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Abstract
We study a nonconvex mixed variational inequality problem in Rn

by using monotonic optimization approach. We show that a class of
variational inequality problems can be transformed into a monotonic
optimization problem and then propose a branch-reduce-and-bound
algorithm as a solution approach. The convergence result of the algo-
rithm is established under monotonic assumptions on the cost and con-
straint functions. Applications to two equilibrium models are presented.
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1 Introduction
Throughout this paper, the inequalities between vectors are componentwise.
More precisely, for any two vectors x, y ∈ Rn, we write x ≤ y (resp., x ≥ y) if
xi ≤ yi (resp., xi ≥ yi) for all i = 1, . . . , n. If x ≤ y, then the box [x, y] is the
set of all z ∈ Rn satisfying x ≤ z ≤ y. We denote Rn

+ := {x ∈ Rn | x ≤ 0}. Let
C be a nonempty closed subset of a given box [u, v] ⊂ Rn

+, F : [u, v] → Rn
+,

and g : [u, v] → R. We are concerned with the following mixed variational
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inequality problem:

Find x∗ ∈ C such that ⟨F (x∗), y − x∗⟩+ g(y)− g(x∗) ≥ 0 ∀y ∈ C. (MVI)

This problem has various applications in electronics circuits and energy control
problems (see [1, 2]). Additionally, some general economic and oligopolistic
equilibrium problems can be transformed into (MVI). Note that g(x) may be
not convex when the cost function or the benefit function of these models is
not convex (see [3–6]). When (MVI) is convex (i.e., when C is convex and
⟨F (x), y−x⟩+ g(y)− g(x) is convex with respect to y), many algorithms have
been introduced for solving it. Among them, the projection, extragradient,
and proximal point algorithms are widely used (see [7–15] and the references
therein). However, to get convergent results, most of these algorithms require
monotonicity and Lipschitz continuity of the cost mapping F . In case that
⟨F (x), · − x⟩+ g(·)− g(x) is quasiconvex, several algorithms for (MVI) can be
found in [4, 16–19]. All of these iterative algorithms share a common drawback:
at each iteration, they require solving non-convex subproblems that are global
optimization problems and computationally expensive.

In case F ≡ 0, (MVI) becomes an optimization problem

min{g(x) : x ∈ C}. (OP)

The function g : [u, v] → R is said to be increasing if g(x) ≤ g(y) whenever
u ≤ x ≤ y ≤ v. Monotonic functions abound in economics, engineering, com-
munications, and information, see [20–25]. When g(x) is increasing on [u, v]
and C is defined by

C := {x ∈ [u, v] | r(x) ≤ 0 ≤ h(x)}, (1)

in which r : [u, v] → R is a lower semicontinuous increasing function and
h : [u, v] → R is an upper semicontinuous increasing function, (OP) becomes
a monotonic optimization as defined in [26]. This is a nonconvex optimization
problem which can be solved by monotonic optimization algorithms such as
polyblock algorithm, rectangular branch-and-bound, and branch-reduce-and-
bound ([23, 26–28]). These are global optimization methods that are often
computationally expensive. However, they can be applied to (OP) with very
lenient assumptions that most iterative algorithms for quasiconvex or convex
optimization problems cannot use.

Inspired and motivated by the pioneer research of Tuy [26], in this paper
we use the monotonic optimization approach to study (MVI) where Fi(i =
1, . . . , n) and g are increasing functions on [u, v], while C is defined by (1). Such
(MVI) is called monotonic mixed variational inequality. It is worth noting that
the monotonic (MVI) differs from the monotone one whose cost mapping F is
monotone in the usual sense as Rockafellar [29], i.e., ⟨F (x)− F (y), x− y⟩ ≥ 0
for all x, y ∈ C. We show that this monotonic mixed variational inequality
problem can be transformed into a monotonic optimization problem, then
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we develop a modified branch-reduce-and-bound algorithm for the monotonic
(MVI). The convergence theorem of this algorithm is established. It is worth
emphasizing that, with the above hypotheses for monotonic (MVI), most of
the existing projection, extragradient, point proximal algorithms, and many
iterative algorithms for (MVI) cannot be applied since they are designed for
monotone F and convex C. We furthermore point out that the monotonic
(MVI) appears naturally in some important practical problems including the
oligopolistic Nash-Cournot equilibrium model and Bertrand one.

The organization of the paper is as follows. In Section 2 we recall some
preliminaries in monotonic optimization theory, then show the equivalence
between the monotonic variational inequality problem and a monotonic opti-
mization problem. Section 3 is devoted to describing our algorithm for solving
the monotonic (MVI) and proving its convergence results. The selected
applications of the monotonic (MVI) are presented in the last section.

2 Monotonic optimization approach
We first recall some preliminaries in monotonic optimization.

Definition 1 (see e.g. [26]) Given a box [a, b] in Rn. A subset G ⊆ [a, b] is said to be

(i) normal if x ∈ G whenever a ≤ x ≤ x′ for any x′ ∈ G,
(ii) conormal if x ∈ G whenever x′ ≤ x ≤ b for any x′ ∈ G.

Proposition 2 (Proposition 5, [26]) Let f be an increasing function on Rn
+. Then

the following assertions hold.

(i) The set {x ∈ Rn
+ | f(x) ≤ 1} is normal and it is closed if f is lower

semicontinuous.
(ii) The set {x ∈ Rn

+ | f(x) ≥ 1} is conormal and it is closed if f is upper
semicontinuous.

Proposition 3 (Proposition 1, [26])

(i) If f and g are increasing functions, then so is the function αf + βg for any
α, β ≥ 0.

(ii) The pointwise supremum of a bounded above family (fα)α∈A of increasing
functions is increasing.

(iii) The pointwise infimum of a bounded below family (fα)α∈A of increasing
functions is increasing.

Let us now consider the problem (MVI). We need the following setup for
the discussion in sequel.

