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Abstract

In this note, we consider a uniformly completely controllable linear system. For this system, we show the existence of a linear
state feedback such that the corresponding closed-loop system is kinematically equivalent to a linear time-invariant system
whose spectrum is a prior set of distinct real numbers.
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1 Introduction

For linear time-invariant systems one of the basic method of control design is the so-called pole placement method.
The theoretical basis for this method is the fact that the controllability of the linear time-invariant system is
equivalent to the fact that for each set of complex numbers with cardinality equal to the dimension of the state
vector and symmetric relative to the real axis, there is a stationary feedback such that the poles of the closed-loop
system form this set (see [25]).

Recently, many researchers have attempted to generalize this methodology to systems with variable coefficients. In
these works uniformly completely controllable systems were considered, and as the equivalent of poles the Lyapunov
spectrum (see [4] for discrete- time systems and [18] for continuous-time systems) or the spectrum of uniform
exponential dichotomy (see [6] for discrete-time systems and [5] for continuous-time systems) was adopted. The
results of these works show that uniform complete controllability is a necessary and sufficient condition for the
assignability of the uniform exponential dichotomy spectrum and sufficient but not necessary for the assignability
of the Lyapunov spectrum. The last fact suggests to investigate what, apart from the assignability of the Lyapunov
spectrum, can be achieved in control systems which are uniformly completely controllable. In this paper we try to
answer the last question partially.

The main result of this work is that uniform complete controllability of a system with bounded coefficients, both
for continuous and discrete systems, implies the existence of a bounded feedback that guarantees the kinematic
similarity of the closed-loop system to any predetermined stationary diagonal system. It should be emphasized that
the concept of kinematic equivalence ensures the preservation of many dynamic properties, including stability and
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asymptotic stability. Furthermore, it is known that reducibility of linear time-varying systems under kinematic equiv-
alent transformations (see e.g. [9,10,23]) played an important ingredient in establishing many aspects of qualitative
theory such as linearization theory [12,21], invariant manifold theory [2], normal form theory [24].

The problem of converting a time-varying control system to a given time-invariant system by choosing an appropriate
feedback was already discussed in the literature (see [27], [28], [20], [17], [19]). In these works, the authors show that,
assuming only controllability for continuous-time case or complete reachability for discrete-time systems, one can
find a feedback which guarantees that the closed-loop system can be reduced to a stationary system with any
predetermined poles through a linear state transformation. The results of these works, however, do not provide
the conditions when this linear state transformation will be bounded together with the inverse and then it will
maintain such a dynamic property as stability. If this linear state transformation is not bounded, or the inverse
transformation thereto is not bounded, it may be that the closed system is stable and the stationary system will not
have this property, or vice versa (See Remark 10 in Section 3 for more details).

The paper is organized as follows: In the first part of Section 2, we state the problem and the result in assigning
spectrum of continuous-time time-varying linear control systems via kinematic equivalence. A proof of this result is
given in the second part of Section 2. A corresponding result for assignment of spectrum for discrete-time time-varying
linear control systems via kinematic equivalence is stated and briefly proved in Section 3.

2 Assignment of spectrum for continuous-time time-varying linear control systems via kinematic
equivalence

2.1 Preliminaries and the statement of the main results

For d, s ∈ N, letKCd,s(R) denote the set of bounded and piecewise continuous matrix-valued functionsM : R → Rd×s.
Consider a linear time-varying system described by the following equation

·
x = A(t)x+B(t)u, t ∈ R, (1)

where A ∈ KCd,d(R), B ∈ KCd,s(R) and u ∈ KCs,1(R) is the control. For (t0, x0) ∈ R×Rd the solution of system (1)
satisfying x(t0) = x0, will be denoted by x(·, t0, x0, u). An important notion relating to (1) called uniform complete
controllability is stated below, see [16].

Definition 1 (Uniform complete controllability) System (1) is called uniformly completely controllable if there
exist α,K > 0 such that for all (t0, ξ) ∈ R×Rd there exists a piecewise continuous control u : [t0, t0 +K] → Rs such
that x(t0 +K, t0, 0, u) = ξ and

∥u(t)∥ ≤ α∥ξ∥, t ∈ [t0, t0 +K] .

