., d} such that for k = 1, ..., d

(14) ak ≤ λπ1(k)(A) ≤ ak +

k−1∑
l=1

∆al,

(15) Ω(A|k) ≤ λπ2(k)(A) ≤ Ω(A|k),

(16) −ak ≤ λπ3(k)(A
−T) ≤ −ak +

d∑
l=k+1

∆al

and

(17) −ω(A|k) ≤ λπ4(k)(A
−T) ≤ −ω(A|k)),

Theorem 17. For any upper-triangular sequence A ∈ LLya(N,Rd×d) we have

(18) max
l=1,...,d

∆al ≤ σG (A) ≤
d∑

l=1

∆al.

and

(19) max
k=1,...,d

(
Ω(A|k)− ω(A|k)

)
≤ σG (A) ≤ max

k=1,...,d

(
Ω(A|k)− ω(A|k)

)
.

Remark 18. The right side of the inequality (18) was proven in [5] (Theorem 4.7)
under weaker assumptions that A is a tempred sequence, and there (Theorem 3.1),
the following lower estimate for σG (A) was shown

(20)
1

d2

d∑
l=1

∆al ≤ σG (A) .

Since

1

d2

d∑
l=1

∆al ≤
1

d

d∑
l=1

∆al ≤ max
l=1,...,d

∆al,
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then lower bound given by (18) is more accurate then lower bound from (20).

Remark 19. For each pair of bounds ((10) and (12), (11) and (13), (18) and
(19)) there are systems for which the first estimate gives a better result and those
for which the second estimate is more accurate.

4. Proofs of the main results

Let us denote

(21) a = max

{
sup
n∈N

|ajj(n)| , sup
n∈N

|ajj(n)|−1
: j = 1, ...d

}
.

Lemma 20. If A ∈ LLya(N,Rd×d) is triangular, then a ∈ [1,∞)

(22)

(
1

a

)n−k

≤

∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣ ≤ an−k,

(23)

(
1

a

)n−k

≤

∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣
−1

≤ an−k

for all n, k ∈ N, n > k and j = 1, ..., d. In particular we have

(24) − (n− k) ln a ≤ lnϕAd
(n, k) ≤ (n− k) ln a

for all n, k ∈ N, n > k.

Proof. The boundedness of (A(n))n∈N and
(
A−1(n)

)
n∈N in particular implies the

boundedness of sequences composed of elements from the main diagonal, i.e., se-
quences (ajj(n))n∈Nand

(
a−1
jj (n)

)
n∈N,j = 1, ...d, which in turn implies that a ∈ R.

It is also clear that a > 0. The definition of a implies that

|ajj(i)| ≤ a and |ajj(i)|−1 ≤ a

for all i ∈ N and j = 1, ..., d. These two inequalities imply (22). Considering (22)
for k = n+ 1 we obtain that 1/a ≤ a i.e. a ≥ 1.

Next, observe that the constant a is the some for both A and A−1. Applying
inequality (22) to A−1 we get (23).

Finally, inequality (23) follows from (22) and the definition of ϕAd
. □

The following result from the work of [5] will play a key role in the proof of
Theorem 14. It shows that there exist fundamental systems, not necessarily normal,
such that the inequalities (10) and (11) are satisfied. The proof of Theorem 14 will
rely on demonstrating how the existence of such fundamental systems implies that
the inequalities (10) and (11) are satisfied for any normal fundamental system.

Theorem 21. [5] (Theorems 4.1 and 4.4) For any upper-triangular sequence A =
(A(n))n∈N ∈ LLya(N,Rd×d) there exists an upper-triangular fundamental matrix
X ′ = (X ′(n))n∈N , such that

(25) χ
(
x′
j

)
≤ aj +

j−1∑
l=1

∆al, j = 1, ...d,
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where x′
j =

(
x′
j(n)

)
n∈N, x

′
j(n) is the j−th column of X ′(n), j = 1, ..., d and such

that for Y ′ = (Y ′(n))n∈N, Y
′(n) = (X ′)

−T
(n) we have

(26) χ
(
y′j
)
≤ −aj +

d∑
l=j+1

∆al, j = 1, ...d,

where y′j =
(
y′j(n)

)
n∈N and y′j(n) is the j−th column of Y ′(n), j = 1, ..., d.

Lemma 22. For any triangular sequence A ∈ LLya(N,Rd×d) and any triangular
fundamental matrices X = (X(n))n∈N and Y = (Y (n))n∈N of system (4) and (5),
respectively we have

(27) aj ≤ χ (xj)

(28) −aj ≤ χ (yj)

where xj = (xj(n))n∈N , yj = (yj(n))n∈N and xj(n), yj(n) is the j−th column of

X(n), Y (n)j = 1, ..., d, respectively.