V := ⟨F (v), v⟩+ g(v)− ⟨F (u), u⟩ − g(u),
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a := (u, 0), b := (v, V ),

r̄(x, t) := max{r(x), t+ ⟨F (x), x⟩+ g(x)− V }, h̄(x, t) := h(x),

R := {(x, t) ∈ [a, b] | r̄(x, t) ≤ 0}, H := {(x, t) ∈ [a, b] | h̄(x, t) ≥ 0},
p(x) := inf{⟨F (x), y⟩+ g(y) | y ∈ C}, f(x, t) := p(x) + t.

Lemma 4 Suppose that Fi is increasing upper semicontinuous and non-negative on
[u, v] for every i = 1, . . . , n and g is increasing upper semicontinuous on [u, v]. Then
the following statements hold.

(i) f(x, t) is an increasing upper semicontinuous function on [a, b].
(ii) R is a normal set and H is a conormal set.

Proof (i) Keeping in mind the non-negativity of Fi(i = 1, . . . , n) on [u, v] ⊂ Rn
+,

since these functions and g are increasing on [u, v], so is ⟨F (x), x⟩+g(x) with respect
to x. Hence V = ⟨F (v), v⟩+ g(v)− ⟨F (u), u⟩ − g(u) ≥ 0 and a = (u, 0) ≤ b = (v, V ).

Let x1, x2 ∈ [u, v] with x1 ≤ x2. By non-negativity and monotonicity of Fi on
[u, v] (for i = 1, . . . , n), we have

⟨F (x1), y⟩ ≤ ⟨F (x2), y⟩ ∀y ∈ C ⊂ [u, v],

and consequently
p(x1) = inf{⟨F (x1), y⟩+ g(y) | y ∈ C} ≤ inf{⟨F (x2), y⟩+ g(y) | y ∈ C} = p(x2).

It means that p(x) is an increasing function on [u, v]. As a consequence, the function
f(x, t) = p(x)+t is increasing on [a, b]. In the following we prove that f(x, t) is upper
semicontinuous on [a, b].

Let ℓi(x, y) := Fi(x)yi with i = 1, . . . , n, and let (x̄, ȳ) be an arbitrary point
in [u, v] × [u, v]. Let {xk} and {yk} be sequences in [u, v] respectively converging
to x̄ and ȳ. By increasing monotonicity of Fi, we have Fi(u) ≤ Fi(x

k) ≤ Fi(v)
for all k. The boundedness of {Fi(x

k)} and the convergence of {yki } to ȳi give us
lim supFi(x

k)(yki − ȳi) = 0. In case ȳi = 0, we obtain
lim sup ℓi(x

k, yk) = lim supFi(x
k)yki = 0 = Fi(x̄)ȳi = ℓi(x̄, ȳ). (2)

In case ȳi > 0, since Fi(x
k)yki = Fi(x

k)ȳi + Fi(x
k)(yki − ȳi), we obtain

lim sup ℓi(x
k, yk) = lim supFi(x

k)yki

≤ lim supFi(x
k)ȳi + lim supFi(x

k)(yki − ȳi)

= lim supFi(x
k)ȳi ≤ Fi(x̄)ȳi = ℓi(x̄, ȳ). (3)

The last inequality above is due to the upper semicontinuity of Fi. By (2) and (3)
we have the upper semicontinuity of ℓi(x, y) at (x̄, ȳ). Consequently, ⟨F (x), y⟩ =∑n

i=1 Fi(x)yi =
∑n

i=1 ℓi(x, y) is also upper semicontinuous at (x̄, ȳ). Together with
the upper semicontinuity of g, it follows that ⟨F (x), y⟩+g(y) is upper semicontinuous
at (x̄, ȳ). Since (x̄, ȳ) is chosen arbitrarily in [u, v] × [u, v], we obtain the upper
semicontinuity of ⟨F (x), y⟩+ g(y) on {x̄} × [u, v].

We now show that p(x) is upper semicontinuous at x̄. We consider separately
two cases where this infimum is finite or infinite at x̄.

In case p(x̄) > −∞, let ϵ > 0 and a sequence {xj} in [u, v] converging to x̄, then
we can choose y∗ ∈ C such that

p(x̄) + ϵ = inf{⟨F (x̄), y⟩+ g(y) | y ∈ [u, v]}+ ϵ ≥ ⟨F (x̄), y∗⟩+ g(y∗). (4)



Springer Nature 2021 LATEX template

Monotonic mixed variational inequality problems 5

Taking an arbitrary sequence {yj} in C converging to y∗, we have

lim sup p(xj) = lim sup inf{⟨F (xj), y⟩+ g(y) | y ∈ [u, v]}

≤ lim sup {⟨F (xj), yj⟩+ g(yj) | j ∈ N}
≤ ⟨F (x̄), y∗⟩+ g(y∗). (5)

The last inequality above is due to the upper semicontinuity of ⟨F (x), y⟩ + g(y) at
(x̄, y∗) ∈ {x̄} × [u, v]. By (4) and (5) we get

lim sup p(xj) ≤ p(x̄) + ϵ,

and since ϵ > 0 is chosen arbitrarily, we obtain

lim sup p(xj) ≤ p(x̄).

This proves the upper semicontinuity of p(x) at x̄ in the considering case.
In case p(x̄) = −∞, by definition of p(x̄) there exists a sequence {yj} in C such

that

lim
j→∞

[⟨F (x̄), yj⟩+ g(yj)] = −∞. (6)

Now, let {xk} be a sequence in [u, v] converging to x̄, and for each j ∈ N let yj
k

be a sequence in C converging to yj . It follows from the upper semicontinuity of
⟨F (x), y⟩+ g(y) on {x̄} × [u, v] that

lim
j→∞

[⟨F (x̄), yj⟩+ g(yj)] ≥ lim
j→∞

lim sup
k→∞

[⟨F (xk), yj
k

⟩+ g(yj
k

)]

≥ lim sup
k→∞

inf{⟨F (xk), y⟩+ g(y) | y ∈ [u, v]}

≥ lim sup
k→∞

p(xk),

which, together with (6), implies that p(x) is upper semicontinuous at x̄ as desired.
Since p(x) is upper semicontinuous at x̄ which is chosen arbitrarily in [u, v],

it is upper semicontinuous on [u, v]. Consequently, f(x, t) = p(x) + t is upper
semicontinuous on [a, b] = [(u, 0), (v, V )].