If in system (1) we apply a control of the form

u(t) = F (t)x(t),

where the feedback F : R → Rs×d is bounded piecewise continuous, we obtain a so called closed loop system

·
x = (A(t) +B(t)F (t))x. (2)

Our interest in this paper is to know the possibility of the dynamics generated by (2) via time-varying bounded linear
state feedback. To formulate the main result of this paper, we introduce the kinematic equivalence notion between
two continuous time-varying systems. This notion is a well-studied concept and preserves many dynamical properties
of linear systems such as Lyapunov spectrum (see e.g. [1, P. 44]) and dichotomy spectrum (see [23, Corollary 2.1]).
Let L(R,Rd×d) denote the set of bounded, invertible and piecewise C1 function T : R → Rd×d, i.e. there exists L > 0
such that

max

{
sup
t∈R

∥T (t)∥, sup
t∈R

∥T−1(t)∥, sup
t∈R

∥Ṫ (t)∥
}

≤ L.

These functions are also known as Lyapunov transformations, see [1, Definition 3.1.1]. Now, we introduce a notion
of equivalence between continuous time-varying linear systems.
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Definition 2 Consider two linear continuous-time time-varying systems

ẋ = M(t)x, ẏ = N(t)y, (3)

where M,N ∈ KCd,d(R). They are said to be kinematically equivalent if there exists T ∈ L(R,Rd×d) such that

Ṫ (t) = N(t)T (t)− T (t)M(t) for t ∈ R.

Remark 3 Let XM (·, ·), XN (·, ·) : R× R → Rd×d denote the evolution matrices of two systems in (3), i.e. for any
ξ, η ∈ Rd and s ∈ R, XM (·, s)ξ and XN (·, s)η solve, respectively, the following equations with initial values

ẋ = M(t)x, x(s) = ξ

and
ẏ = N(t)x, y(s) = η.

If two systems in (3) are kinematically equivalent via transformation T ∈ L(R,Rd×d) then

T (t)XM (t, s) = XN (t, s)T (s) for all t, s ∈ R,

see e.g. [23, Lemma 2.1]. It means that the family of linear bounded maps (T (t))t∈R transforms the solution XM (·, s)ξ
of ẋ = M(t)x to the solution XN (·, s)T (s)ξ of ẏ = N(t)y.

We are now in a position to state the main result of this paper about a version of pole placement theorem for
continuous-time time-varying control systems under kinematically equivalent transformations. In this result, we
require a technical condition on the coefficients of (1) that B : R → Rd×s is piecewise uniformly continuous, i.e.
there exists a ∆0 > 0 such that the length of each continuity interval Ij (j ∈ J ⊂ N) of the function B satisfies the
inequality |Ij | ≥ ∆0, and for each ε > 0, there exists a δ = δ(ε) > 0 such that ∥B(t)−B(s)∥ ≤ ε for each j ∈ J and
for all t, s ∈ Ij satisfying the inequality |t− s| ≤ δ.

Theorem 4 Suppose that system (1) is uniformly complete controllable. Assume that B : R → Rd×s is piecewise
uniformly continuous and bounded. Let σ = (λ1, . . . , λd), where λd < λd−1 < · · · < λ1, be an arbitrary collection of
d real numbers. Then, there exists a feedback F ∈ KCs,d(R) such that the closed-loop system

ẋ(t) = (A(t) +B(t)F (t))x(t), t ∈ R

is kinematically equivalent to a time-invariant system

ẋ = Λx, where Λ = diag(λ1, . . . , λd).

2.2 Proof of assignment of spectrum for continuous-time time-varying linear control systems via kinematic equiva-
lence

The first key ingredient in the proof of our main result is taken from [22, Theorem 1] and [18] in which the authors
showed that for a uniformly completely controllable time-varying control system there exists a feedback such that
the corresponding closed-loop system is kinematically equivalent to an upper-triangular linear system with given
diagonal entries.

Theorem 5 If system (1) is uniformly completely controllable and B is piecewise uniformly continuous, then for
arbitrary functions pi ∈ KC1,1(R), i = 1, ..., d, there exists a feedback F ∈ KCs,d(R) such that the closed system (2)
is kinematically equivalent to a system with an upper triangular piecewise continuous bounded matrix function whose
diagonal coincides with (p1, ..., pd).