Proof. We will prove this lemma for upper-triangular system. The proof for lower-
triangular is analogical. Consider any upper-triangular fundamental matrix X =
(X(n))n∈N of system (4) with upper-triangular sequence A and denote xj(n) =

[x1j(n), ..., xjj(n), 0, ..., 0]
T
, j = 1, ..., d. Since

∥xj(n)∥ ≥ |xjj(n)| =

∣∣∣∣∣
n−1∏
l=0

ajj(l)

∣∣∣∣∣ |xjj(0)| ,

which implies that χ(xj) ≥ aj .
Applying the inequality (27) to the adjoint system (5) and having in mind that

lim sup
n→∞

1

n
ln

∣∣∣∣∣
n−1∏
i=0

a−1
ii (n)

∣∣∣∣∣ = −lim inf
n→∞

1

n
ln

∣∣∣∣∣
n−1∏
i=0

aii(n)

∣∣∣∣∣
we get (28). □

Proof of Theorem 14. Let X ′ = (X ′(n))n∈Nbe a fundamental matrix of system (4)
from Theorem 21. According to Theorem 4 there exists an upper-triangular matrix
C ′ such that X ′′ = (X ′′(n))n∈N ,

(29) X
′′
(n) = X ′(n)C ′

is an normal fundamental matrix.
Consider now any normal fundamental matrix X = (X(n))n∈N of system (4).

Since any upper-triangular fundamental matrixZ = (Z(n))n∈N of system (4) with
upper-triangular sequence Ahas the form Z(n) = ΦA (n, 0)DZ, n ∈ N where DZ

is a non-singular upper-triangular matrix, then

(30) X ′′(n) = ΦA (n, 0)DX′′ , n ∈ N
and

(31) X(n) = ΦA (n, 0)DX , n ∈ N
for certain non-singular upper-triangular matrices DX′′ , DX . From (29) and (30)
we have

ΦA (n, 0) = X ′′(n)D−1
X′′ = X ′(n)C ′D−1

X′′
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and therefore by (31) we get X(n) = X ′(n)C,where C = C ′D−1
X′′DX is non-singular

and upper-triangular.
Using inequality (2) we obtain

χ(xj) ≤ χ(x′
j), j = 1, ...d.

Now the right hand side of inequality (10) follows from the last inequality and
inequality (25).

The left hand side of inequality (10) follows from Lemma 22.
The proof of inequality (11) is analogical. □

For a fix N ∈ N1 let us define sequence RAd,N = (RAd,N (n))n∈N by

(32) RAd,N (n) =

m−1∑
i=0

lnϕAd
((i+ 1)N, iN) + lnϕAd

(n,mN) ,

where n ∈ [mN, (m+ 1)N − 1] and m ∈ N.

Lemma 23. Suppose that A = (A(n))n∈N ∈ LLya(N,Rd×d) is triangular. Then for
each N ∈ N1

(33) ϕAd
(n, k) ≤ a2N exp (RAd,N (n)−RAd,N (k)) ,

for all k, n ∈ N, n > k.

Proof. First let us consider the case when n, k ∈ [mN, (m+ 1)N − 1] for certain
m ∈ N . Then according to Lemma 20 we have ϕAd

(n, k) ≤ an−k ≤ aN . Hence, to
show (33) it is sufficient to show that

(34) aN ≤ a2N exp (RAd,N (n)−RAd,N (k)) .

Indeed, the following equalities are true

exp (RAd,N (n)−RAd,N (k)) = exp
(
lnϕAd

(n,mN)− lnϕAd
(k,mN)

)
=

ϕAd
(n,mN)

ϕAd
(k,mN)

.

and by (23) we have

ϕAd
(k,mN) = max

j=1,...d

∣∣∣∣∣
k−1∏

i=mN

ajj(i)

∣∣∣∣∣ = max
j=1,...d

∣∣∣∣∣
n−1∏

i=mN

ajj(i)

∣∣∣∣∣
∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣
−1

≤ an−k max
j=1,...d

n−1∏
i=mN

ajj(i)

= an−kϕAd
(n,mN) .

Therefore,

exp (RAd,N (n)−RAd,N (k)) ≥ a−(n−k) ≥ a−N ,
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which verifies (34). Finally, we consider the case that n ∈ [m1N, (m1 + 1)N − 1],
k ∈ [m2N, (m2 + 1)N − 1] , m1, m2 ∈ N, m1 > m2.We have the following in-
equality

lnϕAd
(n, k)

= ln max
j=1,...,d

∣∣∣∣∣
n−1∏
i=k

ajj(i)

∣∣∣∣∣
= ln max

j=1,...,d

∣∣∣∣∣∣
n−1∏

i=m1N

ajj(i)

m1N−1∏
i=(m1−1)N

ajj(i)...