(ii) Since r(x) is increasing on [u, v] and t+⟨F (x), x⟩+g(x)−V is increasing with
respect to (x, t) on [a, b], we have from Proposition 3 (ii) that r̄(x, t) is an increasing
functions on [a, b]. By Proposition 2 (i), R is a normal set. Similarly, since h(x) is
increasing on [u, v], so is h̄(x, t) = h(x) on [a, b], and it follows from Proposition 2
(ii) that H is a conormal set. □

The next theorem shows a reduction of the monotonic (MVI) to the
following monotonic optimization problem:

max{f(x, t) | (x, t) ∈ R ∩H}. (MOP)

This is a monotonic optimization problem of a form that is well-studied in the
literature (see [26, 28]). It is known that (MOP) has a solution when R ∩H
is compact and f(x, t) is upper semicontinuous on R ∩H.

Theorem 5 Suppose that the following conditions are satisfied:
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(A1) Fi is an increasing, upper semicontinuous, and non-negative function on
[u, v] for every i = 1, . . . , n;

(A2) g is an increasing, continuous, and non-negative function on [u, v];
(A3) the solution set of (MVI) is nonempty.

Then the following claims hold true.
(i) If (x∗, t∗) is an optimal solution of (MOP), then x∗ is a solution of (MVI)

and t∗ = V − ⟨F (x∗), x∗⟩ − g(x∗).
(ii) Conversely, if x∗ is a solution of (MVI), then (x∗, t∗) is an optimal solution

of (MOP) with t∗ = V − ⟨F (x∗), x∗⟩ − g(x∗), and moreover, the optimal value of
(MOP) is V .

Proof Since g(x) is continuous on [u, v] and C is compact, on one hand we have
f(x, t) = min{⟨F (x), y⟩+ g(y) | y ∈ C}+ t,

and on the other hand,
⟨F (x), y⟩+ g(y)− (⟨F (x), x⟩+ g(x)) = ⟨F (x), y − x⟩+ g(y)− g(x)

attains its minimum with respect to y ∈ C for each fixed x ∈ C. Therefore, for each
x ∈ C we have

φ(x) := min{⟨F (x), y − x⟩+ g(y)− g(x) | y ∈ C}
≤ ⟨F (x), x− x⟩+ g(x)− g(x) = 0. (7)

Now we prove (i). Let (x∗, t∗) be an optimal solution of (MOP). Then we have
(x∗, t∗) ∈ R ∩H ⊂ [a, b], so x∗ ∈ C ⊂ [u, v] and t∗ ∈ [0, V ]. Since (x∗, t∗) ∈ R, we
have r̄(x∗, t∗) ≤ 0, or equivalently,

r(x∗) ≤ 0 (8)
and

t∗ + ⟨F (x∗), x∗⟩+ g(x∗)− V ≤ 0. (9)
Let t̄ := V − ⟨F (x∗), x∗⟩ − g(x∗). By (9) we have t∗ − t̄ ≤ 0, so t̄ ≥ t∗ ≥ 0. By non-
negativity of F (x∗), x∗, and g(x∗), we have t̄ ≤ V . Thus (x∗, t̄) ∈ [a, b]. Furthermore,
by the definition of t̄ we have t̄+ ⟨F (x∗), x∗⟩+ g(x∗)−V = 0, and together with (8)
we obtain

r̄(x∗, t̄) = max{r(x∗), t̄+ ⟨F (x∗), x∗⟩+ g(x∗)− V } = 0.

In addition, since (x∗, t∗) ∈ H, we have 0 ≤ h̄(x∗, t∗) = h(x∗) = h̄(x∗, t̄). To this end,
(x∗, t̄) is a feasible solution of (MOP). Since (x∗, t∗) ≤ (x∗, t̄) and f(x, t) is increasing,
it follows that f(x∗, t∗) ≤ f(x∗, t̄). Keeping in mind the optimality of (x∗, t∗), we
see that (x∗, t̄) is also an optimal solution of (MOP), and since f(x, t) = p(x) + t is
separable with respect to t, we must have t̄ = t∗. So t∗ = V − ⟨F (x∗), x∗⟩ − g(x∗).
This implies that

max{f(x, t) | (x, t) ∈ R ∩H}
= max{min{⟨F (x), y⟩+ g(y) | y ∈ C}+ t | x ∈ C, 0 ≤ t ≤ V − ⟨F (x), x⟩ − g(x)}
= max{min{⟨F (x), y⟩+ g(y) | y ∈ C}+ t | x ∈ C, 0 ≤ t = V − ⟨F (x), x⟩ − g(x)}
= max{min{⟨F (x), y⟩+ g(y) | y ∈ C}+ V − ⟨F (x), x⟩ − g(x) | x ∈ C}
= max{min{⟨F (x), y − x⟩+ g(y)− g(x) | y ∈ C} | x ∈ C}+ V

= max{φ(x) | x ∈ C}+ V. (10)
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It follows that x∗ is an optimal solution of the following optimization problem

max{φ(x) | x ∈ C}. (11)

Let x̄ be a solution of (MVI), then we have

⟨F (x̄), y − x̄⟩+ g(y)− g(x̄) ≥ 0 ∀y ∈ C,

which means that

φ(x̄) = min{⟨F (x̄), y − x̄⟩+ g(y)− g(x̄) | y ∈ C} ≥ 0.