Thanks to the above result, to gain the proof of Theorem 4 it remains to deal with the problem of equivalence
between two upper-triangular linear systems. Then, the second key ingredient in the proof of Theorem 4 is stated
and proved in the following proposition.
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Proposition 6 Let λ1 > · · · > λd be d distinct real numbers. Let C,D ∈ KCd,d(R) be of the following forms

C(t) :=



λ1 c12(t) . . . c1(d−1)(t) c1d(t)

0 λ2 . . . c2(d−1)(t) c2d(t)
...

...
. . .

...
...

0 0 . . . λd−1 c(d−1)d(t)

0 0 . . . 0 λd


,

D(t) :=



λ1 c12(t) . . . c1(d−1)(t) 0

0 λ2 . . . c2(d−1)(t) 0
...

...
. . .

...
...

0 0 . . . λd−1 0

0 0 . . . 0 λd


.

Then, two systems
·
x = C(t)x,

·
y = D(t)y (4)

are kinematically equivalent.

Proof. To show that two systems in (4) are kinematically equivalent, we need to construct a Lyapunov transformation
T ∈ L(R,Rd×d) such that

·
T (t) = C(t)T (t)− T (t)D(t) for all t ∈ R. (5)

Here, we let T (t) be of the following form

T (t) :=



1 0 . . . 0 γ1(t)

0 1 . . . 0 γ2(t)
...
...
. . .

...
...

0 0 . . . 1 γd−1(t)

0 0 . . . 0 1


, (6)

where the functions γ1(·), . . . , γd−1(·) are determined later. A direct computation yields that a necessary and sufficient
condition for T ∈ L(R,Rd×d) is that

max

{
sup
t∈R

|γi(t)|, sup
t∈R

| ·γi(t)|
}

< ∞ for i = 1, . . . , d− 1. (7)

Meanwhile, to gain the equality (5) with T of the form as in (6), the functions γ1(·), . . . , γd−1(·) must satisfy for
i = 1, ..., d− 1

·
γi(t) = (λi − λd) γi(t) +

d∑
j=i+1

cij(t)γj(t), (8)

where we use the convention that γd(t) = 1 for t ∈ R. To conclude the proof, we will construct step by step
γd−1(·), . . . , γ1(·) satisfying (7) and (8).

Initial step: In this step, we construct γd−1. Replacing i = d− 1 into (8), we arrive at

·
γd−1(t) = (λd−1 − λd) γd−1(t) + c(d−1)d(t). (9)
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A general form of the solution of the above equation is

γd−1(t) = e(λd−1−λd)t ×(
γd−1(0) +

∫ t

0

e−(λd−1−λd)sc(d−1)d(s)ds

)
.

Choose γd−1(0) = −
∫∞
0

e−(λd−1−λd)sc(d−1)d(s) ds, where the existence of the infinite integral comes from the fact
that λd−1 > λd. Thus, we obtain the following solution of (9)

γd−1(t) = −
∫ ∞

t

e(λd−1−λd)(t−s)c(d−1)d(s) ds.

Since λd−1 > λd and c(d−1)d(·) is bounded it follows that

sup
t∈R

|γd−1(t)| ≤
1

λd−1 − λd
sup
t∈R

|c(d−1)d(t)|.

Thus, by (9) we have

sup
t∈R

|γ̇d−1(t)| ≤ 2 sup
t∈R

|c(d−1)d(t)|.

Therefore, there exists a function γd−1(t) satisfying (7) and (9).

Induction step: Suppose that γd−1(·), . . . , γk+1(·) have been constructed satisfying (8) for i = d− 1, . . . , k + 1 and

max

{
sup
t∈R

|γi(t)|, sup
t∈R

| ·γi(t)|
}

< ∞ for i = d− 1, . . . , k + 1.

We need to construct a function γk(t) satisfying (7) and (8), i.e.

·
γk(t) = (λk − λd) γk(t) + β(t), for t ∈ R, (10)

where β(t) :=
∑d

j=k+1 ckj(t)γj(t) was determined. Analog to the construction in the initial step we choose the initial

value γk(0) for (10) as

γk(0) = −
∫ ∞

0

e−(λk−λd)sβ(s) ds.

For this choice, we receive the following solution of (10)

γk(t) = −
∫ ∞

t

e(λk−λd)(t−s)β(s) ds.

A direct computation yields that

sup
t∈R

|γk(t)| ≤
supt∈R |β(t)|

λk − λd
, sup
t∈R

|γ̇k(t)| ≤ 2 sup
t∈R

|β(t)|.