(m2+2)N−1∏
i=(m2+1)N

ajj(i)

(m2+1)N−1∏
i=k

ajj(i)

∣∣∣∣∣∣
≤ ln

 max
j=1,...,d

∣∣∣∣∣
n−1∏

i=m1N

ajj(i)

∣∣∣∣∣ max
j=1,...,d

∣∣∣∣∣∣
m1N−1∏

i=(m1−1)N

ajj(i)

∣∣∣∣∣∣ ... max
j=1,...,d

∣∣∣∣∣∣
(m2+2)N−1∏
i=(m2+1)N

ajj(i)

∣∣∣∣∣∣ max
j=1,...,d

∣∣∣∣∣∣
(m2+1)N−1∏

i=k

ajj(i)

∣∣∣∣∣∣


= lnϕAd
(n,m1N) +

m1−1∑
i=m2+1

ϕAd
((i+ 1)N, iN) + lnϕAd

((m2 + 1)N, k) .

Then, by (32) we have

RAd,N (n)−RAd,N (k) =

m1−1∑
i=m2

lnϕAd
((i+ 1)N, iN)+lnϕAd

(n,m1N)−lnϕAd
(k,m2N) .

Therefore

lnϕAd
(n, k)− (RAd,N (n)−RAd,N (k))

≤ lnϕAd
((m2 + 1)N, k)− lnϕAd

((m2 + 1)N,m2N) + lnϕAd
(k,m2N)

Using inequality (24) we may estimate the right hand side of the above equality as
follows

lnϕAd
((m2 + 1)N, k)− lnϕAd

((m2 + 1)N,m2N) + lnϕAd
(k,m2N)

≤ ln a ((m2 + 1)N − k − ((m2 + 1)N −m2N) + k −m2N) = 2N ln a.

Consequently,

lnϕAd
(n, k) ≤ 2N ln a+RAd,N (n)−RAd,N (k)

and the proof is completed. □

For a fix N ∈ N1 let us define sequence rAd,N = (rAd,N (n))n∈N in the following
way

rAd,N (n) =

m−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)+lnϕ
Ad

(n,mN) for n ∈ [mN, (m+ 1)N − 1] ,

where m ∈ N.

Lemma 24. Suppose that A = (A(n))n∈N ∈ LLya(N,Rd×d) is triangular. Then for
each N ∈ N1

(35) ϕ
Ad

(n, k) ≥ a−2N exp (rAd,N (n)− rAd,N (k)) ,

for all k, n ∈ N, n > k.
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Proof. Observe that from definitions of ϕAd
and ϕ

Ad
it follows that ϕA−T

d
(n, k) =

ϕ−1

Ad
(n, k) for all k, n ∈ N, n > k. Therefore

RA−T
d ,N (n) = −rAd,N (n) for n ∈ N.

The conclusion of the lemma follows now from Lemma 23 applied to the sequence
A−T. □

Lemma 25. Suppose that A = (A(n))n∈N ∈ LLya(N,Rd×d). For any N ∈ N1 and
x0 ∈ Rd

∗ we have

(36) λA(x0) = lim sup
n→∞

1

Nn
ln ∥x(Nn, x0)∥ .

Proof. Let us fix N ∈ N1 and x0 ∈ Rd
∗. Observe that from the definition of upper

limit it follows that

(37) λA(x0) ≥ lim sup
n→∞

1

Nn
ln ∥x(Nn, x0)∥ .

Denote by (nk)k∈N such a increasing sequences of natural numbers that

λA(x0) = lim
k→∞

1

nk
ln ∥x(nk, x0)∥ .

For k ∈ N denote by pk such a natural number that Npk ≤ nk < N (pk + 1). Let
us notice that then

0 ≤ nk −Npk
nk

≤ 1

nk

and therefore

lim
k→∞

nk −Npk
nk

ln ∥A∥∞ = 0.

Then, we have

λA(x0) = lim
k→∞

1

nk
ln ∥x(nk, x0)∥ = lim

k→∞

1

nk
ln ∥ΦA (nk, Npk)x(Npk, x0)∥

≤ lim sup
k→∞

1

nk
ln ∥ΦA (nk, Npk)∥+ lim sup

k→∞

1

nk
ln ∥x(Npk, x0)∥

≤ lim sup
k→∞

nk −Npk
nk

ln ∥A∥∞ + lim sup
k→∞

1

Npk
ln ∥x(Npk, x0)∥

≤ lim sup
k→∞

1

Npk
ln ∥x(Npk, x0)∥ ≤ lim sup

n→∞

1

Nn
ln ∥x(Nn, x0)∥ ,

which together with (37 proves (36). □

In our further consideration we will use the so called β−transformations which
we will define now. Let us fix a β > 0 and consider a Lyapunov transformation
Tβ = (Tβ(n))n∈N , Tβ(n) ≡ B, n ∈ N,where

(38) B = diag
[
1, β, ..., βd−1

]
.