This implies that the optimal value of (11), which equals φ(x∗), is non-negative.
Together with (7), it implies that φ(x∗) = 0, which means

⟨F (x∗), y − x∗⟩+ g(y)− g(x∗) ≥ 0 ∀y ∈ C.

Hence, x∗ is a solution of (MVI).
We now focus on proving (ii). Let x∗ be a solution of (MVI). Then, by similar

arguments for x̄ in the proof of (i), we have φ(x∗) = 0, and hence by (7), x∗ is an
optimal solution of problem (11). For every (x, t) ∈ R ∩H, we have

f(x, t) = min{⟨F (x), y⟩+ g(y) | y ∈ C}+ t

= min{⟨F (x), y − x⟩+ g(y)− g(x) | y ∈ C}+ t+ ⟨F (x), x⟩+ g(x)

= φ(x) + t+ ⟨F (x), x⟩+ g(x)

≤ φ(x) + V

≤ φ(x∗) + V

= min{⟨F (x∗), y − x∗⟩+ g(y)− g(x∗) | y ∈ C}+ V

= min{⟨F (x∗), y⟩+ g(y) | y ∈ C}+ V − ⟨F (x∗), x∗⟩ − g(x∗)

= min{⟨F (x∗), y⟩+ g(y) | y ∈ C}+ t∗

= f(x∗, t∗),

where t∗ = V −⟨F (x∗), x∗⟩−g(x∗). The first inequality above is due to the fact that
(x, t) ∈ R, and the second inequality above is due to the optimality of x∗. Therefore,
(x∗, t∗) is an optimal solution of (MOP). From (10) and the fact that the optimal
value of problem (11) is φ(x∗) = 0, it follows that the optimal value of (MOP) is
V . □

Remark 6 (i) The non-negativity of the function g in condition (A2) of Theorem
5 is a technical condition and can be easily attained. In fact, since g is continuous
on the compact box [u, v], the value α = min{g(x) | x ∈ [u, v]} exists finitely. Let
g′(x) = g(x) + |α|, then on one hand we have g′(x) ≥ 0 for all x ∈ [u, v], while on
the other hand we have g′(y) − g′(x) = g(y) − g(x) for any x, y ∈ [u, v]. The latter
means that (MVI) is equivalent to the one in which g is replaced by g′.

(ii) Concerning condition (A3) in Theorem 5, it is known from [30] Theorem 2.3.4
that when C is nonempty compact convex, ⟨F (x), y−x⟩+g(y)−g(x) is quasiconvex
with respect to x ∈ C and upper semicontinuous with respect to y ∈ C, then (MVI)
has at least one solution. □

It is worth mentioning the popularity of the constraint set of form (1).
Let us first consider a sub-level set D of a d.i. function (i.e. a function that
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can be represented as the difference of two increasing functions, see e.g. [28]),
precisely,

D := {x ∈ [u, v] ⊂ Rn
+ | r(x)− h(x) ≤ 0}, (12)

where r and h are increasing functions on [u, v]. By observing that the
inequality r(x)− h(x) ≤ 0 is equivalent to

t = h(v)− h(x) and r(x) + t− h(v) ≤ 0 ≤ h(x) + t− h(v),

we can convert problem (MVI) into the following problem: Find (x∗, t∗) ∈ C
such that

⟨F (x∗, t∗), (x, t)− (x∗, t∗)⟩+ ḡ(x, t)− ḡ(x∗, t∗) ≥ 0 ∀(x, t) ∈ D,

where D has the form of (1):

D := {(x, t) ∈ [ū, v̄] ⊂ Rn+1
+ | r(x) + t− h(v) ≤ 0 ≤ h(x) + t− h(v)},

with ū = (u, 0), v̄ = (v, h(v) − h(u)), F (x) = (F1(x), . . . , Fn(x), 0), and
ḡ(x, t) = g(x). In turn, outstanding examples for d.i. functions are polynomi-
als of the form P (x) =

∑
σ cσx

σ with σ = (σ1, . . . , σn) ∈ Nn, cσ ∈ R, and
xσ = xσ1

1 · · ·xσn
n . To represent such P (x) as a difference of two increasing func-

tions, it suffices to group separately all terms with positive coefficients and
all terms with negative coefficients. Another example is that any polyhedral
convex set {x ∈ Rn

+ | Ax ≤ 0}, where A = (aij) is a matrix of order m × n,
can be expressed in the form of (12) as follows:

{x ∈ Rn
+ | Ax ≤ 0} = {x ∈ [u, v] ⊂ Rn

+ | A1x−A2x ≤ 0},

where A1 = (a1ij) with a1ij = max{aij , 0} and A2 = (a2ij) with a2ij =
max{0,−aij} are matrices with non-negative elements.

3 Branch-reduce-and-bound algorithm
Thanks to Theorem 5, solving the (MVI) under our consideration consists
in finding an optimal solution to (MOP), and it is known that the optimal
value of (MOP) equals V . As a monotonic optimization problem, (MOP) can
be solved by the branch-reduce-and-bound algorithm proposed in [28]. In this
section, we present the algorithm adapted to the setting of our (MOP).

The algorithm starts searching in an initial box containing all feasible
points of (MOP), or at least guaranteeing to contain an optimal solution of
this problem. An obvious choice of such a box is [a, b]. The algorithm proceeds
by successively partitioning the initial box according to a branch-reduce-and-
bound scheme. In each iteration, for each partition set M , which is a box of
form [p, q] ⊂ [a, b], we compute an upper bound µ(M) for f(z) with z = (x, t) ∈
M . We then remove a partition box if its corresponding bound is strictly less
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than the known optimal value V , so only partition sets M with µ(M) ≥ V
remain for consideration. We continue by selecting a partition set M with
µ(M) ≥ V and further partition it. Then a new collection of boxes is generated
for exploration at the next iteration. The algorithm terminates when either no
partition set remains for exploration (which means (MOP) is infeasible) or an
optimal solution of (MOP) is found. Naturally, for each partition box M we
want to have as tight bound as possible, so before computing µ(M) we should
try to replace the box M by a smaller one M ′ = [p′, q′] ⊂ M without losing
any optimal solution of (MOP) if exists in M . In the following we discuss the
bounding, reduction, and branching operations in detail.