Thus, γk(t) has been constructed and satisfies both (7) and (8). The proof is complete.

We are now in a position to prove Theorem 4.

Proof of Theorem 4. From Theorem 5, there exists a feedback F ∈ KCs,d(R) and an upper triangular piecewise
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continuous bounded matrix function C of the form

C(t) :=



λ1 c12(t) . . . c1(d−1)(t) c1d(t)

0 λ2 . . . c2(d−1) (t) c2d(t)
...

...
. . .

...
...

0 0 . . . λd−1 c(d−1)d(t)

0 0 . . . 0 λd


such that the closed-loop system

·
x = (A(t) +B(t)F (t)))x (11)

is kinematically equivalent to the system
·
y = C(t)y. (12)

By Proposition 6, system (12) is kinematically equivalent to

·
z =



λ1 c12(t) . . . c1(d−1)(t) 0

0 λ2 . . . c2(d−1)(t) 0
...

...
. . .

...
...

0 0 . . . λd−1 0

0 0 . . . 0 λd


z. (13)

Fixing the d-th component of z and applying Proposition 6 to the subsystems corresponding the the first d − 1
component of z, we see that (13) is kinematically equivalent to

·
w =



λ1 c12(t) . . . c1(d−2)(t) 0 0

0 λ2 . . . c2(d−2)(t) 0 0
...

...
. . .

...
... 0

0 0 . . . λd−2 0 0

0 0 . . . 0 λd−1 0

0 0 . . . 0 0 λd


w.

Applying this procedure d−2 times more, we arrive that (11) is kinematically equivalent to the time-invariant system

ẋ = Λx, where Λ = diag(λ1, . . . , λd).

The proof is complete.

Remark 7 In the above proof, the control law F (t) achieving the equivalence in Theorem 4 came from a theoretical
result stated in Theorem 5. This control law is constructed implicitly and it is challenging and unclear to the authors
how to derive an explicit one.

3 Corresponding result for assignment of spectrum for discrete-time time-varying linear control
systems via kinematic equivalence

This section is devoted to stating a corresponding result for assignment of spectrum for discrete-time time-varying
linear control systems. We only provide a sketch of the proof of this result since the structure of the proof is quite
similar to the proof of Theorem 4.
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For d, s ∈ N, let L∞(Z,Rd×s) denote the space of bounded sequences of matrices M = (Mn)n∈Z with Mn ∈ Rd×s

satisfying that
∥M∥∞ := sup

n∈Z
∥Mn∥ < ∞.

For d ∈ N, let LLya(Z,Rd×d) denote the set of all Lyapunov sequences M = (Mn)n∈Z in Rd×d, i.e. M ∈ L∞(Z,Rd×d)
and its inverse sequence M−1 := (M−1

n )n∈Z exists and M−1 ∈ L∞(Z,Rd×d).

Consider a linear discrete-time time-varying system described by the following equation

x(n+ 1) = A(n)x(n) +B(n)u(n), n ∈ Z, (14)

where A = (A(n))n∈Z ∈ LLya(Z,Rd×d) and B = (B(n))n∈Z ∈ L∞(Z,Rd×s) and the control u = (u(n))n∈Z ∈
L∞(Z,Rs). Let x(n, n0, ξ, u) denote the solution of (14) satisfying that x(n0, n0, ξ, u) = ξ. Now, we recall the notion
of uniform complete controllability of (14), see also [3].

Definition 8 (Uniform complete controllability) System (14) is called uniformly completely controllable if
there exist a positive number α and a natural number K such that for all ξ ∈ Rd and k0 ∈ Z there exists a control
sequence u(n), n = k0, k0 + 1, . . . , k0 +K − 1 such that x(k0 +K, k0, 0, u) = ξ and

∥u(n)∥ ≤ α∥ξ∥ for all n = k0, k0 + 1, . . . , k0 +K − 1.

For a feedback U = (U(n))n∈Z ∈ L∞(Z,Rs×d), the corresponding closed-loop system is

x(n+ 1) = (A(n) +B(n)U(n))x(n). (15)

The feedback U ∈ L∞(Z,Rs×d) is called admissible if A+BU := (A(n) +B(n)U(n))n∈Z ∈ LLya(Z,Rd×d).