Lemma 26. Suppose that A is triangular and β ∈ (0, 1). The transformation Tβ

does not change the diagonal elements of A(n) and reduces system (4) to system
(7) with Qβ(n) := C(n)−Ad(n) satisfying that ∥Qβ(n)∥ ≤ βd ∥A∥∞ for n ∈ N.
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Proof. We will prove this lemma for upper-triangular A. The proof for lower-
triangular A is analogical. Observe that

C(n) = B−1A(n)B =


a11(n) βa12(n) β2a13(n) · · · βd−1a1d(n)

0 a22(n) βa23(n) · · · βd−2a2d(n)
· · · · · · · · · · · · · · ·
0 0 · · · ad−1d−1(n) βad−1d(n)
0 0 · · · 0 add(n)


and therefore

Qβ(n) =


0 βa12(n) β2a13(n) · · · βd−1a1d(n)
0 0 βa23(n) · · · βd−2a2d(n)
· · · · · · · · · · · · · · ·

βad−1d(n)
0 0 0 0 0

 .

It is noted that for any matrix X = [xij ]i,j=1,...,d ∈ Rd×d we have

∥X∥ ≤ d max
i,j=1,...,d

|xij | ≤ d ∥X∥ ,

(see [13, Chapter 5, Section 6, Problem 24, p. 314]). Thus, from β ∈ (0, 1) we
derive that

∥Qβ(n)∥ ≤ d max
i,j=1,...d−1,i<j

βj−i |aij(n)| ≤ βd ∥A∥∞ .

The proof is complete. □

Lemma 27. Suppose that A = (A(n))n∈N ∈ LLya(N,Rd×d) is triangular. We have

Ω (A) ≤ λA (x0) ≤ Ω (A)

for each x0 ∈ Rd
∗.

Proof. We will prove this lemma for upper-triangular A. The proof for lower-
triangular A is analogical. We will first show the most left inequality. Suppose that
there exists an upper-triangular sequence A ∈ LLya(N,Rd×d) and x0 ∈ Rd

∗ such
that

(39) λA (x0) > Ω (A) .

Let us fix ε ∈
(
0, λA (x0)− Ω (A)

)
, N ∈ N, N > 1 and define

(40) β =
eε − 1

a4N+1d ∥A∥∞
.

Consider a sequence C = (C(n))n∈N ∈ LLya(N,Rd×d), where C(n) = B−1A(n)B
and B is given by (38) with β defined by (40). Then, Ad(n) = Cd(n) for n ∈ N and
therefore

(41) Ω (A) = Ω (C) ,

since these quantities depend merely on the diagonal coefficients of A(n) and C(n).
Consider matrices Qβ(n) from Lemma 26 i.e. Qβ(n) = C(n) − Cd(n) for n ∈ N.
Then, by virtue of Lemma 26 and (40) we have

(42) q := ∥Qβ∥∞ ≤ eε − 1

a4N+1
,
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where Qβ = (Qβ(n))n∈N. Since (T (n))n∈N ∈ LLya(N,Rd×d) where T (n) = B, then
according to Theorem 10 we have λA (x0) = λC (Bx0). This together with (39) and
(41) implies that

λC (y0) > Ω (C) , where y0 = Bx0.

Consider the system

y(n+ 1) = C(n)y(n), n ∈ N,
which can be rewritten as

(43) y(n+ 1) = Ad(n)y(n) +Qβ (n) y(n), n ∈ N.

Using the variation of constant formula (see [1, Section 2.5]), the solution y =
(y(n, y0))n∈N of (43) satisfies the following equality

(44) y(n, y0) = ΦAd
(n, 0)y0 +

n−1∑
i=0

ΦAd
(n, i+ 1)Qβ(i)y(i, y0), n ∈ N.

Since ∥ΦAd
(n, j)∥ = ϕAd

(n, j) for j = 0, ..., n it follows from Lemma 23 that

∥y(n, y0)∥ ≤ a2N expRAd,N (n) ∥y0∥+a2Nq

n−1∑
j=0

exp (RAd,N (n)−RAd,N (j + 1)) ∥y(j, y0)∥ .

Equivalently,
(45)

∥y(n, y0)∥ exp (−RAd,N (n)) ≤ a2N ∥y0∥+ a2Nq

n−1∑
j=0

exp (−RAd,N (j + 1)) ∥y(j, y0)∥ .

By Lemma 20, we have 1
a ≤ ϕAd

(j + 1, j) for j ∈ N. Then, from (33) we derive
that

1

a
≤ a2N exp (RAd,N (j + 1)−RAd,N (j)) .

Therefore,

exp (−RAd,N (j + 1)) ≤ a2N+1 exp (−RAd,N (j)) ,

this together with (45) implies that

u(n) ≤ a2N ∥y0∥+ a4N+1q

n−1∑
j=0

u(j) for all n ∈ N,

where u(n) := ∥y(n, y0)∥ exp (−RAd,N (n)). By Gronwall’s inequality (see e.g. [1,
Corollary 4.1.2]) we have

u(n) ≤ a2N ∥y0∥
(
1 + a4N+1q

)n
,

consequently

1

n
ln ∥y(n, y0)∥ ≤ 1

n
ln
(
a2N ∥y0∥

)
+ ln

(
1 + a4N+1q

)
+

1

n
RAd,N (n).