3.1 Bounding operation
Given a box M = [p, q] ⊂ [a, b], we need to compute an upper bound µ(M)
for the optimal value of the following sub-problem

max{f(z) | z ∈ R ∩H ∩M}. (13)

By Lemma 4, R is a normal set, H is a conormal set, and f is increasing.
Therefore, the optimal value of (13) can be computed (approximately) by the
polyblock outer approximation algorithm developed in [26], Section 5. This,
however, is very costly to compute. One can simply take µ(M) = f(q) thanks
to the fact that f is increasing on [p, q].

3.2 Reduction
Let [p, q] be a box for exploration. The reduction operation aims to replace
the box [p, q] with the smaller box [p′, q′] without losing any feasible solution
z ∈ [p, q] of (MOP) satisfying f(z) ≥ V . Since r̄, h̄, and f are increasing
functions, it is easy to see that there exists such z only if r̄(p) ≤ 0, h̄(q) ≥ 0,
and f(q) ≥ V . In this case, one can have a reduction of [p, q] as follows.

Proposition 7 Assume that r̄(p) ≤ 0, h̄(q) ≥ 0, and f(q) ≥ V . Let

p′ = q −
n+1∑
i=1

αi(qi − pi)e
i, q′ = p+

n+1∑
i=1

βi(qi − pi)e
i,

where

αi = sup{α | 0 ≤ α ≤ 1, ℓ(q − α(qi − pi)e
i) ≥ 0} ∀i = 1, . . . , n+ 1,

βi = sup{β | 0 ≤ β ≤ 1, r̄(p+ β(qi − pi)e
i) ≤ 0} ∀i = 1, . . . , n+ 1,

in which ℓ(z) := max{h̄(z), f(z) − V } and ei is the i-th unit vector in Rn+1. Then
the box [p′, q′] ⊆ [p, q] still contains all feasible solutions of (MOP) whose objective
values are at least equal to V .
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Proof Since p′ = q −
∑n+1

i=1 αi(qi − pi)e
i, for all i = 1, . . . , n + 1 we have p′i =

αipi + (1 − αi)qi, and since 0 ≤ αi ≤ 1 it follows that p′i ∈ [pi, qi]. So p ≤ p′ ≤ q.
Similarly, we can also prove that p ≤ q′ ≤ q. Hence [p′, q′] ⊆ [p, q].

Let z be a feasible solution of (MOP) in [p, q] satisfying f(z) ≥ V . We first prove
that p′ ≤ z. Indeed, assume the contrary that p′ ̸≤ z, then there exists an index
i ∈ {1, . . . , n+1} such that zi < p′i = qi−αi(qi−pi). It follows that zi = qi−α(qi−pi)
for some α > αi. By virtue of the definition of αi, we have

ℓ(q − (qi − zi)e
i) = ℓ(q − α(qi − pi)e

i) < 0. (14)
Note that z ≤ q − (qi − zi)e

i and ℓ is an increasing function, we have
ℓ(z) ≤ ℓ(q − (qi − zi)e

i). (15)
By (14) and (15) we obtain

f(z)− V ≤ ℓ(z) < 0,

which contradicts our assumption that f(z) ≥ V . Therefore, p′ ≤ z.
It is left to show that z ≤ q′. Indeed, let i be an arbitrary index in {1, . . . , n+1}

and zi := p + (zi − pi)e
i. Then zii = zi and zij = pj for j ̸= i, so zi ≤ z. It

follows that r̄(zi) ≤ r̄(z) ≤ 0. Note that zi ≤ qi, so zi ≤ p + (qi − pi)e
i, and hence

zi = p + β(qi − pi)e
i for some β ∈ [0, 1). Since r̄(zi) ≤ 0, we have β ≤ βi, i.e.

zi ≤ p+ βi(qi − pi)e
i. So zi = zii ≤ q′i for all i = 1, . . . , n+ 1. Hence z ≤ q′. □

The box [p′, q′] obtained by Proposition 7 is said to be the reduction of the
box [p, q], denoted by red[p, q]. A similar reduction scheme is proposed in [28],
which requires to know the best current objective value γ. When applying to
our (MOP), it results in a reduction box [p̄, q̄] with q̄ = q′ and

p̄ = q −
n∑

i=1

αi(qi − pi)e
i,

where for each i = 1, . . . , n+ 1 the parameter αi is determined by

αi = sup{α | 0 ≤ α ≤ 1, ℓ̄(q − α(qi − pi)e
i) ≥ 0},

in which ℓ̄(z) := min{h̄(z), f(z)− γ}. Since it is already known that V is the
optimal value of (MOP), we have γ ≤ V , and hence it is clear that [p′, q′] ⊆
[p̄, q̄]. So the reduction of the box [p, q] obtained by Proposition 7 is better
than the one obtained by the reduction in [28].

3.3 Branching process
Starting from the initial box [a, b], the standard branching operation suc-
cessively bisect it into smaller and smaller boxes using the following simple
subdivision rule. Let M = [p, q] be a candidate for subdivision, iM =
argmaxi=1,...,n+1{qi − pi}, and wiM = (piM + qiM )/2, then M is divided into
two boxes M+ = {z ∈M | ziM ≥ wiM } and M− = {z ∈M | ziM ≤ wiM }.