Now, we state and provide a sketch of proof of a corresponding result of Theorem 4 for discrete time-varying linear
control systems.

Theorem 9 Suppose that system (14) is uniformly completely controllable. Let σ = (λ1, . . . , λd), where |λd| <
|λd−1| < · · · < |λ1|, be an arbitrary collection of d non-zero real numbers. Then, there exists an admissible feedback
U such that the closed-loop system

x(n+ 1) = (A(n) +B(n)U(n))x(n) n ∈ Z

is kinematically equivalent 1 to a time-invariant system

y(n+ 1) = Λy(n), where Λ = diag(λ1, . . . , λd).

Sketch of proof. Using [3, Theorem 4.6], there exist an admissible feedback U and a upper-triangular matrix
(C(n))n∈Z of the form

C(n) :=



λ1 c12(n) . . . c1(d−1)(n) c1d(n)

0 λ2 . . . c2(d−1) c2d(n)
...

...
. . .

...
...

0 0 . . . λd−1 c(d−1)d(n)

0 0 . . . 0 λd


1 Two systems

x(n+ 1) = M(n)x(n), y(n+ 1) = N(n)y(n),M,N ∈ LLya(Z,Rd×d)

are called kinematically equivalent if there exists a Lyapunov sequence (T (n))n∈Z ∈ LLya(Z,Rd×d) such that C(n) = T−1(n+
1)A(n)T (n) for n ∈ Z.
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such that the closed-loop system
x(n+ 1) = (A(n) +B(n)U(n))x(n) (16)

is kinematically equivalent to the equation

y(n+ 1) = C(n)y(n). (17)

Using a corresponding result of Proposition 6 for discrete-time time-varying linear systems, system (16) is kinemat-
ically equivalent to the system z(n+ 1) = Λz(n), where Λ = diag(λ1, . . . , λd). The proof is complete.

Remark 10 Consider an one dimensional (d = s = 1) system

x(n+ 1) = x(n) +
1

n2 + 1
u(n), n ∈ Z. (18)

It is clear that system (18) is completely reachable (see [19, Definition 2.1]). Thus, by [27], [28], [20], [17], [19], there
exists a linear state-feedback which guarantees that the closed-loop system can be reduced to a stationary system with
any predetermined poles through a linear state transformation (possibly not Lyapunov). In fact, we show below that
it is impossible in designing an admissible feedback u(n) = f(n)x(n) such that the corresponding closed loop system

x(n+ 1) =

(
1 +

f(n)

n2 + 1

)
x(n), n ∈ Z (19)

is kinematically equivalent to system
y(n+ 1) = 2y(n), n ∈ Z. (20)

Suppose the contrary, i.e. there exists a Lyapunov transformation t = (t(n))n∈Z which establishes the kinematic
equivalence of (19) and (20). Thus,

2 =
t(n)

t (n+ 1)

(
1 +

f(n)

n2 + 1

)
.

Equivalently, we have

2

∣∣∣∣ t (n+ 1)

t(n)

∣∣∣∣ = ∣∣∣∣1 + f(n)

n2 + 1

∣∣∣∣ . (21)

Observe that

lim
n→∞

∣∣∣∣ t (n+ 1)

t(n)

∣∣∣∣ = 1.

Indeed, if lim sup
n→∞

∣∣∣ t(n+1)
t(n)

∣∣∣ > 1, then (t(n))n∈Z is unbounded and if lim inf
n→∞

∣∣∣ t(n+1)
t(n)

∣∣∣ < 1, then (t−1(n))n∈Z is unbounded.

Equality 21 leads to contradiction, since the right hand side tends to 1, when n tends to infinity, whereas the left
hand side tends to 2.

4 Example

Example 11 Consider system (1) with

A(t) =

− 2esin t+t2esin t+2t2+3
t2+1 esin t + 1

− (t2+2)
2
(esin t+1)

(t2+1)2
sin t

 , B(t) =

(
0

1

)

for t ∈ R. It is clear that A is bounded and continuous. Using the definition of uniform complete controllability we can
also verify that this system is uniformly complete controllable. Suppose that we want to find an admissible feedback U
such that the closed-loop system is kinematically equivalent to diagonal time invariant system with coefficient matrix(
−1 0

0 −2

)
.
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Observe that for

U(t) =
(

t4+3t2−2t+2
(t2+1)2

− sin t−2esin t+t2 sin t−t2esin t+t2

t2+1

)
, t ∈ R

and

T1(t) =

(
1 0

1 + 1
1+t2 1

)
, t ∈ R.

we have (
−1 esin t + 1

0 −2

)
= T−1

1 (t) (A+BK)T1(t)− T−1
1 (t)Ṫ1(t).