Taking n = Nm, m ∈ N, using the equality

RAd,N (Nm) =

m−1∑
i=0

lnϕAd
((i+ 1)N, iN)
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and passing to the upper limit when m tends to infinity, we obtain

(46) λC(y0) ≤ ln
(
1 + a4N+1q

)
+

1

N

(
lim sup
m→∞

1

m

m−1∑
i=0

lnϕAd
((i+ 1)N, iN)

)
,

since by Lemma 25 we have

λC(y0) = lim sup
m→∞

1

Nm
ln ∥y(Nm, y0)∥ .

Combining (42) in (46), we arrive at

λC(y0) ≤ ε+
1

N

(
lim sup
m→∞

1

m

m−1∑
i=0

lnϕAd
((i+ 1)N, iN)

)
and by definition of Ω (A) we have λC(y0) ≤ ε+ Ω(A). This is contradiction with
the choice of ε since λC(y0) = λA(x0).

To prove the most left inequality suppose that there exists an upper-triangular
sequence A ∈ LLya(N,Rd×d) and x0 ∈ Rd

∗ such that

(47) Ω (A) > λA (x0) .

Observe that Lemma 20 implies that

|rAd,N (n+ 1)− rAd,N (n)| ≤ 2N ln a

and therefore

(48) exp (−rAd,N (n+ 1)) ≤ a2N exp (−rAd,N (n)) , n ∈ N.

Let us fix ε ∈ (0,Ω (A)− λA (x0)), N ∈ N, N > 1 and define

(49) β =
1− e−ε

a4Nd ∥A∥∞
.

Again we will consider a sequence C = (C(n))n∈N ∈ LLya(N,Rd×d), where C(n) =
B−1A(n)B and B is given by (38) together with system (43), but now we will
rewrite (44) in the following form

(50) y0 = Φ−1
Ad

(n, 0)y(n, y0)−
n−1∑
i=0

Φ−1
Ad

(i+ 1, 0)Qβ(i)y(i, y0) ,

where y0 = Bx0, Qβ(n) = A(n) − Ad(n). Arguing as previously we have Ad(n) =
Cd(n) and therefore Ω (A) = Ω (C). Furthermore,

(51) λA (x0) = λC (Bx0) , q := ∥Qβ∥∞ ≤ 1− e−ε

a4N
.

Since
∥∥Φ−1

Ad
(i, j)

∥∥ = ϕ−1

Ad
(i, j) , i, j ∈ N, i ≥ j, it follows by Lemma 24 and (50)

that

∥y0∥ ≤ ϕ−1

Ad
(n, 0) ∥y(n, y0)∥+

n−1∑
i=0

ϕ−1

Ad
(i+ 1, 0) ∥Qβ(i)∥ ∥y(i, y0)∥

≤ a2N exp (−rAd,N (n)) ∥y(n, y0)∥+ a2Nq

n−1∑
i=m

exp (−rAd,N (i+ 1)) ∥y(i, y0)∥ .
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Thus,

u(0) ≤ a2Nu(n) + a2Nq

n−1∑
i=0

exp (−rAd,N (i+ 1) + rAd,N (i))u(i),

where u(i) = ∥y(i, y0)∥ exp (−rAd,N (i)). This together with (48) implies that

u(0) ≤ a2Nu(n) + a4Nq

n−1∑
i=0

u(i) for n ∈ N.

Observe that (51) implies that 1−a4Nq > 0 and therefore we may apply Gronwall’s
backward inequality (see [1, Inequality (4.7.1)]) to get

u(0) ≤ a2Nu(n)
(
1− a4Nq

)−n

and consequently

1

n
ln
(
∥y0∥ a−2N

)
+ ln

(
1− a4Nq

)
+

1

n
rAd,N (n) ≤ 1

n
ln ∥y(n, y0)∥ .

Taking n = Nk, k ∈ N, using the equality

rN (Nk) =

k−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)

and passing to the upper limit when k tends to infinity, we have

(52) ln
(
1− a4Nq

)
+

1

N

(
lim sup
k→∞

1

k

k−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)

)
≤ λC(y0)

since by Lemma 25 we have

λC(y0) = lim sup
k→∞

1

Nk
ln ∥y(Nk, y0)∥ .