As introduced in [28], a more efficient branching operation is an adaptive
one which takes into account the information at the current step. More pre-
cisely, let M = [p, q] be a candidate for further subdivision. In the context of
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our (MOP), let z∗ ∈M be a point such that h̄(z∗) ≥ 0 and f(z∗) is an upper
bound of the subproblem

max{f(z) | z ∈ R ∩H ∩M} = max{f(z) | r̄(z) ≤ 0, h̄(z) ≥ 0, z ∈M}.

Such z∗ can be chosen as q due to the increasing property of f . If, furthermore,
r̄(z∗) ≤ 0, then f(z∗) is exactly the optimal value of the subproblem, and we do
not need to subdivide this box M . Barring this case, we assume that r̄(z∗) > 0.
Let y∗ be the intersection of the line segment from p to z∗ with the surface
r̄(z) = 0, and then let w∗ be the mid point of the line segment connecting y∗
and z∗. We then divide the box M into two boxes M+ = {z ∈M | ziM ≥ w∗

iM
}

and M− = {z ∈M | ziM ≤ w∗
iM

}, in which iM = argmaxi=1,...,n+1{|z∗i − y∗i |}.

3.4 Algorithm
From the above discussion we come up with the following algorithm to solve
(MVI).

Algorithm 1 A branch-reduce-and-bound algorithm to solve (MVI)
Initialization. M1 := [a, b], Ξ1 := {redM1}. Determine a feasible solution
s0 = (x0, t0) of (MOP). If f(s0) = V , then terminate and x0 is solution of
(MVI). Otherwise, let k := 1 and go to Step 1.
Step 1. Delete from Ξk every box [p, q] such that r̄(p) > 0, or h̄(q) < 0.
Step 2. For each box M = [p, q] ∈ Ξk:

(i) Compute an upper bound µ(M) for max{f(s) | s ∈ R ∩ H ∩M} such
that µ(M) ≤ f(q);

(ii) If µ(M) < V , then delete M from Ξk;
(iii) Otherwise, determine a feasible solution sM = (xM , tM ) of (MOP) in

M . If f(sM ) = V , then terminate and xM is a solution of (MVI). If not, then
go to Step 3.
Step 3. Let sk ∈ argmax{f(sM ) | M ∈ Ξk} and set current best value
CBV = f(sk).
Step 4. Let Mk ∈ argmax{µ(M) | M ∈ Ξk}. Divide Mk into two boxes M+

k

and M−
k according to either the standard subdivision rule or the adaptive one.

Let Ξk+1 := (Ξk\{Mk}) ∪ {redM+
k , redM

−
k }.

Step 5. Set k := k + 1 and go to Step 1.

Theorem 8 Suppose that Fi is increasing, upper semicontinuous, and non-negative
on [u, v] for each i = 1, . . . , n, g is increasing and continuous on [u, v], and the
solution set of (MVI) is nonempty. If Algorithm 1 is infinite, then every cluster point
s̄ = (x̄, t̄) of the sequence {sk = (xk, tk)} generated in this algorithm belongs to the
optimization solution set of (MOP) and x̄ is a solution of (MVI).
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Proof Assume that Algorithm 1 is infinite. Both standard and adaptive subdivision
rules imply that every subsequence of boxes Mki

:= [pki
, qki

] generated by the algo-
rithm must shrink to a point s̄ = (x̄, t̄) = limi→∞ qki

= limi→∞ pki
. By the deletion

in Step 1, we have that r̄(pki
) ≤ 0 and h̄(qki

) ≥ 0 for all i ∈ N, which, together
with the lower semicontinuity of r̄ and the upper semicontinuity of h̄, implies that
r̄(s̄) ≤ 0 and h̄(s̄) ≥ 0. It follows that s̄ ∈ R ∩H, and so x̄ ∈ C. On the other hand,
by the selection in Step 4 and the bounding in Step 2(ii) we have

f(qki
) ≥ µ(Mki

) ≥ max{µ(M) |M ∈ Ξk} ≥ f(x, t) ∀(x, t) ∈ R ∩H,

which, together with the upper semicontinuity of f , implies that

f(s̄) ≥ f(x, t) ∀(x, t) ∈ R ∩H.

Hence, s̄ is an optimal solution of (MOP). By Theorem 5, x is a solution of (MVI).
□

Remark 9 Our algorithm follows the general scheme of Algorithm 2 in [28], with
some modifications based on the fact that for (MOP) we known V as the optimal
value. It is worth emphasizing the importance of this fact in increasing the efficiency
of our algorithm in comparison with the general one. Indeed, the known optimal
value V helps us to reduce the number of boxes to be subdivided for further investi-
gation. The general scheme in [28] uses the condition µ(M) < CBV to remove a box
from consideration, and since CBV ≤ V , Step 2(ii) in our algorithm removes more
boxes than using the former condition. Furthermore, the general scheme in [28] only
terminates when Ξk = ∅, which is hard to attain. In contrast, our algorithm uses the
condition CBV = V , which is easy to check, as a stopping condition. □

A computational issue in our algorithm is to calculate the value of f at
z = (x, t) ∈ [a, b]. For that we need to solve the following optimization problem

min{⟨F (x), y⟩+ g(y) | y ∈ C}. (16)

By the assumptions (A1), (A2) in Theorem 5 and Lemma 4, this is a monotonic
optimization problem which can be solved by using algorithms proposed in
[26–28]. If C is convex and the function g is concave on C, then (16) is a
concave programming problem and can be solved by algorithms proposed in
[31]. An interesting case study is when (16) admits separability property in
addition. More precisely, in this case, h(x) ≡ 0, g is a separable function, i.e.,
g(x) =

∑n
i=1 gi(xi) with gi(i = 1, . . . , n) are concave functions on [ui, vi], and

r(x) = max{rj(x) | k = 1, . . . ,m} where rj(x) =
∑n

i=1 rij(xi) with rij(xi)
being a finite convex function on [ui, vi] for all j = 1, . . . ,m and i = 1, . . . , n.
Then we have (16) as a separable concave programming problem and can
be solved on a large scale (see [32–34]). Furthermore, if rj(x), i = 1, . . . ,m
are affine functions on [u, v], then (16) can be solved by the finite algorithm
proposed in [35]. We note that in some well-known equilibrium models, the
separability of functions g, r, and h often appears naturally (see [6, 14, 36]).
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4 Applications
In this section we present two practical models that lead to the monotonic
mixed variational inequality, including a Nash-Cournot equilibrium model and
Bertrand one.