Finally according to proof of Proposition 6 we will find a Lyapunov transformation T2 such that

T−1
2 (t)

(
−1 esin t + 1

0 −2

)
T2(t)− T−1

2 (t)Ṫ2(t) =

(
−1 0

0 −2

)
.

This transformation has the form T2(t) =

(
1 τ(t)

0 1

)
, where τ is the unique global and bounded solution of the

equation
·
τ(t) = τ(t) + esin t + 1.

Example 12 Consider system (14) with

A(n) =

 1 3
2(1+sin2 n)

sin2 n 5

 , B(n) ≡

(
0

1

)
,

where n ∈ Z. It is clear that sequence (A(n))n∈Z is bounded. Calculating detA(n) we can show that detA(n) > 3,

n ∈ Z, therefore A = (A(n))n∈Z ∈ LLya(Z,R2×2). Using the definition of uniform complete controllability with
K = 2 we can also verify that this system is uniformly complete controllable. Suppose that we want to find an
admissible feedback U = (U(n))n∈Z such that the closed-loop system is kinematically equivalent to diagonal time

invariant system with coefficient matrix

(
1
2 0

0 1
3

)
.

Following the proof of [3, Theorem 4.6], we find an admissible feedback U and the Lyapunov transformation T1 =
(T1(n))n∈Z such that the closed-loop system is kinematically equivalent to the upper triangular system with elements

on the main diagonal equal to 1
2 and 1

3 . The results are as follows U(n) = (u1(n) u2(n)), where for n ∈ Z

u1(n) := 1
6 cos (2n+ 2) + 4

9 cos 2n− 5
6 ,

u2(n) := − 3 cos(2n+2)+28 cos 2n−93
6 cos 2n−18

and

T1(n) =

(
1
2 0

− 1
6 sin

2 n− 1
6

1
3

)
, n ∈ Z.

With these U and T1 we have(
1
2

1
1+sin2 n

0 1
3

)
= T−1

1 (n+ 1) (A(n) +B(n)U(n))T1(n).
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Finally according to proof of Proposition 6 we will find a Lyapunov transformation T2 = (T2(n))n∈Z such that

T−1
2 (n+ 1)

(
1
2

1
1+sin2 n

0 1
3

)
T2(n) =

(
1
2 0

0 1
3

)
, n ∈ Z.

This transformation has the form T2(n) =

(
1 t(n)

0 1

)
, where t = (t(n))n∈Z is the unique global and bounded solution

of the equation

t(n+ 1) =
3

2
t(n) +

3

1 + sin2 n
, n ∈ Z.

Conclusion

In this paper we consider linear systems with variable coefficients in both continuous and discrete time. In the
continuous case we assume that the coefficients are bounded, and in the discrete case, additionally, that the coefficients
at the state coordinate form a Lyapunov sequence. The main result says uniform complete controllability is a
sufficient condition for the existence of a feedback loop guaranteeing the dynamic equivalence of a closed system
with a predetermined stationary diagonal system with pairwise different elements on the main diagonal. The main
achievement of this work in comparison with the results existing in the literature is that our approach guarantees
that the transformation between the closed system and a given diagonal system is a Lyapunov transformation and
thus maintains many properties of the dynamical system, including asymptotic stability.

It should be noted that our result is limited to assignment of spectra consisting only distinct eigenvalues and it
remains open to know whether assignment of arbitrary spectra which possibly contain complex eigenvalues. Open
questions are also how to construct explicitly linear state feedback for the assignment of arbitrary spectra and
whether uniform complete controllability is a necessary condition for the considered type of spectrum assignability.

Acknowledgement

The authors would like to thank the anonymous referees for useful comments and suggestions which help in improving
presentation of the paper. The work of Thai Son Doan and Nguyen Thi Thu Suong is supported by Vietnam Academy
of Science and Technology under the grant number CTTH00.03/23-24. The work of Thai Son Doan is partially
supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2020.DA16.

References

[1] L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translated from the Russian by Peter Zhevandrov,
Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995.
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