Combining (49) in (52), we obtain

−ε+
1

N

(
lim sup
k→∞

1

k

k−1∑
i=0

lnϕ
Ad

((i+ 1)N, iN)

)
≤ λC(y0)

and by definition of Ω (A) we have −ε+Ω(A) ≤ λC(y0). This is contradiction with
the choice of ε since λC(y0) = λA(x0). □

Proof of Theorem 15. Denote by xj = (x(n, vj))n∈N where x(n, vj) is the j−th
column of X(n), j = 1, ..., d, and vj is the j-th column of matrix X(0). With this
notation xj is the solution of system (4) satisfying x(0, vj) = vj , j = 1, ..., d. For

a vector α = [α1, . . . , αd]
T ∈ Rd and j ∈ {1, ..., d} denote by α|j a vector from Rj

given by α|j = [α1, . . . , αj ]
T
. Observe that the sequence z|j =

(
x(n, vj)|j

)
n∈N

is a

solution of the system

(53) z(n+ 1) = A(n)|j z(n), n ∈ N,

with initial condition z(0, vj)|j = vj |j and

λA|j

(
vj |j

)
= λA (vj) ,
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for j = 1, ..., d. If we apply Lemma 27, to system (53) and take into account the
last equality we get

Ω(A|j) ≤ λA (vj) ≤ Ω(A|j).
Consider any lower-triangular fundamental matrix Y = (Y (n))n∈N of system (5).

Denote by yj = (y(n, vj))n∈N where y(n, vj) = [0, ..., 0, yj,j(n, uj), ..., yd,j(n, uj)]
T

the j−th column of Y (n), j = 1, ..., d, and uj is the j-th column of matrix Y (0).
With this notation yj is the solution of system (5) satisfying y(0, uj) = uj , j =

1, ..., d. For a vector α =
[
α1 ... αd

]T ∈ Rd and j ∈ {1, ..., d} denote by α|j

a vector from Rj given by α|j = [αd−j+1, . . . , αd]
T
. Observe that the sequence

t|j =
(
t(n, uj)|j

)
n∈N

is a solution of the system

(54) t(n+ 1) = A−T(n)
∣∣j t(n), n ∈ N,

with initial condition t(0, uj)|j = uj |j and

λA−T|j
(
uj |j

)
= λA−T (uj) for j = 1, ..., d.

Applying Lemma 27 to system (54) and taking into account the last equality, we
obtain

Ω(A−T
∣∣j) ≤ λA−T (uj) ≤ Ω(A−T

∣∣j).
Finally by Remark 13 we get (13). □

Proof of Corollary 16. Inequalities (14) and (16) follow from Theorem 14 and 3,
whereas inequalities (15) and (17) follow from Theorem 3 and Theorem 15 applied
to a normal fundamental matrix X. □

Proof of Theorem 17. Let X = (X(n))n∈N be any normal upper-triangular funda-
mental matrix of system (4). By Theorem 4 such a fundamental matrix exists.
Consider the lower-triangular fundamental matrix Y = X−T of the adjoint system
(5). Denote by xj = (xj(n))n∈N and yj = (yj(n))n∈N where xj(n)is the j−th col-
umn of X(n) and yj(n) is the j−th column of Y (n), j = 1, ..., d. Applying to X
and Y Lemma 22 we get

χ(xj) ≥ aj , χ(yj) ≥ −aj , j = 1, ..., d

and applying Theorem 15 we get

χ(xj) ≥ Ω(A|j), χ (yj) ≥ −ω(A|j),
therefore

(55) max
j=1,...,d

(χ (xj) + χ (yj)) ≥ max
j=1,...,d

∆aj

and

(56) max
j=1,...,d

(χ (xj) + χ (yj)) ≥ max
j=1,...,d

(
Ω
(
A|j
)
− ω

(
A|j
))

.

Since X is a normal fundamental matrix and Lyapunov exponents λA and λA−T

are dual (see Remark 11), then by Theorem 6 we know that

(57) σG(A) = max
i=1,...,d

(χ (xj) + χ (yj)) .

From (55) and (57) we obtain the left hand side of inequality (18) and from (56)
and (57) we obtain the left hand side of inequality (19).
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The right hand side of (18) has been proved in [5, Theorem 4.7]. To prove
the right hand side of (19) consider fundamental matrix X ′ = (X ′(n))n∈N from
Theorem 21. Applying the notations of this theorem and using (8) we have

(58) σG(A) ≤ max
j=1,...,d

(
χ
(
x′
j

)
+ χ

(
y′j
))

.

Moreover, since X ′ is upper-triangular then Y := (X ′)
−T

is lower-triangular and
we may apply Theorem 15 to get

χ
(
x′
j

)
+ χ

(
y′j
)
≤
(
Ω(A|j)− ω(A|j)

)
, j = 1, ...d

and consequently

max
j=1,...,d

(
χ
(
x′
j

)
+ χ

(
y′j
))

≤ max
j=1,...,d

(
Ω(A|j)− ω(A|j)

)
.

The last inequality together with (58) imply the right hand side of (19). □

5. Examples

In this section we will present examples proving that the upper estimates (10)
and (12) are independent. Similar examples may by provided for the other pairs of
bounds as itis stated in Remark 19.