4.1 Nash-Cournot equilibrium model
Let us consider the well-known oligopolistic Nash-Cournot equilibrium model
(see e.g. [6, 17, 37]) where it is supposed that n firms are producing a homoge-
neous commodity. For each j = 1, . . . , n let xj be the amount of commodity to
be produced by firm j, cj(xj) the cost of input resource of firm j for producing
the quantity xj of commodity. Generally, in economics, the cost functions are
non-negative and increasing. Let x = (x1, . . . , xn)

t be the vector of production
levels of the firms, then the total quantity of the commodity produced by all
firms is σx =

∑n
i=1 xi. Let pj(σx) be the price per commodity unit of the firm

j, then the profit function of this firm is

fj(x) = xjpj(σx)− cj(xj).

For each firm j = 1, . . . , n, its producing strategy xj belongs to a given strat-
egy set of form [uj , vj ] ⊂ R+. In addition, it is assumed subject to common
constraints with other firms in form r(x) ≤ 0 ≤ h(x). Let C be the strategy
set of all firms, i.e., C = {x ∈ [u1, v1]× . . .× [un, vn] | r(x) ≤ 0 ≤ h(x)}. Each
firm aims to achieve maximum its own profit by choosing the corresponding
production level under the preassumption that the production levels of the
other firms are parametric input. A Nash equilibrium refers to a production
pattern where no firm can increase its profit by altering its current production
level. Under this equilibrium concept, each firm determines its best response
given other firms’ actions. Mathematically, a point x∗ = (x∗1, . . . , x

∗
n)

t ∈ C is
said to be a Nash-equilibrium point if

fj(x
∗) ≥ fj(x

∗[yj ]) ∀yj ∈ Cj , ∀j = 1, . . . , n,

where x∗[yj ] stands for the vector obtained from x∗ by replacing the entry x∗j
by yj and

Cj = {xj ∈ [uj , vj ] | ∃xi ∈ [ui, vi] ∀i ̸= j such that x ∈ C}.

By setting ϕ(x, y) := −
∑n

j=1 fj(x[yj ]) and ψ(x, y) := ϕ(x, y) − ϕ(x, x), the
problem of finding such a Nash equilibrium point in this model is equivalent to

Find x∗ ∈ C such that ψ(x∗, y) ≥ 0 for all y ∈ C. (17)

Lemma 10 Let pj(σx) = αj−βjσx with αj > 0, βj > 0 for all j = 1, . . . , n. Assume
that r(x) is lower semicontinuous increasing on [u, v], h(x) is upper semicontinuous
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increasing on [u, v], and for each j = 1, . . . , n the cost function cj(xj) is continuous
increasing function on [uj , vj ]. If (17) is feasible, then it can be transformed into
(MOP).

Proof By simple computations we have

ψ(x, y) =

n∑
j=1

[
fj(x)− fj(x[yj ])

]
=

n∑
j=1

[
xjpj(σx)− cj(xj)− yjpj(σx − xj + yj) + cj(yj)

]
=

n∑
j=1

[
xj(αj − βjσx)− yj(αj − βj(σx − xj + yj))

]
+

n∑
j=1

cj(xj)−
n∑

j=1

cj(yj)

=

n∑
j=1

yjβj(x1 + . . .+ xn − xj + yj)−
n∑

j=1

xjβj(x1 + . . .+ xn)

+
n∑

j=1

αj(xj − yj) +

n∑
j=1

cj(xj)−
n∑

j=1

cj(yj)

=
n∑

j=1

βj ∑
i ̸=j

xi

 (yj − xj)−
n∑

j=1

αj(yj − xj)

+

n∑
j=1

βjy
2
j −

n∑
j=1

βjx
2
j +

n∑
j=1

cj(xj)−
n∑

j=1

cj(yj)

= ⟨Px, y − x⟩+ ⟨Qy − α, y⟩+
n∑

j=1

cj(yj)− ⟨Qx− α, x⟩ −
n∑

j=1

cj(xj),

in which

P =


0 β1 β1 . . . β1
β2 0 β2 . . . β2
β3 β3 0 . . . β3
· · · . . . ·
βn βn βn . . . 0

 , Q =


β1 0 0 . . . 0
0 β2 0 . . . 0
0 0 β3 . . . 0
· · · . . . ·
0 0 0 . . . βn

 , α =


α1

α2

α3

·
αn

 . (18)

Hence, (17) can be equivalently restated as the following mixed variational inequality
problem

Find x∗ ∈ C such that ⟨F (x∗), x− x∗⟩+ g(x)− g(x∗) ≥ 0 for all x ∈ C, (19)

where F (x) = Px and g(x) = ⟨Qx−α, x⟩+
∑n

j=1 cj(xj). As P is defined in (18), the
component functions Fi(i = 1, . . . , n) are non-negative, continuous, and increasing
on [u, v]. Let gmin := minx∈[u,v] g(x) and then re-assign g(x) := g(x) + ξ with any
ξ ≥ |gmin|. Then, on one hand, due to the definition of Q in (18) and the continuity,
increasing property of cj(j = 1, . . . , n), we have g is non-negative, continuous, and
increasing on [u, v]. On the other hand, the re-assignment of g does not change
the solution set of (19). Hence, by Theorem 5, problem (19) can be transformed
equivalently into a monotonic optimization problem of form (MOP). □
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Note that g may be not convex when cj is not convex for some j = 1, . . . , n.
In many cases we can further assume that the functions r and h are separable.
For example, if it is stipulated that the total quantity of the commodity pro-
duced by the firms must be at least m and cannot exceed M , then we have the
common constraints with other firms: r(x) = x1 + x2 + . . .+ xn −M ≤ 0 and
h(x) = x1 + x2 + . . . + xn −m ≥ 0. Then, the monotonic optimization prob-
lem (16) is separable and can be effectively solved by using the branch-bound
algorithm given in [26].