Example 28. Consider any sequence a1 = (a1(n))n∈N ∈ LLya(N,R) such that
a1(n) > 0, n ∈ N and ∆a1 > 0, e.g.

a1(n) =


1 for n = 0,

e for n ∈
[
22k, 22k+1

)
,

e−1 for n ∈
[
22k+1, 22k+2

)
,

k ∈ N.

and define a2 = (a2(n))n∈N ∈ LLya(N,R), a2(n) = a1(n)e. Consider system (4)

with A = (A(n))n∈N ∈ LLya(N,R2), where A(n) =

[
a1(n) 0
0 a2(n)

]
. Then, we

have
λ1(A) = a1 and λ2(A) = a1 + 1

and

ϕAd
(n, k) =

n−1∏
j=k

a2(j), ϕ
Ad

(n, k) =

n−1∏
j=k

a1(j).

Consequently for any N ∈ N1 we have

1

n

n−1∑
i=0

lnϕAd
((i+ 1)N, iN) =

1

n

n−1∑
i=0

ln

(i+1)N−1∏
j=iN

a2(j) =
1

n

nN−1∑
i=0

ln a2(i).

By Lemma 25 we know that

lim sup
n→∞

1

n

nN−1∑
i=0

ln a2(i) = Na2,

therefore

Ω (A) = inf
N∈N1

1

N

(
lim sup
n→∞

1

n

n−1∑
i=0

lnϕAd
((i+ 1)N, iN)

)
= a2 = a1 + 1 = λ2(A).
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Similarly we may show that Ω (A) = a1. Applying inequality (10) from Theorem 14
for X = (ΦA (n, 0))n∈N and j = 2 we get

a1 + 1 ≤ λ2(A) ≤ a1 + 1 +∆a1,

whereas inequality (12) from Theorem 15 gives

a1 + 1 ≤ λ2(A) ≤ a2 = a1 + 1.

Thus, for the considered system, the estimate (10) gives a worse upper value than
the estimate (12), and for the lower estimates we have the opposite situation.

In the next example we will use the following result.

Lemma 29. For any sequence (a(n))n∈N ∈ L∞(N,R) we have

lim sup
n→∞

1

n

n−1∑
i=0

a(i) = lim sup
n→∞

1

Nn

Nn−1∑
i=0

a(i) for any N ∈ N.

Proof. Let K satisfy |a(i)| < K for all i ∈ N. For any natural number n ∈
(Nk, (k + 1)N ] we have∣∣∣∣∣ 1n

n−1∑
i=0

a(i)− 1

Nk

Nk−1∑
i=0

a(i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n−1∑
i=0

a(i)− 1

Nk

n−1∑
i=0

a(i)

∣∣∣∣∣+
∣∣∣∣∣ 1

Nk

n−1∑
i=0

a(i)− 1

Nk

Nk−1∑
i=0

a(i)

∣∣∣∣∣
≤

∣∣∣∣Nk − n

Nk

∣∣∣∣K +
n−Nk

Nk
K = 2

n−Nk

Nk
K →

k→∞
0

The last conclusion completes the proof of the lemma. □

Example 30. Fix real numbers a and b such that −b < a < 0 < b and consider sys-

tem (4) with A(n) =

[
1 0

0 a(n)

]
, where a(n) =

 ea if n ∈
[
(2k)

2
, (2k + 1)

2
)
,

eb if n ∈
[
(2k + 1)

2
, (2k + 2)

2
)
,

for k ∈ N. Denote e1 = [0, 1]T and e2 = [1, 0]T . It is clear that λA (e1) = 0. We
first show that

(59) λA (e2) =
a+ b

2
.

Observe that definition of the sequence (a(n))n∈N implies

n∏
i=0

a(i) =

 ea(n−2k2−k+1)+b(2k2+k) if n ∈
[
(2k)

2
, (2k + 1)

2
)
,

ea(2k
2+3k+1)+b(n−2k2−3k) if n ∈

[
(2k + 1)

2
, (2k + 2)

2
)
,

where k ∈ N. Since a < 0 < b, then for k ∈ N we have

ea(2k
2+3k+1) ≤ ea(n−2k2−k+1) ≤ ea(2k

2−k+1) if n ∈
[
(2k)

2
, (2k + 1)

2
)
,

eb(2k
2+k+1) ≤ eb(n−2k2−3k) ≤ eb(2k

2+5k+3) if n ∈
[
(2k + 1)

2
, (2k + 2)

2
)
,
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and consequently for n ∈
[
(2k)

2
, (2k + 1)

2
)

(60) ea(2k
2+3k+1)+b(2k2+k) ≤

n∏
i=0

a(i) ≤ ea(2k
2−k+1)+b(2k2+k)

and for n ∈
[
(2k + 1)

2
, (2k + 2)

2
)

(61) ea(2k
2+3k+1)+b(2k2+k+1) ≤

n∏
i=0

a(i) ≤ ea(2k
2+3k+1)+b(2k2+5k+3).

To prove (59), we consider an increasing sequence of natural number (nl)l∈N such
that

lim
l→∞

1

nl + 1
ln

nl∏
i=0

a(i) = λA (e2) .

Two cases are possible. There are infinite many l ∈ N such that there exists kl ∈
N with the property nl ∈

[
(2kl)

2
, (2kl + 1)

2
)
or there are infinite many l ∈ N such

that there exists kl ∈ N with the property nl ∈
[
(2kl + 1)

2
, (2kl + 2)

2
)
. Consider

the first case. Let (lm)m∈N be an increasing sequence of natural numbers such that

there exists klm ∈ N with the property nlm ∈
[
(2klm)

2
, (2klm + 1)

2
)
. By (60) we

have
(62)

a
2k2lm + 3klm + 1

nlm + 1
+b

2k2lm + klm
nlm + 1

≤ 1

nlm + 1
ln

nlm∏
i=0

a(i) ≤ a
2k2lm − klm + 1

nlm + 1
+b

2k2lm + klm
nlm + 1

.

Observe that the condition nlm ∈
[
(2klm)

2
, (2klm + 1)

2
)
, m ∈ N implies that

lim
m→∞

2k2lm + 3klm + 1

nlm + 1
= lim

m→∞

2k2lm + klm
nlm + 1

= lim
m→∞

2k2lm − klm + 1

nlm + 1
=

1

2
.

Passing to the limit when m tends to infinity in (62) we get (59). The consideration
in the second case are analogical but we use (61) instead of (60).

Next, we show that

(63) Ω(A) ≥ b

2
.

For a fix N ∈ N1 let us consider sequence RAd,N = (RAd,N (n))n∈N given by (32).

By (33) with n = (2l + 1)
2
and k = (2l)

2
, l ∈ N we get

1 ≤ a2N exp
(
RAd,N

(
(2l + 1)

2
)
−RAd,N

(
(2l)

2
))

and taking n = (2l + 2)
2
and k = (2l + 1)

2
we get

e(4l+3)b ≤ a2N exp
(
RAd,N

(
(2l + 2)

2
)
−RAd,N

(
(2l + 1)

2
))

.

Taking logarithm in the last two inequalities, summing them up for l = 0, ...,m,
dividing by (2m+ 2)

2
and passing to the upper limit when m tends to infinity we

obtain

b

2
≤ lim sup

m→∞

1

(2m+ 2)
2RAd,N

(
(2m+ 2)

2
)
≤ lim sup

m→∞

1

m
RAd,N (m) .
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From Lemma 29 and definition of RAd,N we know that

lim sup
m→∞

1

m
RAd,N (m) =

1

N
lim sup
m→∞

1

N
RAd,N (Nm)

and therefore

b

2
≤ 1

N
lim sup
m→∞

1

N
RAd,N (Nm) .

Taking infimum over N ∈ N1 and having in mind definition of Ω(A) we get (63).
Applying inequality (10) from Theorem 14 for X = (ΦA (n, 0))n∈N and j = 2 we

get λ2(A) ≤ a+b
2 , whereas inequality (12) from Theorem 15 gives λ2(A) ≤ b

2 . Since
a+b
2 < b

2 , then for the considered system, the estimate (10) gives a better upper
value than the estimate (12).
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[5] L. Barreira, C. Valls, Some applications of Lyapunov regularity, Electron. J. Differential

Equations (2022), Paper no. 19, 1-25.
[6] Yu. S. Bogdanov, Lyapunov’s norms in linear spaces, Dokl. Akad. Nauk SSSR 113 (1957),

no. 2, 255–257. (Russian)

[7] Yu. S. Bogdanov, Lyapunov’s norms in linear spaces, Mat. Sb. (N.S.) 49 (1959), no. 2, 225–
231. (Russian)

[8] B. F. Bylov, R. E. Vinograd, D. M. Grobman, and V. V. Nemytskii, Theory of Lyapunov

Exponents and Its Applications to Stability Theory, Moscow, Nauka, 1966. (Russian)
[9] A. Czornik and A. Nawrat, On the perturbations preserving spectrum of discrete linear

systems, J. Difference Equ. Appl. 17 (2011), no. 1, 57–67.
[10] A. Czornik, Perturbation Theory for Lyapunov Exponents of Discrete Linear Systems,

Wydawnictwa AGH, Kraków, 2012.

[11] A. Czornik and M. Niezabitowski, On the spectrum of discrete time-varying linear systems,
Nonlinear Analysis: Hybrid Systems 9 (2013), 27-41.

[12] A. Czornik, M. Niezabitowski, A. Vaidzelevich, Description of relations between regularity

coefficients of time-varying linear systems, Mathematische Nachrichten 292 (2018), Issue 1,
8-21.

[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

1985.
[14] N.A. Izobov,Lyapunov Exponents and Stability, Cambridge Scientific Publishers, 2012.
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