4.2 Bertrand equilibrium model
The Bertrand oligopoly model is a different approach to the Cournot model
described in Section 4.1. In the Bertrand model, firms produce a common
commodity, but instead of setting a production quantity, each firm sets a price.
The demand in this model is determined by the price, and the customers tend
to buy from firms with lower prices. However, this assumption may not always
be applied, as the products of firms are often not entirely interchangeable.
Some consumers may prefer one product over the other, even if it costs a bit
more. Suppose that each firm’s level of production xj is influenced by the price
p and can be expressed as

xj(p) = γj − σjpj +

n∑
j ̸=i

λijpj ∀j = 1, . . . , n.

Here, the parameters γj and σj are both positive, while λij is positive when
j ̸= i. The positive value of σj implies that the demand for firm j decreases
as the price of its products increases, whereas the positive value of λij means
that the demand for firm j increases when other firms increase their prices.
The profit function for firm j can then be expressed as fj(p) := pjxj −φj(xj),
where φj(xj) is the cost of input resource of firm j for producing the quantity
xj of commodity.

Suppose that for each firm j = 1, . . . , n its strategy pj belongs to a fixed
interval [uj , vj ]. In addition, suppose that the strategy of each firm depends
on the others in such a way that the strategy vector p = (p1, . . . , pn) of all
firms is subjected to constraints r(p) ≤ 0 ≤ h(p) for certain functions r, h.
Let P be the set of feasible strategies p of all firms. Each firm j attempts to
maximize its profit by choosing a corresponding price level on its strategy set
Cj by solving the optimization problem

fj(p) = max
yj∈Cj

fj(p[yj ]) ∀j = 1, . . . , n,

where p[yj ] is the vector obtained from p by replacing pj with yj .
Following [3], we assume that φj(xj) = mjxj−djx2j with dj ≥ 0, so the cost

is a concave function of the production level. Then we have following lemma.
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Lemma 11 Assume that r(x) is lower semicontinuous increasing on [u, v], h(x) is
upper semicontinuous increasing on [u, v], 1 − 2djσj ≥ 0 and 2σj(djσj − 1)vj +
σjmj + γj(1− 2djσj) > 0 for all j = 1, . . . , n. If the Bertrand equilibrium model has
a solution, then it can be transformed into a monotonic optimization problem.

Proof From xj(p) = γj − σjpj +
∑n

j ̸=i λijpj and φj(xj) = mjxj − djx
2
j , we obtain

φj(p) =− djσ
2
j p

2
j + σj

2dj
γj + n∑

i ̸=j

λjipi

−mj

 pj +mj

γj + n∑
i ̸=j

λjipi


− dj

γj + n∑
i ̸=j

λjipi

2

.

Hence the profit function fj can be expressed in the following form:

fj(p) =σj(djσj − 1)p2j +

σjvj +
γj + n∑

i ̸=j

λjipi

 (1− 2djσj)

 pj
+ dj

γj + n∑
i ̸=j

λjipi

2

−mj

γj + n∑
i ̸=j

λjipi

 .

By the same technique as in the Nash-Cournot model above, the problem of finding
a equilibrium point of this Bertrand model can be formulated as the following mixed
variational inequality problem of type (MVI) (see [6]):

Find p ∈ C such that ⟨G(p), x− p⟩+ g(x)− g(p) ≥ 0 for all x ∈ C, (20)

where

g(x) =

n∑
j=1

[σj(djσj − 1)x2j + [σjmj + γj(1− 2djσj)]xj ].

and G(x) = Px in which P = (pij)n×n with pii = 0 and pij = λij(1− 2diσi) for all
i, j ∈ {1, . . . , n} with j ̸= i. For each j = 1, . . . , n, Gj(x) is non-negative continuous
increasing on [u, v] since 1− 2djσj ≥ 0. Let

gmin := min


n∑

j=1

[
σj(djσj − 1)x2j + [σjmj + γj(1− 2djσj)]xj

]
| x ∈ [u, v]


and re-assign g(x) := g(x) + ξ with any ξ ≥ |gmin|. Note that we have 2σj(djσj −
1)vj+σjmj+γj(1−2djσj) > 0 by assumption, hence g(x) is non-negative continuous
increasing on [u, v]. By the Theorem 5, (20) can be transformed equivalently into a
monotonic optimization problem. □

It is worth noting that, by the construction in the above proof, G does not
satisfy any generalized monotonicity and g is not convex because djσj −1 < 0
for all j = 1, . . . , n.
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5 Conclusion
By using monotonic optimization approach, we shown that a class of mono-
tonic mixed variational inequality problems in Rn can be transformed
equivalently into a monotonic optimization problem, for which we proposed
a modified branch-reduce-and-bound algorithm to solve and proved the con-
vergence results under very lenient assumptions. Our algorithm is a global
optimization method which is often computationally expensive. However, it
can be applied to solve (MVI) with very lenient assumptions that most itera-
tive algorithms for convex mixed variational inequality problems cannot use.
As an application, we have shown that the solutions of the oligopolistic Nash-
Cournot equilibrium model and the Bertrand equilibrium model with very
general hypotheses can be solved by the proposed algorithm. We believe that
the new results in this paper can provide new light on the implementation of
algorithms for solving a class of discrete variational inequality problems that
have practical applications, for example, a traffic equilibrium problem (see
[38]).
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